JPWO2014132777A1 - オレフィン類重合用固体触媒成分、オレフィン類重合用触媒およびオレフィン類重合体の製造方法 - Google Patents

オレフィン類重合用固体触媒成分、オレフィン類重合用触媒およびオレフィン類重合体の製造方法 Download PDF

Info

Publication number
JPWO2014132777A1
JPWO2014132777A1 JP2015502841A JP2015502841A JPWO2014132777A1 JP WO2014132777 A1 JPWO2014132777 A1 JP WO2014132777A1 JP 2015502841 A JP2015502841 A JP 2015502841A JP 2015502841 A JP2015502841 A JP 2015502841A JP WO2014132777 A1 JPWO2014132777 A1 JP WO2014132777A1
Authority
JP
Japan
Prior art keywords
group
carbon atoms
halogen
substituted
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015502841A
Other languages
English (en)
Other versions
JP6297022B2 (ja
Inventor
保坂 元基
元基 保坂
紀明 中村
紀明 中村
菅野 利彦
利彦 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Publication of JPWO2014132777A1 publication Critical patent/JPWO2014132777A1/ja
Application granted granted Critical
Publication of JP6297022B2 publication Critical patent/JP6297022B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/06Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type
    • C08F297/08Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins
    • C08F297/083Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins the monomers being ethylene or propylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)

Abstract

チタン、マグネシウム、ハロゲン、次式;(R1)kC6H4−k(COOR2)(COOR3)で表わされる化合物及び次式;R4O−C(=O)−O−Z−OR5で表される化合物を含有するオレフィン類重合用固体触媒成分。本発明によれば、オレフィン類の重合活性および重合時の対水素活性に優れるとともに、MFRや立体規則性が高く優れた剛性を有するオレフィン類重合体を製造し得る新規なオレフィン類重合用固体触媒成分を提供することができる。

Description

本発明は、オレフィン類重合用固体触媒成分、オレフィン類重合用触媒およびオレフィン類重合体の製造方法に関するものである。
従来より、オレフィン類重合用触媒を用いてプロピレン等のオレフィン類を重合することが行われており、得られたオレフィン類重合体は、溶融された後、各種の成型機、延伸機等により成形されて、自動車部品、家電部品等の成型品の他、容器やフィルム等種々の用途に利用されている。
上記オレフィン類重合用触媒の構成成分として、マグネシウム、チタン、電子供与性化合物およびハロゲン原子を必須成分として含有する固体触媒成分が知られており、上記固体触媒成分と、有機アルミニウム化合物および有機ケイ素化合物とから成るオレフィン類重合用触媒が数多く提案されている。
ところで、オレフィン類重合体としては、各種の成型機や延伸機等により成形する際に、より流動性(メルトフローレート(MFR))の高いものが求められるようになっている。
オレフィン類重合体のMFRは、オレフィン類重合体の分子量に大きく依存し、分子量の低いオレフィン類重合体は、MFRが高い傾向がある。このため、MFRの高いオレフィン類重合体を得るために、重合の際に多量の水素を添加し、得られるオレフィン類重合体を低分子化することが一般的に行われている。
また、近年、大型家電部品や自動車部品、特にバンパーのような製品においては、オレフィン類重合体として、MFRや立体規則性が高いとともに、薄肉で高い物理的強度、すなわち優れた剛性を有するものが求められるようになっている。
このような状況下、本件出願人は、先に、特許文献1(特開2004−107462号公報)において、マグネシウム化合物、4価のチタンハロゲン化合物、マロン酸ジエステル類からなる内部電子供与性化合物およびフタル酸ジエステル類からなる内部電子供与性化合物を接触させて得られる固体触媒成分、有機アルミニウム化合物並びに有機ケイ素化合物より成るオレフィン類重合用触媒を提案し、該重合用触媒を用いたオレフィン類の重合方法を提案した。
特開2004−107462号公報
特許文献1記載のオレフィン類重合用触媒は、従来の重合用触媒と比較して良好な対水素活性を示し、このような固体触媒成分を用いて得られたオレフィン類重合体は、溶融ポリマーの流動性(MFR)が高く、特に射出成型等で大型の成型品を製造する際に有用である。
しかしながら、本発明者等がさらに検討したところ、異なる2種以上の内部電子供与性化合物を同時に接触、反応させて、所望量の内部電子供与性化合物を固体触媒成分中に含有させるためには、それぞれの添加量を多めに設定する必要がある。このため、余剰の内部電子供与性化合物と4価のチタンハロゲン化合物との錯体が形成され易くなり、オレフィン類重合用触媒の構成成分として用いたときに、重合時の重合活性や得られるオレフィン類重合体の立体規則性が低下し易くなることが判明した。
また、オレフィン類重合用触媒として、さらに優れた剛性を発揮するオレフィン類重合体を製造し得るものが求められるようになっている。
このような状況下、本件発明は、オレフィン類の重合活性および重合時の対水素活性に優れるとともに、MFRや立体規則性が高く優れた剛性を有するオレフィン類重合体を製造し得る新規なオレフィン類重合用固体触媒成分を提供するとともに、オレフィン類重合用触媒およびオレフィン類重合体の製造方法を提供することを目的とするものである。
かかる実情において、本発明者等が鋭意検討を行った結果、マグネシウム、チタン、ハロゲン、特定の芳香族ジカルボン酸ジエステルおよび特定のエーテル基とカーボネート基を有する化合物を含有する固体触媒成分を必須の構成要件とするオレフィン類重合触媒が、上記目的を達成し得ることを見出し、本発明を完成するに至った。
すなわち、本発明は、マグネシウム、チタン、ハロゲンと、下記一般式(1);
(R4−k(COOR)(COOR) (1)
(式中、Rは炭素数1〜8のアルキル基またはハロゲン原子を示し、RおよびRは炭素数1〜12のアルキル基であり、同一であっても異なっていてもよく、また、置換基Rの数kは0、1または2であり、kが2のとき、各Rは同一であっても異なっていてもよい。)で表される化合物および下記一般式(2);
O−C(=O)−O−Z−OR (2)
(式中、RおよびRは、炭素数1〜20の直鎖状アルキル基、炭素数3〜20の分岐アルキル基、ビニル基、炭素数3〜20の直鎖状アルケニル基または分岐アルケニル基、炭素数1〜20の直鎖状ハロゲン置換アルキル基、炭素数3〜20の分岐ハロゲン置換アルキル基、炭素数2〜20の直鎖状ハロゲン置換アルケニル基、炭素数3〜20の分岐ハロゲン置換アルケニル基、炭素数3〜20のシクロアルキル基、炭素数3〜20のシクロアルケニル基、炭素数3〜20のハロゲン置換シクロアルキル基、炭素数3〜20のハロゲン置換シクロアルケニル基、炭素数6〜24の芳香族炭化水素基、炭素数6〜24のハロゲン置換芳香族炭化水素基、結合末端が炭素原子である炭素数2〜24の窒素原子含有炭化水素基、結合末端が炭素原子である炭素数2〜24の酸素原子含有炭化水素基または結合末端が炭素原子である炭素数2〜24のリン含有炭化水素基を示し、同一でも異なっていてもよく、但し、該炭素数2〜24の窒素原子含有炭化水素基は、結合末端がC=N基であるもの、該炭素数2〜24の酸素原子含有炭化水素基は、結合末端がカルボニル基であるもの、該炭素数2〜24のリン含有炭化水素基は、結合末端がC=P基であるものをそれぞれ除く。Zは、炭素原子又は炭素鎖を介して結合する結合性基を示す。)で表される化合物を含有することを特徴とするオレフィン類重合用固体触媒成分を提供するものである。
また、本発明は、前記固体触媒成分、下記一般式(3);
AlQ3−p (3)
(式中、Rは炭素数1〜6のアルキル基であり、Qは水素原子またはハロゲン原子であり、pは0<p≦3の実数である。)で表される有機アルミニウム化合物、および必要に応じて外部電子供与性化合物から形成されることを特徴とするオレフィン類重合用触媒を提供するものである。
さらに、本発明は、前記オレフィン類重合用触媒の存在下に、オレフィン類の重合を行うことを特徴とするオレフィン類重合体の製造方法を提供するものである。
本発明によれば、オレフィン類の重合活性および重合時の対水素活性に優れるとともに、MFRや立体規則性が高く優れた剛性を有するオレフィン類重合体を製造し得る新規なオレフィン類重合用固体触媒成分を提供することができるとともに、オレフィン類重合用触媒およびオレフィン類重合体の製造方法を提供することができる。
本発明の重合触媒を調製する工程を示すフローチャート図である。
本発明のオレフィン類重合用固体触媒成分(以下、単に「成分(I)」と言うことがある。)は、マグネシウム、チタン、ハロゲンおよび、電子供与性化合物として上記一般式(1)および上記一般式(2)で表される電子供与性化合物(以下、単に「成分(A)」、「成分(B)」ということがある。)を必須成分として含有する。
ハロゲンとしては、例えば、フッ素、塩素、臭素またはヨウ素の各原子が挙げられ、中でも好ましくは塩素、臭素またはヨウ素であり、特に好ましくは塩素原子またはヨウ素原子である。
上記一般式(1)のRは、ハロゲン原子または炭素数1〜8のアルキル基である。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子から選ばれる一種以上の原子が挙げられる。Rにおいて、炭素数1〜8のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、n−ヘキシル基、イソヘキシル基、2,2−ジメチルブチル基、2,2−ジメチルペンチル基、イソオクチル基、2,2−ジメチルヘキシル基から選ばれる一種以上が挙げられ、好ましくはメチル基、臭素原子、フッ素原子であり、特にメチル基、臭素原子がより好ましい。
上記一般式のRおよびRは炭素数1〜12のアルキル基であり、RおよびRは、互いに同一であってもよいし異なっていてもよい。炭素数1〜12のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、n−ヘキシル基、イソヘキシル基、2,2−ジメチルブチル基、2,2−ジメチルペンチル基、イソオクチル基、2,2−ジメチルヘキシル基、n−ノニル基、イソノニル基、n−デシル基、イソデシル基、n−ドデシル基が挙げられる。この中でもエチル基、n−ブチル基、イソブチル基、t−ブチル基、ネオペンチル基、イソヘキシル基、イソオクチル基が好ましく、エチル基、n−プロピル基、n−ブチル基、イソブチル基、ネオペンチル基がより好ましい。
一般式(1)の置換基Rの数kは0、1または2であり、kが2のとき、各R(2つのR)は同一であっても異なっていてもよい。kが0である場合、一般式(1)で表わされる化合物はフタル酸ジエステルであり、kが1または2である場合、一般式(1)で表わされる化合物は置換フタル酸ジエステルである。kが1の場合、一般式(1)のRが、ベンゼン環の3位、4位または5位の位置の水素原子と置換してなるものが好ましい。kが2の場合、一般式(1)のRが、ベンゼン環の4位および5位の位置の水素原子と置換してなるものが好ましい。
一般式(1)で表わされる芳香族ジカルボン酸ジエステルの具体例としては、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジ−n−プロピル、フタル酸ジイソプロピル、フタル酸ジ−n−ブチル、フタル酸ジイソブチル、フタル酸ジ−n−ペンチル、フタル酸ジイソペンチル、フタル酸ジネオペンチル、フタル酸ジ−n−ヘキシル、フタル酸ジテキシル、フタル酸メチルエチル、フタル酸(エチル)n−プロピル、フタル酸エチルイソプロピル、フタル酸(エチル)n−ブチル、フタル酸エチルイソブチル、フタル酸(エチル)n−ペンチル、フタル酸エチルイソペンチル、フタル酸エチルネオペンチル、フタル酸(エチル)n−ヘキシル等のフタル酸ジエステル、4−クロロフタル酸ジエチル、4−クロロフタル酸ジ−n−プロピル、4−クロロフタル酸ジイソプロピル、4−クロロフタル酸ジ−n−ブチル、4−クロロフタル酸ジイソブチル、4−ブロモフタル酸ジエチル、4−ブロモフタル酸ジ−n−プロピル、4−ブロモフタル酸ジイソプロピル、4−ブロモフタル酸ジ−n−ブチル、4−ブロモフタル酸ジイソブチル等のハロゲン置換フタル酸ジエステル、4−メチルフタル酸ジエチル、4−メチルフタル酸ジ−n−プロピル、4−メチルフタル酸ジイソプロピル、4−メチルフタル酸ジ−n−ブチル、4−メチルフタル酸ジイソブチル等のアルキル置換フタル酸ジエステル等が挙げられる。
上記の中でも、フタル酸ジエチル、フタル酸ジ−n−プロピル、フタル酸ジ−n−ブチル、フタル酸ジイソブチル、フタル酸ジ−n−ペンチル、フタル酸ジイソペンチル、フタル酸ジネオペンチル、フタル酸ジ−n−ヘキシル、フタル酸(エチル)n−プロピル、フタル酸エチルイソプロピル、フタル酸(エチル)n−ブチル、フタル酸エチルイソブチル、4−メチルフタル酸ジエチル、4−メチルフタル酸ジ−n−プロピル、4−メチルフタル酸ジイソブチル、4−ブロモフタル酸ジイソブチル、4−ブロモフタル酸ジイソペンチルおよび4−ブロモフタル酸ジネオペンチル等が好ましく、フタル酸ジエチル、フタル酸ジ−n−プロピル、フタル酸ジ−n−ブチル、フタル酸ジイソブチル、フタル酸(エチル)n−プロピル、フタル酸エチルイソプロピル、フタル酸(エチル)n−ブチル、フタル酸エチルイソブチル、4−メチルフタル酸ジエチル、4−メチルフタル酸ジ−n−プロピル、4−メチルフタル酸ジイソブチル、4−ブロモフタル酸ジイソブチル、4−ブロモフタル酸ジイソペンチルおよび4−ブロモフタル酸ジネオペンチルがより好ましい。
上記一般式(2)中のR、Rの炭素数1〜20の直鎖状アルキル基としては、例えばメチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ペンチル基、n−オクチル基、n−ノニル基、n−デシル基等が挙げられる。好ましくは炭素数1〜12の直鎖状アルキル基である。
また、前記R、Rの炭素数3〜20の分岐アルキル基としては、例えばイソプロピル基、イソブチル基、t−ブチル基、イソペンチル基、ネオペンチル基などの2級炭素または3級炭素を有するアルキル基が挙げられる。好ましくは炭素数3〜12の分岐アルキル基である。
また、前記R、Rの炭素数3〜20の直鎖状アルケニル基としては、アリル基、3−ブテニル基、4−ヘキセニル基、5−ヘキセニル基、7−オクテニル基、10−ドデセニル基等が挙げられる。好ましくは炭素数3〜12の直鎖状アルケニル基である。炭素数3〜20の分岐アルケニル基としては、イソプロペニル基、イソブテニル基、イソペンテニル基、2−エチル,3−ヘキセニル基等が挙げられる。好ましくは炭素数3〜12の分岐アルケニル基である。
また、前記R、Rの炭素数1〜20の直鎖状ハロゲン置換アルキル基としては、例えばハロゲン化メチル基、ハロゲン化エチル基、ハロゲン化n−プロピル基、ハロゲン化n−ブチル基、ハロゲン化n−ペンチル基、ハロゲン化n−ヘキシル基、ハロゲン化n−ペンチル基、ハロゲン化n−オクチル基、ハロゲン化ノニル基、ハロゲン化デシル基、ハロゲン置換ウンデシル基、ハロゲン置換ドデシル基等が挙げられる。好ましくは、炭素数1〜12の直鎖状ハロゲン置換アルキル基である。また、炭素数3〜20の分岐ハロゲン置換アルキル基としては、ハロゲン化イソプロピル基、ハロゲン化イソブチル基、ハロゲン化2−エチルヘキシル基、ハロゲン化ネオペンチル基等が挙げられる。好ましくは、炭素数3〜12の分岐ハロゲン置換アルキル基である。
また、前記R、Rの、炭素数2〜20の直鎖状ハロゲン置換アルケニル基としては、2−ハロゲン化ビニル基,3−ハロゲン化アリル基、3−ハロゲン化−2−ブテニル基、4−ハロゲン化−3−ブテニル基、パーハロゲン化−2−ブテニル基、6−ハロゲン化−4−ヘキセニル基、3−トリハロゲン化メチル−2−プロペニル基等が挙げられる。好ましくは炭素数2〜12のハロゲン置換アルケニル基である。また、炭素数3〜20の分岐ハロゲン置換アルケニル基としては、3−トリハロゲン化−2−ブテニル基、2−ペンタハロゲン化エチル−3−ヘキセニル基、6−ハロゲン化−3−エチル−4−ヘキセニル基、3−ハロゲン化イソブテニル基等が挙げられる。好ましくは炭素数3〜12の分岐ハロゲン置換アルケニル基である。
また、前記R、Rの炭素数3〜20のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、テトラメチルシクロペンチル基、シクロヘキシル基、メチルシクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ブチルシクロペンチル基等が挙げられる。好ましくは炭素数3〜12のシクロアルキル基である。また、炭素数3〜20のシクロアルケニル基としては、シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基、シクロオクテニル基、ノルボルネン基、等が挙げられる。好ましくは炭素数3〜12のシクロアルケニル基である。
また、前記R、Rの炭素数3〜20のハロゲン置換シクロアルキル基としては、ハロゲン置換シクロプロピル基、ハロゲン置換シクロブチル基、ハロゲン置換シクロペンチル基、ハロゲン置換トリメチルシクロペンチル基、ハロゲン置換シクロヘキシル基、ハロゲン置換メチルシクロヘキシル基、ハロゲン置換シクロヘプチル基、ハロゲン置換シクロオクチル基、ハロゲン置換シクロノニル基、ハロゲン置換シクロデシル基、ハロゲン置換ブチルシクロペンチル等が挙げられる。好ましくは炭素数3〜12のハロゲン置換シクロアルキル基である。
また、前記R、Rの炭素数3〜20のハロゲン置換シクロアルケニル基としては、ハロゲン置換シクロプロペニル基、ハロゲン置換シクロブテニル基、ハロゲン置換シクロペンテニル基、ハロゲン置換トリメチルシクロペンテニル基、ハロゲン置換シクロヘキデニル基、ハロゲン置換メチルシクロヘキセニル基、ハロゲン置換シクロヘプテニル基、ハロゲン置換シクロオクテニル基、ハロゲン置換シクロノネニル基、ハロゲン置換シクロデセニル基、ハロゲン置換ブチルシクロペンテニル等が挙げられる。好ましくは炭素数3〜12のハロゲン置換シクロアルケニル基である。
また、前記R、Rの炭素数6〜24の芳香族炭化水素基としては、フェニル基、メチルフェニル基、ジメチルフェニル基、エチルフェニル基、ベンジル基、1−フェニルエチル基、2−フェニルエチル基、2−フェニルプロピル基、1−フェニルブチル基、4−フェニルブチル基、2−フェニルヘプチル基、トリル基、キシリル基、ナフチル基、1,8−ジメチルナフチル基等が挙げられる。好ましくは炭素数6〜12の芳香族炭化水素基である。
また、前記R、Rの炭素数6〜24のハロゲン置換芳香族炭化水素基としては、ハロゲン化フェニル基、ハロゲン化メチルフェニル基、トリハロゲン化メチルフェニル基、パーハロゲン化ベンジル基、パーハロゲン化フェニル基、2−フェニル−2−ハロゲン化エチル基、パーハロゲン化ナフチル基、4−フェニル−2,3−ジハロゲン化ブチル基等が挙げられる。好ましくは炭素数6〜12のハロゲン置換芳香族炭化水素基である。
なお、前記R、Rのハロゲン置換アルキル基、ハロゲン置換アルケニル基、ハロゲン置換シクロアルキル基、ハロゲン置換シクロアルケニル基、およびハロゲン置換芳香族炭化水素基において、ハロゲン種としては、フッ素、塩素、臭素またはヨウ素が挙げられ、好ましくはフッ素、塩素または臭素である。
また、前記R、Rの結合末端がC=N基であるものを除く炭素数2〜24の窒素原子含有炭化水素基は、結合末端が炭素原子である基であり、例えば、メチルアミノメチル基、ジメチルアミノメチル基、エチルアミノメチル基、ジエチルアミノメチル基、プロピルアミノメチル基、ジプロピルアミノメチル基、メチルアミノエチル基、ジメチルアミノエチル基、エチルアミノエチル基、ジエチルアミノエチル基、プロピルアミノエチル基、ジプロピルアミノエチル基、ブチルアミノエチル基、ジブチルアミノエチル基、ペンチルアミノエチル基、ジペンチルアミノエチル基、ヘキシルアミノエチル基、ヘキシルメチルアミノエチル基、ヘプチルメチルアミノエチル基、ジヘプチルアミノメチル基、オクチルメチルアミノメチル基、ジオクチルアミノエチル基、ノニルアミノメチル基、ジノニルアミノメチル基、デシルアミノメチル基、ジデシルアミノ基、シクロヘキシルアミノメチル基、ジシクロヘキシルアミノメチル基などのアルキルアミノアルキル基、フェニルアミノメチル基、ジフェニルアミノメチル基、ジトリルアミノメチル基、ジナフチルアミノ基メチル、メチルフェニルアミノエチル基などのアリールアミノアルキル基またはアルキルアリールアミノアルキル基、多環状アミノアルキル基、アニリノ基、ジメチルアミノフェニル基、ビスジメチルアミノフェニル基等のアミノ基含有芳香族炭化水素基、メチルイミノメチル、エチルイミノエチル、プロピルイミノ、ブチルイミノ、フェニルイミノなどのイミノアルキル基等が挙げられる。好ましくは炭素数2〜12の窒素原子含有炭化水素基である。なお、結合末端とは、R、Rが結合する酸素原子側の原子又は基を言う。
また、前記R、Rの結合末端がカルボニル基であるものを除く炭素数2〜24の酸素原子含有炭化水素基としては、結合末端が炭素原子である基であり、例えばメトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、イソプロポキシメチル基、イソブトキシメチル基、メトキシエチル基、エトキシエチル基、プロポキシエチル基、ブトキシエチル基、イソプロポキシエチル基、イソブトキシエチル基などのエーテル基含有炭化水素基、フェノキシメチル基、メチルフェノキシメチル基、ジメチルフェノキメチル基、ナフトキシメチル基などのアリーロキシアルキル基、メトキシフェニル基、エトキスフェニル基などのアルコキシアリール基、アセトキシメチル基などが挙げられる。好ましくは炭素数2〜12の酸素原子含有炭化水素基である。なお、結合末端とは、R、Rが結合する酸素原子側の原子又は基を言う。
また、前記R、Rの炭素数2〜24の結合末端がC=P基であるものを除くリン含有炭化水素基としては、結合末端が炭素原子である基であり、例えば、ジメチルホスフィノメチル基、ジブチルホスフィノメチル基、ジシクロヘキシルホスフィノメチル基、ジメチルホスフィノエチル基、ジブチルホスフィノエチル基、ジシクロヘキシルホスフィノエチル基などのジアルキルホスフィノアルキル基、ジフェニルホスフィノメチル基、ジトリルホスフィノメチル基などのジアリールホスフィノアルキル基、ジメチルホスフィノフェニル基、ジエチルホスフィノフェニル基等のホスフィノ基置換アリール基などが挙げられる。好ましくは炭素数2〜12のリン含有炭化水素基である。なお、結合末端とは、R、Rが結合する酸素原子側の原子又は基を言う。
前記Rの特に好ましい基は、炭素数1〜12の直鎖状アルキル基、結合末端が−CH−である炭素数3〜12の分岐アルキル基、ビニル基、炭素数3〜12の直鎖状アルケニル基、結合末端が−CH−である炭素数3〜12の分岐アルケニル基、炭素数1〜12の直鎖状ハロゲン置換アルキル基、結合末端が−CH−である炭素数3〜12の分岐ハロゲン置換アルキル基、炭素数3〜12の直鎖状ハロゲン置換アルケニル基、結合末端が−CH−である炭素数3〜12の分岐ハロゲン置換アルケニル基、結合末端が−CH−である炭素数4〜12のシクロアルキル基、結合末端が−CH−である炭素数4〜12のシクロアルケニル基、結合末端が−CH−である炭素数4〜12のハロゲン置換シクロアルキル基、結合末端が−CH−である炭素数4〜12のハロゲン置換シクロアルケニル基、または結合末端が−CH−である炭素数7〜12の芳香族炭化水素基である。なお、Rにおける当該結合末端とは、Rが結合する酸素原子側の基を言う。
一般式(2)中、Zはカーボネート基とエーテル基(OR基)を結合する二価の結合性基であり、好ましくは、Zが結合する2つの酸素原子間は炭素鎖で結合され、該炭素鎖が2個の炭素原子で構成されている結合性基である。なお、Zがシクロアルキレン基、シクロアルケニレン基、ハロゲン置換シクロアルキレン基、ハロゲン置換シクロアルケニレン基、芳香族炭化水素基またはハロゲン置換芳香族炭化水素基のような環状の基におけるZが結合する2つの酸素原子間は炭素鎖で結合され、該炭素鎖が2個の炭素原子で構成されている結合性基とは、環状を構成する炭素鎖の中の隣接する2個の炭素鎖が、当該Zが結合する2つの酸素原子間にある炭素鎖であることを意味する。
前記Zの好ましい基は、炭素数1〜20の直鎖状アルキレン基、炭素数3〜20の分岐アルキレン基、ビニレン基、炭素数3〜20の直鎖状アルケニレン基または分岐アルケニレン基、炭素数1〜20の直鎖状ハロゲン置換アルキレン基、炭素数3〜20の分岐ハロゲン置換アルキレン基、炭素数3〜20の直鎖状ハロゲン置換アルケニレン基また分岐ハロゲン置換アルケニレン基、炭素数3〜20のシクロアルキレン基、炭素数3〜20のシクロアルケニレン基、炭素数3〜20のハロゲン置換シクロアルキレン基、炭素数3〜20のハロゲン置換シクロアルケニレン基、炭素数6〜24の芳香族炭化水素基、炭素数6〜24のハロゲン置換芳香族炭化水素基、炭素数1〜24の窒素原子含有炭化水素基、炭素数1〜24の酸素原子含有炭化水素基または炭素数1〜24のリン含有炭化水素基である。
また、前記Zの特に好ましい基は、炭素数2の直鎖状アルキレン基、炭素数3〜12の分岐アルキレン基、ビニレン基、炭素数3〜12の直鎖状アルケニレン基または分岐アルケニレン基、炭素数2〜12の直鎖状ハロゲン置換アルキレン基、炭素数3〜12の分岐ハロゲン置換アルキレン基、炭素数3〜12の直鎖状ハロゲン置換アルケニレン基または分岐ハロゲン置換アルケニレン基、炭素数3〜12のシクロアルキレン基、炭素数3〜12のシクロアルケニレン基、炭素数3〜12のハロゲン置換シクロアルキレン基、炭素数3〜12のハロゲン置換シクロアルケニレン基、炭素数6〜12の芳香族炭化水素基、炭素数6〜12のハロゲン置換芳香族炭化水素基、炭素数2〜12の窒素原子含有炭化水素基、炭素数2〜12の酸素原子含有炭化水素基または炭素数2〜12のリン含有炭化水素基であり、Zが結合する2つの酸素原子間は炭素鎖で結合され、当該炭素鎖が2個の炭素原子で構成されているものである。
前記Zの炭素数1〜20の直鎖状アルキレン基としては、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ウンデカメチレン基、ドデカメチレン基、トリデカメチレン基、テトラデカメチレン基など挙げられる。好ましくは、炭素数2〜12の直鎖状アルキレン基である。
前記Zの炭素数3〜20の分岐アルキレン基としては、1−メチルエチレン基、2−メチルトリメチレン基、2−メチルテトラメチレン基、2−メチルペンタメチレン基、3−メチルヘキサメチレン基、4−メチルヘプタメチレン基、4−メチルオクタメチレン基、5−メチルノナメチレン基、5−メチルデカメチレン基、6−メチルウンデカメチレン基、7−メチルドデカメチレン基、7−メチルトリデカメチレン基などが挙げられる。好ましくは、炭素数3〜12の分岐アルキレン基である。
前記Zの炭素数3〜20の直鎖状アルケニレン基としては、プロペニレン基、ブテニレン基、ヘキセニレン基、オクテニレン基、オクタデセニレン基などが挙げられる。好ましくは、炭素数3〜12の直鎖状アルケニレン基である
前記Zの炭素数3〜20の分岐アルケニレン基としては、2−メチルプロペニレン基、2,2−ジメチルブテニレン基、3−メチル−2−ブテニレン基、3−エチル−2−ブテニレン基、2−メチルオクテニレン基、2,4−ジメチル−2−ブテニレン基などが挙げられる。好ましくは、炭素数3〜12の分岐アルケニレン基である。
前記Zの炭素数1〜20の直鎖状ハロゲン置換アルキレン基としては、ジクロロンメチレン基、クロロメチレン基、ジクロロメチレン基、テトラクロロエチレン基などが挙げられる。好ましくは、炭素数3〜12の直鎖状ハロゲン置換アルキレン基である。
前記Zの炭素数1〜20の分岐ハロゲン置換アルキレン基としては、1,2−ビスクロロメチルエチレン基、2,2−ビス(クロロメチル)プロピレン基、1,2−ビスジクロロメチルエチレン基、1,2−ビス(トリクロロメチル)エチレン基、2,2−ジクロロプロピレン基、1,1,2,2−テトラクロロエチレン基、1−トリフルオロメチルエチレン基、1−ペンタフルオロフェニルエチレン基等が挙げられる。好ましくは、炭素数3〜12の分岐ハロゲン置換アルキレン基である。
前記Zの炭素数1〜20の直鎖状ハロゲン置換アルケニレン基としては、ジクロロエテニレン基、ジフルオロエテニレン基、3,3−ジクロロプロペニレン基、1,2−ジフルオロプロペニレン基などが挙げられる。好ましくは、炭素数3〜12の直鎖状ハロゲン置換アルケニレン基である。
前記Zの炭素数1〜20の分岐ハロゲン置換アルキレン基としては、3,4−ジクロロ−1,2−ブチレン基、2,2−ジクロロ−1,3−ブチレン基、1,2−ジフルオロ−1,2−プロピレン基などが挙げられる。好ましくは、炭素数3〜12の分岐ハロゲン置換アルキレン基である。
前記Zの炭素数3〜20のシクロアルキレン基としては、シクロペンチレン基、シクロヘキシレン基、シクロプロピレン基、2−メチルシクロプロピレン基、シクロブチレン基、2,2−ジメチルシクロブチレン基、2,3−ジメチルシクロペンチレン基、1,3,3−トリメチルシクロヘキシレン基、シクロオクチレン基などが挙げられる。好ましくは、炭素数3〜12のシクロアルキレン基である。
前記Zの炭素数3〜20のシクロアルケニレン基としては、シクロペンテニレン基、2,4−シクロペンタジエニレン基、シクロヘキセニレン基、1,4−シクロヘキサジエニレン基、シクロヘプテニレン基、メチルシクロペンテニレン基、メチルシクロヘキセニレン基、メチルシクロヘプテニレン基、ジシクロデシレン基、トリシクロデシレン基などが挙げられる。好ましくは、炭素数3〜12のシクロアルケニレン基である。
前記Zの炭素数3〜20のハロゲン置換シクロアルキレン基としては、3−クロロ−1,2−シクロペンチレン基、3,4,5,6−テトラクロロ−1,2−シクロヘキシレン基、3,3−ジクロロ−1,2−シクロプロピレン基、2−クロロメチルシクロプロピレン基、3,4−ジクロロ−1,2−シクロブチレン基、3,3−ビス(ジクロロメチル)−1,2−シクロブチレン基、2,3−ビス(ジクロロメチル)シクロペンチレン基、1,3,3−トリス(フルオロメチル)−1,2−シクロヘキシレン基、3−トリクロロメチル−1,2−シクロオクチレン基などが挙げられる。好ましくは、炭素数3〜12のハロゲン置換シクロアルキレン基である。
前記Zの炭素数3〜20のハロゲン置換シクロアルケニレン基としては、5−クロロ−1,2−シクロ−4−ヘキセニレン基、3,3,4,4−テトラフルオロ−1,2−シクロ−6−オクテニレン基などが挙げられる。好ましくは、炭素数3〜12のハロゲン置換シクロアルケニレン基である。
前記Zの炭素数6〜24の芳香族炭化水素基としては、1,2−フェニレン、3−メチル−1,2−フェニレン、3,6−ジメチル−1,2−フェニレン、1,2−ナフチレン、2,3−ナフチレン、5−メチル−1,2−ナフチレン、9,10−フェナンスリレン、1,2−アントラセニレン等が挙げられる。好ましくは、炭素数6〜12の芳香族炭化水素基である。
前記Zの炭素数6〜24のハロゲン置換芳香族炭化水素基としては、3−クロロ−1,2−フェニレン、3−クロロメチル−1,2−フェニレン、3,6−ジクロロ−1,2−フェニレン、3,6−ジクロロ−4,5−ジメチル−1,2−フェニレン、3−クロロ−1,2−ナフチレン、3−フルオロ−1,2−ナフチレン、3,6−ジクロロ−1,2−フェニレン、3,6−ジフルオロ−1,2−フェニレン、3,6−ジブロモ−1,2−フェニレン、1−クロロ−2,3−ナフチレン、5−クロロ−1,2−ナフチレン、2,6−ジクロロ−9,10−フェナンスリレン、5,6−ジクロロ−1,2−アントラセニレン、5,6−ジフルオロ−1,2−アントラセニレン等が挙げられる。好ましくは、炭素数6〜12のハロゲン置換芳香族炭化水素基である。
前記Zの炭素数1〜24の窒素原子含有炭化水素基としては、1−ジメチルアミノエチレン基、1,2−ビスジメチルミノエチレン基、1−ジエチルアミノエチレン基、2−ジエチルアミノ−1,3−プロピレン基、2−エチルアミノ−1,3−プロピレン基、4−ジメチルアミノ−1,2−フェニレン基、4,5−ビス(ジメチルアミノ)フェニレン基等が挙げられる。好ましくは、炭素数2〜12の窒素原子含有炭化水素基である。
前記Zの炭素数1〜24の酸素原子含有炭化水素基としては、1−メトキシエチレン基、2,2−ジメトキシ−1,3−プロパニレン基、2−エトキシ−1,3−プロパニレン基、2−t−ブトキシ−1,3−プロパニレン基、2,3−ジメトキシ−2,3−ブチレン基、4−メトキシ−1,2−フェニレン基等が挙げられる。好ましくは、炭素数2〜12の酸素原子含有炭化水素基である。
前記Zの炭素数1〜24のリン含有炭化水素基としては、1−ジメチルホスフィノエチレン基、2,2−ビス(ジメチルホスフィノ)−1,3−プロパニレン基、2−ジエチルホスフィノ−1,3−プロパニレン基、2−t−ブトキメチルホスフィノ−1,3−プロパニレン基、2,3−ビス(ジフェニルホスフィノ)−2,3−ブチレン基、4−メチルホスフェート−1,2−フェニレン基等が挙げられる。好ましくは、炭素数1〜12のリン含有炭化水素基である。
一般式(2)で表される化合物の具体例としては、2−メトキシエチルメチルカーボネート、2−エトキシエチルメチルカーボネート、2−プロポキシエチルメチルカーボネート、2−(2−エトキシエチルオキシ)エチルメチルカーボネート、2−ベンジルオキシエチルメチルカーボネート、(2−メトキシプロピル)メチルカーボネート、2−エトキシプロピルメチルカーボネート、 2−メチル(2−メトキシ)ブチルメチルカーボネート、2−メチル(2−エトキシ)ブチルメチルカーボネート、2−メチル(2−メトキシ)ペンチルメチルカーボネート、2−メチル(2−エトキシ)ペンチルメチルカーボネート、1−フェニル(2−メトキシ)プロピルカーボネート、1−フェニル(2−エトキシ)プロピルメチルカーボネート、1−フェニル(2−ベンジルオキシ)プロピルメチルカーボネート、1−フェニル(2−メトキシ)エチルメチルカーボネート、1−フェニル(2−エトキシ)エチルメチルカーボネート、1−メチル−1−フェニル(2−メトキシ)エチルメチルカーボネート、1−メチル−1−フェニル(2−エトキシ)エチルメチルカーボネート、1−メチル−1−フェニル(2−ベンジルオキシ)エチルメチルカーボネート、1−メチル−1−フェニル(2−(2−エトキシエチルオキシ))エチルメチルカーボネート、2−メトキシエチル−エチルカーボネート、2−エトキシエチル−エチルカーボネート、
1−フェニル(2−メトキシ)エチル−エチルカーボネート、1−フェニル(2−エトキシ)エチル−エチルカーボネート、1−フェニル(2−プロポキシ)エチル−エチルカーボネート、1−フェニル(2−ブトキシ)エチル−エチルカーボネート、1−フェニル(2−イソブチルオキシ)エチル−エチルカーボネート、1−フェニル(2−(2−エトキシエチルオキシ))エチル−エチルカーボネート、1−メチル−1−フェニル(2−メトキシ)エチル−エチルカーボネート、1−メチル−1−フェニル(2−エトキシ)エチル−エチルカーボネート、1−メチル−1−フェニル(2−プロポキシ)エチル−エチルカーボネート、1−メチル−1−フェニル(2−ブトキシ)エチル−エチルカーボネート、1−メチル−1−フェニル(2−イソブチルオキシ)エチル−エチルカーボネート、1−メチル−1−フェニル(2−ベンジルオキシ)エチル−エチルカーボネート、1−メチル−1−フェニル(2−(2−エトキシエチルオキシ))エチル−エチルカーボネート、2−メトキシエチルフェニルカーボネート、2−エトキシエチルフェニルカーボネート、2−プロポキシエチルフェニルカーボネート、2−ブトキシエチルフェニルカーボネート、2−イソブチルオキシエチルフェニルカーボネート、2−ベンジルオキシエチルフェニルカーボネート、2−(2−エトキシエチルオキシ)エチルフェニルカーボネート、2−メトキシエチル−p−メチルフェニルカーボネート、2−エトキシエチル−p−メチルフェニルカーボネート、2−プロポキシエチル−p−メチルフェニルカーボネート、2−ブトキシエチル−p−メチルフェニルカーボネート、2−イソブチルオキシエチル−p−メチルフェニルカーボネート、2−ベンジルオキシエチル−p−メチルフェニルカーボネート、2−(2−エトキシエチルオキシ)エチル−p−メチルフェニルカーボネート、2−メトキシエチル−o−メチルフェニルカーボネート、2−エトキシエチル−o−メチルフェニルカーボネート、2−プロポキシエチル−o−メチルフェニルカーボネート、2−ブトキシエチル−o−メチルフェニルカーボネート、2−イソブチルオキシエチル−o−メチルフェニルカーボネート、2−ベンジルオキシエチル−o−メチルフェニルカーボネート、2−(2−エトキシエチルオキシ)エチル−o−メチルフェニルカーボネート、2−メトキシエチル−o,p−ジメチルフェニルカーボネート、2−エトキシエチル−o,p−ジメチルフェニルカーボネート、2−プロポキシエチル−o,p−ジメチルフェニルカー
ボネート、2−ブトキシエチル−o,p−ジメチルフェニルカーボネート、2−イソブチルオキシエチル−o,p−ジメチルフェニルカーボネート、2−ベンジルオキシエチル−o,p−ジメチルフェニルカーボネート、2−(2−エトキシエチルオキシ)エチル−o,p−ジメチルフェニルカーボネート、2−メトキシプロピルフェニルカーボネート、2−エトキシプロピルフェニルカーボネート、2−プロポキシプロピルフェニルカーボネート、2−ブトキシプロピルフェニルカーボネート、2−イソブチルオキシプロピルフェニルカーボネート、2−(2−エトキシエチルオキシ)プロピルフェニルカーボネート、
2−フェニル(2−メトキシ)エチルフェニルカーボネート、2−フェニル(2−エトキシ)エチルフェニルカーボネート、2−フェニル(2−プロポキシ)エチルフェニルカーボネート、2−フェニル(2−ブトキシ)エチルフェニルカーボネート、2−フェニル(2−イソブチルオキシ)エチルフェニルカーボネート、2−フェニル(2−(2−エトキシエチルオキシ))エチルフェニルカーボネート、1−フェニル(2−メトキシ)プロピルフェニルカーボネート、1−フェニル(2−エトキシ)プロピルフェニルカーボネート、1−フェニル(2−プロポキシ)プロピルフェニルカーボネート、1−フェニル(2−イソブチルオキシ)プロピルフェニルカーボネート、1−フェニル(2−メトキシ)エチルフェニルカーボネート、1−フェニル(2−エトキシ)エチルフェニルカーボネート、1−フェニル(2−プロポキシ)エチルフェニルカーボネート、1−フェニル(2−ブトキシ)エチルフェニルカーボネート、1−フェニル(2−イソブチルオキシ)エチルフェニルカーボネート、1−フェニル(2−(2−エトキシエチルオキシ))エチルフェニルカーボネート、1−メチル−1−フェニル(2−メトキシ)エチルフェニルカーボネート、1−メチル−1−フェニル(2−エトキシ)エチルフェニルカーボネート、1−メチル−1−フェニル(2−プロポキシ)エチルフェニルカーボネート、1−メチル−1−フェニル(2−ブトキシ)エチルフェニルカーボネート、1−メチル−1−フェニル(2−イソブチルオキシ)エチルフェニルカーボネート、1−メチル−1−フェニル(2−ベンジルオキシ)エチルフェニルカーボネート、1−メチル−1−フェニル(2−(2−エトキシエチルオキシ))エチルフェニルカーボネート、が挙げられ、特に好ましくは(2−エトキシエチル)メチルカーボネート、(2−エトキシエチル)エチルカーボネート、(2−プロポキシエチル)プロピルカーボネート、(2−ブトキシエチル)ブチルカーボネート、(2−ブトキシエチル)エチルカーボネート、(2−エトキシエチル)プロピルカーボネート、(2−エトキシエチル)フェニルカーボネート、(2−エトキシエチル)−p−メチルフェニルカーボネートから選ばれる1種または2種以上を挙げることができる。上記の中でも、(2−エトキシエチル)メチルカーボネート、(2−エトキシエチル)エチルカーボネート、(2−エトキシエチル)フェニルカーボネートが特に好ましい。なお、一般式(1)、及び一般式(2)で表わされる化合物はそれぞれ単独または2種類以上組み合わせて用いることもできる。
本発明における固体触媒成分(I)中には、前記一般式(1)で示される成分(A)、前記一般式(2)で示される成分(B)以外の電子供与性化合物(以下、成分(E)とも言う。)が含まれていてもよい。このような成分(E)としては、酸ハライド類、酸アミド類、ニトリル類、酸無水物、ジエーテル化合物類および有機酸エステルなどが挙げられる。成分(E)としては、例えば、コハク酸ジエステル、マレイン酸ジエステル、マロン酸ジエステル、グルタル酸ジエステル等の脂肪族ジカルボン酸ジエステル類、シクロアルカンジカルボン酸ジエステル、シクロアルケンジカルボン酸ジエステルの脂環式ジカルボン酸ジエステル、エステル基とエーテル基を有する化合物、またはジエーテル化合物等が挙げられる。好ましい成分(E)は、マロン酸ジメチル、マロン酸ジエチルなどのマロン酸ジエステル、ジイソブチルマロン酸ジメチル、ジイソブチルマロン酸ジエチル、ベンジリデンマロン酸ジエチルなどの炭化水素置換マロン酸ジエステル、マレイン酸ジエチル、マレイン酸ジ−n−ブチルなどのマレイン酸ジエステル、シクロヘキサン−1,2−ジカルボン酸ジエチル、シクロヘキサン−1,2−ジカルボン酸ジブチルなどのシクロアルカンジカルボン酸ジエステルおよび、9,9−ビス(メトキシメチル)フルオレンなどの1,3−ジエーテルである。なお、このような成分(E)は、2種以上併用することもできる。
本発明における固体触媒成分(I)中には、ポリシロキサン(以下、単に「成分(F)」とも言う。)が含まれていてもよい。ポリシロキサンを用いることにより生成ポリマーの立体規則性あるいは結晶性を向上させることができ、さらには生成ポリマーの微粉を低減することが可能となる。ポリシロキサンは、主鎖にシロキサン結合(−Si−O−結合)を有する重合体であるが、シリコーンオイルとも総称され、25℃における粘度が0.02〜100cm/s(2〜10000センチストークス)、より好ましくは0.03〜5cm/s(3〜500センチストークス)を有する、常温で液状あるいは粘稠状の鎖状、部分水素化、環状あるいは変性ポリシロキサンである。
鎖状ポリシロキサンとしては、ジシロキサンとしてヘキサメチルジシロキサン、ヘキサエチルジシロキサン、ヘキサプロピルジシロキサン、ヘキサフェニルジシロキサン1,3−ジビニルテトラメチルジシロキサン、1、3−ジクロロテトラメチルジシロキサン、1、3−ジブロモテトラメチルジシロキサン、クロロメチルペンタメチルジシロキサン、1,3−ビス(クロロメチル)テトラメチルジシロキサン、またジシロキサン以外のポリシロキサンとしてジメチルポリシロキサン、メチルフェニルポリシロキサンが、部分水素化ポリシロキサンとしては、水素化率10〜80%のメチルハイドロジェンポリシロキサンが、環状ポリシロキサンとしては、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、2,4,6−トリメチルシクロトリシロキサン、2,4,6,8−テトラメチルシクロテトラシロキサンが、また変性ポリシロキサンとしては、高級脂肪酸基置換ジメチルシロキサン、エポキシ基置換ジメチルシロキサン、ポリオキシアルキレン基置換ジメチルシロキサンが例示される。これらの中で、デカメチルシクロペンタシロキサン、及びジメチルポリシロキサンが好ましく、デカメチルシクロペンタシロキサンが特に好ましい。
また、本発明における固体触媒成分(I)は、上記成分の他、更に、ケイ素やリン、アルミニウム等の金属を含む反応試剤を含有するものであってもよい。これらの反応試剤としては、Si−O−C結合を有する有機ケイ素化合物、Si−N−C結合を有する有機ケイ素化合物、P−O結合を有するリン酸化合物、トリアルキルアルミニウム、ジアルコキシアルミニウムクロライド、アルコキシアルミニウムジハライド、トリアルコキシアルミニウム等の有機アルミニウム化合物、及びアルミニウムトリハライドが挙げられ、好ましくは、Si−O−C結合を有する有機ケイ素化合物、Si−N−C結合を有する有機ケイ素化合物および有機アルミニウム化合物である。このような反応試剤を含む固体触媒成分(I)は、得られる固体触媒成分の重合活性や立体規則性が改良できる点で好ましい。
上記Si−O−C結合を有する有機ケイ素化合物及びSi−N−C結合を有する有機ケイ素化合物としては、後述する一般式(4)及び(5)で表わされる有機ケイ素化合物の例示化合物及び具体的化合物と同様のものが挙げられるため、その記載を省略する。また、上記有機アルミニウム化合物は、後述する一般式(3)の有機アルミニウム化合物の具体例と同様のものが挙げられるため、その記載を省略する。これらの反応試剤は、1種又は2種以上含んでいてもよい。
また、反応試剤を含む固体触媒成分(I)は、更に、一般式(8);
〔CH=CH−(CHSiR15 4−t (8)
(式中、R15は水素原子または炭素数1〜20のアルキル基、シクロアルキル基、フェニル基、ビニル基、ハロゲン原子を示し、同一または異なっていてもよく、uは0または1〜5の整数であり、tは1〜4の整数である。)で表わされる不飽和アルキル基を有する有機ケイ素化合物を含有するものであってもよい。これにより、得られる固体触媒成分のさらなる重合活性や水素応答性を向上できる。
不飽和アルキル基とはビニル基あるいはアルケニル基のことであり、具体的には、ビニル基含有アルキルシラン、ビニル基含有アルコキシシラン、ビニル基含有シクロアルキルシラン、ビニル基含有フェニルシラン、ビニル基含有ハロゲン化シラン、ビニル基含有アルキルハロゲン化シラン、アルケニル基含有ビニルシラン、アルケニル基含有アルキルシラン、アルケニル基含有アルコキシシラン、アルケニル基含有シクロアルキルシラン、アルケニル基含有フェニルシラン、アルケニル基含有ハロゲン化シラン、アルケニル基含有アルキルハロゲン化シランである。なお、ビニル基とはCH=CH−基のことで、アルケニル基とは、CH=CH−(CH−基のことである。上記の中でも、ビニルトリアルキルシラン、アリルトリアルキルシラン、ジビニルジアルキルシラン、ジアリルジアルキルシラン、トリビニルアルキルシランおよびトリアリルアルキルシランが好ましく、特に好ましくは、アリルジメチルビニルシラン、ジアリルジメチルシラン、トリアリルメチルシラン、ジ−3−ブテニルシランジメチルシラン、ジアリルジクロロシラン、アリルトリエチルシランである。なお、上記の不飽和アルキル基を有する有機ケイ素化合物は1種あるいは2種以上含んでいてもよい。
また、本発明における固体触媒成分(I)中のチタン、マグネシウム、ハロゲン原子、成分(A)、成分(B)の含有量は特に規定されないが、好ましくは、チタンが0.1〜10重量%、好ましくは0.5 〜8.0重量%、より好ましくは1.0〜8.0重量%であり、マグネシウムが10〜40重量%、より好ましくは10〜30重量%、特に好ましくは13〜25重量%、ハロゲン原子が20〜89重量%、より好ましくは30〜85重量%、特に好ましくは40〜75重量%、また成分(A)および成分(B)(成分(I)が電子供与性化合物(E)を含有しない場合)、または成分(A))、成分(B)および電子供与性化合物(E)の合計量(成分(I)が電子供与性化合物(E)を含有する場合)が0.5〜40重量%、より好ましくは合計1〜30重量%、特に好ましくは合計2〜25重量%であり、成分(I)が電子供与性化合物(E)を含有する場合、成分(A)および成分(B)の合計含有量に対する成分(D)含有量の比は、成分(A)および成分(B)の合計含有量1モルに対し0.01〜50モル、好ましくは0.1〜10モル、より好ましくは0.2〜5モルである。また、成分(A)および成分(B)の合計含有量に対する成分(A)含有量の比は、成分(A)および成分(B)の合計含有量1モルに対し0.05〜0.995モル、好ましくは0.1〜0.9モルである。
(オレフィン類重合用固体触媒成分(I)の製造方法の説明)
本発明のオレフィン類重合用固体触媒成分(I)は、下記のようなマグネシウム化合物、チタン化合物、必要に応じて前記チタン化合物以外のハロゲン化合物および前記一般式(1)の化合物(A)および前記一般式(2)の化合物(B)を、相互に接触させることで調製される。
本発明の固体触媒成分の製造方法において使用されるマグネシウム化合物(C)(以下、単に「成分(C)」とも言う。)としては、ジハロゲン化マグネシウム、ジアルキルマグネシウム、ハロゲン化アルキルマグネシウム、ジアルコキシマグネシウム、ジアリールオキシマグネシウム、ハロゲン化アルコキシマグネシウムあるいは脂肪酸マグネシウム等から選ばれる一種以上が挙げられる。これらのマグネシウム化合物の中、ジハロゲン化マグネシウム、ジハロゲン化マグネシウムとジアルコキシマグネシウムの混合物、ジアルコキシマグネシウムが好ましく、特にジアルコキシマグネシウムが好ましい。
ジアルコキシマグネシウムとしては、ジメトキシマグネシウム、ジエトキシマグネシウム、ジプロポキシマグネシウム、ジブトキシマグネシウム、エトキシメトキシマグネシウム、エトキシプロポキシマグネシウム、ブトキシエトキシマグネシウム等が挙げられる。また、これらのジアルコキシマグネシウムは、金属マグネシウムを、ハロゲンあるいはハロゲン含有金属化合物等の存在下にアルコールと反応させてなるものでもよい。また、上記のジアルコキシマグネシウムは、一種以上併用することもできる。
更に、本発明の固体触媒成分において、ジアルコキシマグネシウムは、顆粒状または粉末状であることが好ましく、その形状は不定形あるいは球状のものを使用し得る。例えば球状のジアルコキシマグネシウムを使用した場合、重合時により良好な粒子形状と狭い粒度分布を有する重合体粉末が得られ、重合操作時の生成重合体粉末の取扱い操作性が向上し、生成重合体粉末に含まれる微粉に起因する閉塞等の問題が解消される。
上記の球状のジアルコキシマグネシウムは、必ずしも真球状である必要はなく、楕円形状あるいは馬鈴薯形状のものを用いることもできる。具体的にその粒子の形状は、長軸径lと短軸径wとの比(l/w)が3以下であり、好ましくは1から2であり、より好ましくは1から1.5である。
また、上記ジアルコキシマグネシウムの平均粒径は、レーザー光散乱回折法粒度測定機を用いて測定したときの、平均粒子径D50(体積積算粒度分布における積算粒度で50%の粒径)で1〜200μmのものが好ましく、5〜150μmのものがより好ましい。球状のジアルコキシマグネシウムの場合、その平均粒径は1〜100μmが好ましく、5〜50μmがより好ましく、10〜40μmがさらに好ましい。また、その粒度については、微粉および粗粉の少ない、粒度分布の狭いものが望ましい。具体的には、レーザー光散乱回折法粒度測定機を用いて測定したときに、5μm以下の粒子が20%以下であるものが好ましく、10%以下であるものがより好ましい。一方、100μm以上の粒子が10%以下であるものが好ましく、5%以下であるものがより好ましい。
更にその粒度分布をln(D90/D10)(ここで、D90は体積積算粒度分布における積算粒度で90%の粒径、D10は体積積算粒度分布における積算粒度で10%の粒径である。)で表すと3以下であることが好ましく、2以下であることがより好ましい。上記の如き球状のジアルコキシマグネシウムの製造方法は、例えば特開昭58−41832号公報、同62−51633号公報、特開平3−74341号公報、同4−368391号公報、同8−73388号公報などに例示されている。
本発明では、成分(C)は、溶液状のマグネシウム化合物、またはマグネシウム化合物懸濁液のいずれも用いることができる。成分(C)が固体である場合には、成分(C)の可溶化能を有する溶媒に溶解して溶液状のマグネシウム化合物とするか、成分(C)の可溶化能を有さない溶媒に懸濁してマグネシウム化合物懸濁液として用いる。成分(C)が液体である場合には、そのまま溶液状のマグネシウム化合物として用いることができ、マグネシウム化合物の可溶化能を有する溶媒にこれを溶解して溶液状のマグネシウム化合物として用いることもできる。
固体の成分(C)を可溶化しうる化合物としては、アルコール、エーテルおよびエステルからなる群より選ばれる少なくとも1種の化合物が挙げられる。具体的には、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、2-エチルヘキサノール、オクタノール、ドデカノール、オクタデシルアルコール、オレイルアルコール、ベンジルアルコール、フェニルエチルアルコール、クミルアルコール、イソプロピルアルコール、イソプロピルベンジルアルコール、エチレングリコールなどの炭素原子数が1〜18のアルコール、トリクロロメタノール、トリクロロエタノール、トリクロロヘキサノールなどの炭素原子数が1〜18のハロゲン含有アルコール、メチルエーテル、エチルエーテル、イソプロピルエーテル、ブチルエーテル、アミルエーテル、テトラヒドロフラン、エチルベンジルエーテル、ジブチルエーテル、アニソール、ジフェニルエーテルなどの炭素原子数が2〜20のエーテル、テトラエトキシチタン、テトラ−n−プロポキシチタン、テトライソプロポキシチタン、テトラブトキシチタン、テトラヘキソキシチタン、テトラブトキシジルコニウム、テトラエトキシジルコニウムなどの金属酸エステルなどが挙げられ、中でも、エタノール、プロパノール、ブタノール、2−エチルヘキサノールなどのアルコールが好ましく、2−エチルヘキサノールが特に好ましい。
一方、成分(C)の可溶化能を有さない媒体としては、マグネシウム化合物を溶解することがない、飽和炭化水素溶媒または不飽和炭化水素溶媒が用いられる。飽和炭化水素溶媒または不飽和炭化水素溶媒は、安全性や工業的汎用性が高いことから、具体的にはヘキサン、ヘプタン、デカン、メチルヘプタンなどの沸点50〜200℃の直鎖状または分岐鎖状脂肪族炭化水素化合物、シクロヘキサン、エチルシクロヘキサン、デカヒドロナフタレンなどの沸点50〜200℃の脂環式炭化水素化合物、トルエン、キシレン、エチルベンゼンなどの沸点50〜200℃の芳香族炭化水素化合物が挙げられ、中でも、ヘキサン、ヘプタン、デカンなどの沸点50〜200℃の直鎖状脂肪族炭化水素化合物や、トルエン、キシレン、エチルベンゼンなどの沸点50〜200℃の芳香族炭化水素化合物が、好ましく用いられる。また、これらは単独で用いても、2種以上混合して使用してもよい。
本発明における成分(I)の調製に用いられるチタン化合物(D)(以下「成分(D)」ということがある。)としては、例えば、一般式(7);
Ti(OR164−j (7)
(R16は、炭素数1〜10の炭化水素基であり、OR14基が複数存在する場合、複数のR16は同一であっても異なっていてもよく、Xはハロゲン基であり、Xが複数存在する場合、各Xは同一であっても異なっていてもよく、jは0または1〜4の整数である。)で表わされる4価のチタン化合物を挙げることができる。
前記一般式(7)で表わされる4価のチタン化合物は、アルコキシチタン、チタンハライドもしくはアルコキシチタンハライド群から選択される化合物の1種あるいは2種以上である。具体的には、チタンテトラフルオライド、チタンテトラクロライド、チタンテトラブロマイド、チタンテトラアイオダイド等のチタンテトラハライド、アルコキシチタンハライドとしてメトキシチタントリクロライド、エトキシチタントリクロライド、プロポキシチタントリクロライド、n−ブトキシチタントリクロライド等のアルコキシチタントリハライド、ジメトキシチタンジクロライド、ジエトキシチタンジクロライド、ジプロポキシチタンジクロライド、ジ−n−ブトキシチタンジクロライド、等のジアルコキシチタンジハライド、トリメトキシチタンクロライド、トリエトキシチタンクロライド、トリプロポキシチタンクロライド、トリ−n−ブトキシチタンクロライド等のトリアルコキシチタンハライドが挙げられる。これらの中ではハロゲン含有チタン化合物が好ましく用いられ、チタンテトラクロライド、チタンテトラブロマイド、チタンテトラアイオダイド等のチタンテトラハライドが好ましく、特に好ましくはチタンテトラクロライドである。これらのチタン化合物は単独で用いてもよいし、2種以上を組み合わせてもよい。さらに、これら一般式(7)で表わされる4価のチタン化合物は、炭化水素化合物あるいはハロゲン化炭化水素化合物等に希釈して使用してもよい。
本発明の固体触媒成分(I)の調製において、必要に応じて、成分(D)以外のハロゲン化合物を使用してもよい。ハロゲン化合物としては、四価のハロゲン含有ケイ素化合物が挙げられる。より具体的には、テトラクロロシラン(四塩化ケイ素)、テトラブロモシラン等のシランテトラハライド、メトキシトリクロロシラン、エトキシトリクロロシラン、プロポキシトリクロロシラン、n−ブトキシトリクロロシラン、ジメトキシジクロロシラン、ジエトキシジクロロシラン、ジプロポキシジクロロシラン、ジ−n−ブトキシジクロロシラン、トリメトキシクロロシラン、トリエトキシクロロシラン、トリプロポキシクロロシラン、トリ−n−ブトキシクロロシラン等のアルコキシ基含有ハロゲン化シランが挙げられる。
本発明の固体触媒成分(I)の調製で使用される成分(A)および成分(B)は、本発明の固体触媒成分(I)の成分(A)および成分(B)と同様であり、その説明を省略する。また、本発明の固体触媒成分(I)の調製で必要に応じて使用される上記成分(A)以外の電子供与性化合物(E)は、本発明の固体触媒成分(I)の電子供与性化合物(E)と同様であり、その説明を省略する。また、本発明の固体触媒成分(I)の調製で必要に応じて使用される成分(F)は、本発明の固体触媒成分(I)の成分(F)と同様であり、その説明を省略する。
本発明において、好適な固体触媒成分(I)の調製方法としては、例えば、還元性を有しない固体マグネシウム化合物、成分(A)、成分(B)およびハロゲン化チタンを共粉砕する方法や、アルコール等の付加物を有するハロゲン化マグネシウム化合物、成分(A)、成分(B)およびハロゲン化チタンを不活性炭化水素溶媒の共存下、接触させる方法、ジアルコキシマグネシウム、成分(A)、成分(B)およびハロゲン化チタンを不活性炭化水素溶媒共存下で接触させる方法、還元性を有するマグネシウム化合物、成分(A)、成分(B)およびハロゲン化チタンを接触させて固体触媒を析出させる方法などが挙げられる。
以下に、オレフィン類重合用固体触媒成分(I)の具体的な調製方法を例示する。なお、以下の(1)〜(16)の方法において、成分(A)および成分(B)に加え、成分(A)および成分(B)以外の電子供与性化合物(E)を併用してもよい。さらに、上記接触は、例えば、ケイ素、リン、アルミニウム等の他の反応試剤や界面活性剤の共存下に行ってもよい。
(1)ハロゲン化マグネシウムをアルコキシチタン化合物に溶解させた後、有機ケイ素化合物を接触させて固体生成物を得、該固体生成物とハロゲン化チタンを反応させ、次いで成分(A)および成分(B)を接触反応させてオレフィン類重合用固体触媒成分(I)を調製する方法。なおこの際、成分(I)に対し、さらに有機アルミニウム化合物、有機ケイ素化合物及びオレフィン類で予備的な重合処理を行なうこともできる。
(2)ハロゲン化マグネシウム及びアルコールを反応させて均一溶液とした後、該均一溶液にカルボン酸無水物を接触させ、次いでこの溶液に、ハロゲン化チタン、成分(A)および成分(B)を接触反応させて固体物を得、該固体物に更にハロゲン化チタンを接触させてオレフィン類重合用固体触媒成分(I)を調製する方法。
(3)金属マグネシウム、ブチルクロライド及びジアルキルエーテルを反応させることによって有機マグネシウム化合物を合成し、該有機マグネシウム化合物にアルコキシチタンを接触反応させて固体生成物を得、該固体生成物に成分(A)、成分(B)及びハロゲン化チタンを接触反応させてオレフィン類重合用固体触媒成分(I)を調製する方法。なおこの際、該固体成分に対し、有機アルミニウム化合物、有機ケイ素化合物及びオレフィンで予備的な重合処理を行ない、オレフィン類重合用固体触媒成分(I)を調製することもできる。
(4)ジアルキルマグネシウム等の有機マグネシウム化合物と、有機アルミニウム化合物を、炭化水素溶媒の存在下、アルコールと接触反応させて均一溶液とし、この溶液に四塩化ケイ素等のケイ素化合物を接触させて固体生成物を得、次いで芳香族炭化水素溶媒の存在下で該固体生成物に、ハロゲン化チタン、成分(A)および成分(B)を接触反応させた後、更に四塩化チタンを接触させてオレフィン類重合用固体触媒成分(I)を得る方法。
(5)塩化マグネシウム、テトラアルコキシチタン及び脂肪族アルコールを、炭化水素溶媒の存在下で接触反応させて均一溶液とし、その溶液とハロゲン化チタンを接触した後昇温して固体物を析出させ、該固体物に成分(A)、成分(B)を接触させ、更にハロゲン化チタンと反応させてオレフィン類重合用固体触媒成分(I)を得る方法。
(6)金属マグネシウム粉末、アルキルモノハロゲン化合物及びヨウ素を接触反応させ、その後テトラアルコキシチタン、酸ハロゲン化物、及び脂肪族アルコールを、炭化水素溶媒の存在下で接触反応させて均一溶液とし、その溶液に四塩化チタンを加えた後昇温し、固体生成物を析出させ、該固体生成物に成分(A)および成分(B)を接触させ、更に四塩化チタンと反応させてオレフィン類重合用固体触媒成分(I)を調製する方法。
(7)ジアルコキシマグネシウムを炭化水素溶媒に懸濁させた後、四塩化チタンと接触させた後に昇温し、成分(A)および成分(B)と接触させて固体生成物を得、該固体生成物を炭化水素溶媒で洗浄した後、炭化水素溶媒の存在下、再度四塩化チタンと接触させてオレフィン類重合用固体触媒成分(I)を調製する方法。なおこの際、該固体成分を、炭化水素溶媒の存在下又は不存在下で加熱処理することもできる。
(8)ジアルコキシマグネシウムを炭化水素溶媒に懸濁させた後、ハロゲン化チタン及び成分(A)および成分(B)と接触反応させて固体生成物を得、該固体生成物を不活性有機溶媒で洗浄した後、炭化水素溶媒の存在下、再度ハロゲン化チタンと接触・反応させてオレフィン類重合用固体触媒成分(I)を得る方法。なおこの際、該固体成分とハロゲン化チタンとを2回以上接触させることもできる。
(9)ジアルコキシマグネシウム、塩化カルシウム及びアルコキシ基含有ケイ素化合物を共粉砕し、得られた粉砕固体物を炭化水素溶媒に懸濁させた後、ハロゲン化チタン、成分(A)および成分(B)と接触反応させ、次いで更にハロゲン化チタンを接触させることによりオレフィン類重合用固体触媒成分(I)を調製する方法。
(10)ジアルコキシマグネシウム及び成分(A)、成分(B)を炭化水素溶媒に懸濁させ、その懸濁液をハロゲン化チタンと接触、反応させて固体生成物を得、該固体生成物を炭化水素溶媒で洗浄後、さらに炭化水素溶媒の存在下、ハロゲン化チタンを接触させてオレフィン類重合用固体触媒成分(I)を得る方法。
(11)ステアリン酸マグネシウムのような脂肪族マグネシウムを、ハロゲン化チタン及び成分(A)および成分(B)と接触反応させ、その後更にハロゲン化チタンと接触させることによりオレフィン類重合用固体触媒成分(I)を調製する方法。
(12)ジアルコキシマグネシウムを炭化水素溶媒に懸濁させ、ハロゲン化チタンと接触させた後昇温し、成分(A)および成分(B)と接触反応させて固体生成物を得、該固体生成物を炭化水素溶媒で洗浄した後、炭化水素溶媒の存在下、再度ハロゲン化チタンと接触させてオレフィン類重合用固体触媒成分(I)を調製する方法であって、上記懸濁・接触並びに接触反応のいずれかの段階において、塩化アルミニウムを接触させてオレフィン類重合用固体触媒成分(I)を調製する方法。
(13)ジアルコキシマグネシウム、2−エチルヘキシルアルコール及び二酸化炭素を、炭化水素溶媒の存在下で接触反応させて均一溶液とし、この溶液にハロゲン化チタン、成分(A)および成分(B)を接触反応させて固体物を得、更にこの固体物をテトラヒドロフランに溶解させ、その後更に固体生成物を析出させ、この固体生成物にハロゲン化チタンを接触反応させ、必要に応じハロゲン化チタンとの接触反応を繰り返し行い、オレフィン類重合用固体触媒成分(I)を調製する方法。なおこの際、上記接触・接触反応・溶解のいずれかの段階において、例えばテトラブトキシシラン等のケイ素化合物を使用することもできる。
(14)塩化マグネシウム、有機エポキシ化合物及びリン酸化合物を炭化水素溶媒中に懸濁させた後、加熱して均一溶液とし、この溶液に、カルボン酸無水物及びハロゲン化チタンを接触反応させて固体生成物を得、該固体生成物に成分(A)および成分(B)を接触させて反応させ、得られた反応生成物を炭化水素溶媒で洗浄した後、炭化水素溶媒の存在下、再度ハロゲン化チタンを接触させることによりオレフィン類重合用固体触媒成分(I)を得る方法。
(15)ジアルコキシマグネシウム、チタン化合物、成分(A)および成分(B)を炭化水素溶媒の存在下に接触反応させ、得られた反応生成物にポリシロキサン等のケイ素化合物を接触反応させ、更にハロゲン化チタンを接触反応させ、次いで有機酸の金属塩を接触反応させた後、再度ハロゲン化チタンを接触させることによりオレフィン類重合用固体触媒成分(I)を得る方法。
(16)ジアルコキシマグネシウム、成分(A)と成分(B)を炭化水素溶媒に懸濁させた後、昇温してハロゲン化ケイ素と接触させ、その後ハロゲン化チタンと接触させて固体生成物を得、該固体生成物を炭化水素溶媒で洗浄した後、炭化水素溶媒の存在下、再度ハロゲン化チタンと接触させてオレフィン類重合用固体触媒成分(I)を調製する方法。なおこの際、該固体成分を、炭化水素溶媒の存在下又は不存在下で加熱処理してもよい。
なお、オレフィン重合時の重合活性、生成ポリマーの立体規則性をさらに向上させるため、これら(1)〜(16)の方法において、洗浄後の上記固体触媒成分(I)に、新たにハロゲン化チタンおよび炭化水素溶媒を20〜100℃で接触させ、昇温して、反応処理(第2次反応処理)を行った後、常温で液体の不活性有機溶媒で洗浄する操作を1〜10回繰り返してもよい。
本発明における成分(I)の調製方法としては、上記のいずれの方法であっても好適に用いることができ、中でも(1)、(3)、(4)、(5)、(7)、(8)または(10)の方法が好ましく、(3)、(4)、(7)、(8)、(10)の方法が、高立体規則性を有するオレフィン類重合用固体触媒成分が得られる点で特に好ましい。最も好ましい調製方法は、ジアルコキシマグネシウム、成分(A)(または成分(B))を、直鎖状炭化水素または分岐鎖状脂肪族炭化水素、脂環式炭化水素および芳香族炭化水素から選ばれる炭化水素溶媒に懸濁させ、その懸濁液をハロゲン化チタン中に添加し、反応させて固体生成物を得、該固体生成物を炭化水素溶媒で洗浄後、さらに炭化水素溶媒の存在下、成分(B)(または成分(A))を接触させてオレフィン類重合用固体触媒成分(I)を得る方法である。
また、固体触媒成分の重合活性や水素応答性の改良の観点から、上記の方法で得られた固体触媒成分(I)を、上記Si−O−C結合を有する有機ケイ素化合物、Si−N−C結合を有する有機ケイ素化合物、及び必要に応じて上記有機アルミニウム化合物、更に必要に応じて上記一般式(8)で表される有機ケイ素化合物と接触させることも、本発明の好ましい態様の一つである。これら化合物の接触方法は、炭化水素溶媒の存在下で行なう。また、各成分を接触させた後、不要な成分を除去するために炭化水素溶媒で十分に洗浄する。また、これら化合物の接触は繰り返し行なってもよい。
各成分を接触させる時の温度は、−10℃〜100℃、好ましくは0℃〜90℃、特に好ましくは20℃〜80℃である。接触時間は1分〜10時間、好ましくは10分〜5時間、特に好ましくは30分〜2時間である。各成分を接触させる際の使用量比は、効果に悪影響を及ぼさない限り任意であり、特に限定されるものではない。通常、Si−O−C結合を有する有機ケイ素化合物、Si−N−C結合を有する有機ケイ素化合物、及び上記一般式(8)で表される有機ケイ素化合物成分は、固体触媒成分(I)中のチタン原子1モルあたり、0.2〜20モル、好ましくは0.5〜10モルの範囲、特に好ましくは1〜5の範囲で、有機アルミニウム化合物は、固体触媒成分(I)中のチタン原子1モルあたり、0.5〜50モル、好ましくは1〜20モル、特に好ましくは1.5〜10モルの範囲で用いられる。
得られた固体触媒成分(I)は、該固体成分に対する重量比で1/3以下、好ましくは1/20〜1/6になるまで残留する溶媒を除くことで粉末状固体成分とすることが好ましい。
前記固体触媒成分(I)を調製する際の各成分の使用量比は、調製法により異なるため一概には規定できないが、例えばマグネシウム化合物(B)1モル当たり、4価のチタンハロゲン化合物(C)が0.5〜100モル、好ましくは0.5〜50モル、より好ましくは1〜10モルであり、成分(A)および成分(B)(成分(I)が電子供与性化合物(E)を含有しない場合)、または成分(A)、成分(B)および電子供与性化合物(E)の合計量(成分(I)が電子供与性化合物(E)を含有する場合)が0.01〜10モル、好ましくは0.01〜1モル、より好ましくは0.02〜0.6モルであり、溶媒が0.001〜500モル、好ましくは0.001〜100モル、より好ましくは0.005〜10モルであり、ポリシロキサン(F)が0.01〜100g、好ましくは0.05〜80g、より好ましくは1〜50gである。
(オレフィン類重合用触媒の説明)
本発明のオレフィン類重合用触媒は、(I)固体触媒成分、(II)有機アルミニウム化合物(以下、単に「成分(G)」ということがある。)および(III)外部電子供与性化合物(以下、単に「成分(H)」ということがある。)を接触させることでオレフィン重合用触媒を形成し、該触媒の存在下にオレフィン類の重合もしくは共重合を行うことができる。なお、固体触媒成分(I)が、上記Si−O−C結合を有する有機ケイ素化合物、Si−N−C結合を有する有機ケイ素化合物又は上記有機アルミニウム化合物(反応試剤)を含む場合、あるいは反応試剤を含む固体触媒成分が、更に一般式(8)で表される有機ケイ素化合物を含む場合、成分(H)の使用を省略することができる。成分(H)を使用せずとも、固体触媒成分と、有機アルミニウムで形成される触媒が、重合活性や水素応答性に優れた性能を示すからである。
(II)有機アルミニウム化合物としては、前記一般式(3)で表される化合物であれば、特に制限されないが、Rとしては、エチル基、イソ−ブチル基が好ましく、Qとしては、水素原子、塩素原子、臭素原子、エトキシ基、フェノキシ基が好ましく、pは、2、2.5又は3が好ましく、3であることが特に好ましい。
このような有機アルミニウム化合物の具体例としては、トリエチルアルミニウム、トリ−iso−プロピルアルミニウム、トリ−n−ブチルアルミニウム、トリ−n−ヘキシルアルミニウム、トリ−iso−ブチルアルミニウムなどのトリアルキルアルミニウム、ジエチルアルミニウムクロライド、ジエチルアルミニウムブロマイドなどのハロゲン化アルキルアルミニウム、ジエチルアルミニウムハイドライドなどが挙げられ、中でもジエチルアルミニウムクロライドなどのハロゲン化アルキルアルミニウム、またはトリエチルアルミニウム、トリ−n−ブチルアルミニウム、トリイソブチルアルミニウムなどのトリアルキルアルミニウムが好ましく用いられ、特に好ましくはトリエチルアルミニウムおよびトリイソブチルアルミニウムである。これらのアルミニウム化合物は、1種あるいは2種以上が使用できる。
本発明のオレフィン類重合用触媒を形成する際に用いられる(III)外部電子供与性化合物としては、酸素原子あるいは窒素原子を含有する有機化合物が挙げられ、例えばアルコール類、フェノール類、エーテル類、エステル類、ケトン類、酸ハライド類、アルデヒド類、アミン類、アミド類、ニトリル類、iso−シアネート類、有機ケイ素化合物、中でもSi−O−C結合を有する有機ケイ素化合物またはSi−N−C結合を有するアミノシラン化合物等が挙げられる。
上記外部電子供与性化合物のなかでも、安息香酸エチル、p−メトキシ安息香酸エチル、p−エトキシ安息香酸エチル、p−トルイル酸メチル、p−トルイル酸エチル、アニス酸メチル、アニス酸エチル等のエステル類、1,3−ジエーテル類、Si−O−C結合を含む有機ケイ素化合物、Si−N−C結合を含むアミノシラン化合物が好ましく、Si−O−C結合を有する有機ケイ素化合物、Si−N−C結合を有するアミノシラン化合物、2位に置換基を有する1,3−ジエーテル類が特に好ましい。
上記外部電子供与性化合物(III)のうち、Si−O−C結合を有する有機ケイ素化合物としては、下記一般式(4); RSi(OR4−q (4)
(式中、Rは炭素数1〜12のアルキル基、炭素数3〜12のシクロアルキル基、フェニル基、ビニル基、アリル基またはアラルキル基であり、同一または異なっていてもよい。Rは炭素数1〜4のアルキル基、炭素数3〜6のシクロアルキル基、フェニル基、ビニル基、アリル基またはアラルキル基であり、同一または異なっていてもよい。q は0≦q≦3の整数である。)で表される有機ケイ素化合物が挙げられる。
また、上記外部電子供与性化合物のうち、Si−N−C結合を有するアミノシラン化合物としては、前記一般式(5);(R10N)SiR11 4−s (5)
(式中、R10は水素原子、炭素数1〜20の直鎖または炭素数3〜20の分岐状アルキル基、ビニル基、アリル基、アラルキル基、炭素数3〜20のシクロアルキル基、アリール基であり、同一でも異なってもよく、またRとR10が互いに結合して環を形成してもよい。R11は炭素数1〜20の直鎖状または炭素数3〜20の分岐状アルキル基、ビニル基、アリル基、アラルキル基、炭素数1〜20の直鎖状または分岐状アルコキシ基、ビニルオキシ基、アリロキシ基、炭素数3〜20のシクロアルキル基、アリール基またはアリールオキシ基であり、R11が複数ある場合、複数のR11は同一でも異なってもよい。sは1から3の整数である。)
で表わされる有機ケイ素化合物が挙げられる。
上記一般式(4)または一般式(5)で表わされる有機ケイ素化合物としては、フェニルアルコキシシラン、アルキルアルコキシシラン、フェニルアルキルアルコキシシラン、シクロアルキルアルコキシシラン、アルキル(シクロアルキル)アルコキシシラン、(アルキルアミノ)アルコキシシラン、アルキル(アルキルアミノ)アルコキシシラン、シクロアルキル(アルキルアミノ)アルコキシシラン、テトラアルコキシシラン、テトラキス(アルキルアミノ)シラン、アルキルトリス(アルキルアミノ)シラン、ジアルキルビス(アルキルアミノ)シラン、トリアルキル(アルキルアミノ)シラン等を挙げることができる。具体的には、n−プロピルトリエトキシシラン、シクロペンチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、t−ブチルトリメトキシシラン、ジイソプロピルジメトキシシラン、イソプロピルイソブチルジメトキシシラン、ジイソペンチルジメトキシシラン、ビス(2−エチルヘキシル)ジメトキシシラン、t−ブチルメチルジメトキシシラン、t−ブチルエチルジメトキシシラン、ジシクロペンチルジメトキシシラン、ジシクロヘキシルジメトキシシラン、シクロヘキシルシクロペンチルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、テトラエトキシシラン、テトラブトキシシラン、ビス(エチルアミノ)メチルエチルシラン、ビス(エチルアミノ)t−ブチルメチルシラン、ビス(エチルアミノ)ジシクロヘキシルシラン、ジシクロペンチルビス(エチルアミノ)シラン、ビス(メチルアミノ)(メチルシクロペンチルアミノ)メチルシラン、ジエチルアミノトリエトキシシラン、ビス(シクロヘキシルアミノ)ジメトキシシラン、ビス(パーヒドロイソキノリノ)ジメトキシシラン、ビス(パーヒドロキノリノ)ジメトキシシラン、エチル(イソキノリノ)ジメトキシシラン等が挙げられ、中でも、n−プロピルトリエトキシシラン、フェニルトリメトキシシラン、t−ブチルメチルジメトキシシラン、t−ブチルエチルジメトキシシラン、ジイソプロピルジメトキシシラン、イソプロピルイソブチルジメトキシシラン、ジイソペンチルジメトキシシラン、ジフェニルジメトキシシラン、ジシクロペンチルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、t−ブチルメチルビス(エチルアミノ)シラン、ビス(エチルアミノ)ジシクロヘキシルシラン、ジシクロペンチルビス(エチルアミノ)シラン、ビス(パーヒドロイソキノリノ)ジメトキシシラン、ジエチルアミノトリエトキシシラン等から選ばれる一種以上が挙げられる。
また、2位に置換基を有する1,3−ジエーテル類としては、下記一般式(6);
12OCHCR1314CHOR15 (6)
(式中、R13およびR14は水素原子、ハロゲン原子、炭素数1〜12のアルキル基、ビニル基、炭素数3〜12のアルケニル基、炭素数3〜12のシクロアルキル基あるいはシクロアルケニル基、炭素数6〜12の芳香族炭化水素基あるいはハロゲン置換芳香族炭化水素基、置換基を有する炭素数7〜12の芳香族炭化水素基、炭素数1〜12のアルキルアミノ基または炭素数2〜12のジアルキルアミノ基を示し、同一または異なっていてもよく、互いに結合して環を形成してもよい。R12およびR14は炭素数1〜12のアルキル基、ビニル基、炭素数3〜12のアルケニル基、炭素数3〜6のシクロアルキル基、炭素数6〜12の芳香族炭化水素基あるいはハロゲン置換芳香族炭化水素基または置換基を有する炭素数7〜12の芳香族炭化水素基を示し、同一または異なっていてもよい。)で表されるジエーテル化合物から選択される。
具体的には、2−イソプロピル−2−イソブチル−1,3−ジメトキシプロパン、2,2−ジイソブチル−1,3−ジメトキシプロパン、2−イソプロピル−2−イソペンチル−1,3−ジメトキシプロパン、2,2−ジシクロヘキシル−1,3−ジメトキシプロパン、2,2−ビス(シクロヘキシルメチル)1,3−ジメトキシプロパン、9,9−ビス(メトキシメチル)フルオレン等が挙げられ、中でも、2−イソプロピル−2−イソブチル−1,3−ジメトキシプロパン、2−イソプロピル−2−イソペンチル−1,3−ジメトキシプロパン、9,9−ビス(メトキシメチル)フルオレン等が好ましく用いられ、これらの化合物を少なくとも1種または2種以上を用いることができる。
(オレフィン類の重合方法)
本発明においては、前記オレフィン類重合触媒の存在下に、オレフィン類の重合もしくは共重合を行なう。オレフィン類としては、エチレン、プロピレン、1−ブテン、1−ペンテン、4−メチル−1−ペンテン、ビニルシクロヘキサン等が挙げられ、これらのオレフィン類は1種あるいは2種以上併用することができ、中でもエチレン、プロピレンおよび1−ブテンが好適に用いられる。特に好ましいものはプロピレンである。
プロピレンの重合を行う場合、他のオレフィン類との共重合を行なうこともできる。共重合されるオレフィン類としては、エチレン、1−ブテン、1−ペンテン、4−メチル−1−ペンテン、ビニルシクロヘキサン等であり、これらのオレフィン類は1種あるいは2種以上併用することができる。とりわけ、エチレンおよび1−ブテンが好適に用いられる。
各成分の使用量比は、本発明の効果に影響を及ぼすことのない限り任意であり、特に限定されるものではないが、通常有機アルミニウム化合物(G)は固体触媒成分(I)中のチタン原子1モル当たり、1〜2000モル、好ましくは50〜1000モルの範囲で用いられる。外部電子供与性化合物(H)は、成分(G)1モル当たり、0.002〜10モル、好ましくは0.01〜2モル、特に好ましくは0.01〜0.5モルの範囲で用いられる。
各成分の接触順序は任意であるが、重合系内にまず有機アルミニウム化合物(G)を装入し、次いで成分(I)を接触させることが望ましい。本発明におけるオレフィンの重合は、有機溶媒の存在下でも不存在下でも行なうことができ、またプロピレン等のオレフィンモノマーは、気体および液体のいずれの状態でも用いることができる。重合温度は200℃以下、好ましくは100℃以下であり、重合圧力は10MPa以下、好ましくは5MPa以下である。また、連続重合法、バッチ式重合法のいずれでも可能である。更に、重合反応は1段で行なってもよいし、2段以上で行なってもよい。
更に、本発明においてオレフィン類重合用固体触媒成分、有機アルミニウム化合物、および外部電子供与性化合物を含有する触媒を用いてオレフィンを重合するにあたり(本重合ともいう。)、触媒活性、立体規則性および生成する重合体の粒子性状等を一層改善させるために、本重合に先立ち予備重合を行なうことが望ましい。予備重合の際には、本重合と同様のオレフィン類あるいはスチレン等のモノマーを用いることができる。
予備重合を行なうに際して、各成分およびモノマーの接触順序は任意であるが、好ましくは、不活性ガス雰囲気あるいはオレフィンガス雰囲気に設定した予備重合系内にまず成分(G)を装入し、次いで固体触媒成分(I)を接触させた後、プロピレン等のオレフィン、またはプロピレンと1種あるいは2種以上の他のオレフィン類の混合物を接触させる。
なお、成分(H)を組み合わせて予備重合を行なう場合は、不活性ガス雰囲気あるいはオレフィンガス雰囲気に設定した予備重合系内にまず成分(G)を装入し、次いで(H)を接触させ、更に固体触媒成分(I)を接触させた後、プロピレン等のオレフィン、またはプロピレンと1種あるいは2種以上の他のオレフィン類の混合物を接触させる方法が望ましい。
プロピレンブロック共重合体を製造する場合は、2段階以上の多段重合により行い、通常第1段目で重合用触媒の存在下にプロピレンを重合し、第2段目でエチレン及びプロピレンを共重合することにより得られる。第2段目あるいはこれ以降の重合時にプロピレン以外のα−オレフィンを共存あるいは単独で重合させることも可能である。α−オレフィンの例としては、エチレン、1−ブテン、4−メチル−1−ペンテン、ビニルシクロヘキサン、1−ヘキセン、1−オクテン等が挙げられる。具体的には、第1段目でポリプロピレン部の割合が20〜80重量%になるように重合温度および時間を調整して重合を行ない、次いで第2段目において、エチレンおよびプロピレンあるいは他のα−オレフィンを導入し、エチレン−プロピレンゴム(EPR)などのゴム部割合が20〜80重量%になるように重合する。第1段目及び第2段目における重合温度は共に、200℃以下、好ましくは100℃以下であり、重合圧力は10MPa以下、好ましくは5MPa以下である。また、各重合段階での重合時間あるいは連続重合の場合、滞留時間は通常1分〜5時間である。
重合方法としては、シクロヘキサン、ヘプタン等の不活性炭化水素化合物の溶媒を使用するスラリー重合法、液化プロピレン等の溶媒を使用するバルク重合法、及び実質的に溶媒を使用しない気相重合法が挙げられる。好ましい重合方法としては、バルク重合法、気相重合法である。
本発明の固対触媒成分は、1段目のプロピレン重合活性(ホモ活性)および立体規則性が良好なフタル酸ジエステルと、固体触媒成分表面への吸着力が強く重合初期の反応が抑制され、重合活性持続性は良好であるエーテルカーボネートを各々バランスよく担持させることで、フタル酸ジエステルのみを含有する固体触媒成分の共重合活性及び重合活性持続性が低いという欠点を改善するものである。従って、本発明の固体触媒成分を用いると、1段目のホモ活性および生成する結晶性重合体(ホモ部)の立体規則性を高水準で維持しつつ、さらに2段目の共重合活性を高水準で維持することができる。このことから、得られる重合体中のエチレン含有量だけでなく、エチレン−プロピレン共重合ゴム(ゴム部、EPR)の比率(ブロック率)をも高めることができ、相対的に高い剛性を示す重合体が得られると考えられる。
(実施例)
次に、実施例を挙げて本発明をさらに具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
(実施例1)
<固体触媒成分(A1)の調製>
(1)第一の工程
窒素ガスで十分に置換され、攪拌機を具備した容量500mlの丸底フラスコに、四塩化チタン40ml(364ミリモル)およびトルエン60ml(565ミリモル)を装入して、混合溶液を形成した。次いで、球状のジエトキシマグネシウム(円形度:1.10)20g(175ミリモル)とトルエン80ml(753ミリモル)および、フタル酸ジ−n−プロピル1.8ml(7.8ミリモル)を用いて形成された懸濁液を、前記混合溶液中に添加した。その後、−5℃で1時間攪拌した後、110℃まで昇温した。昇温途中にて、フタル酸ジ−n−プロピル3.6ml(15.5ミリモル)を加えた。110℃に保持し、2時間攪拌しながら反応させた後、得られた反応液を静置し、上澄み液を除去することにより、スラリー状の反応生成物を得た。上記スラリー状の反応生成物に対し、100℃のトルエン187mlを添加し、攪拌し、静置した後、上澄み液を除去する処理を4回繰り返すことにより洗浄して、スラリー状の中間組成物(1)を得た。
(2)第二の工程
上記スラリー状の中間組成物(1)に、トルエン170ml(1600ミリモル)および四塩化チタン30ml(273ミリモル)を加えて110℃まで昇温し、2時間攪拌しながら反応させた。反応終了後、トルエンの上澄みを除去し、さらにトルエン180mlおよび四塩化チタン20ml(182ミリモル)を加えて昇温し、80℃でフタル酸ジ−n−プロピル0.5ml(2.2ミリモル)を添加した後、110℃まで昇温し、2時間攪拌しながら反応させ、得られた反応液を静置し、上澄み液を除去することにより、スラリー状の反応生成物を得た。反応終了後、得られたスラリー状の反応生成物に対し、100℃のトルエン187mlを添加し、攪拌し、静置した後、上澄み液を除去する処理を2回繰り返し、さらに60℃のn−ヘプタン150ml添加し、攪拌し、静置した後、上澄み液を除去する処理を5回繰り返すことにより洗浄して、スラリー状の中間組成物(2)を得た。
(3)第三の工程
上記スラリー状の中間組成物(2)に、ヘプタン150ml(1024ミリモル)を加えて反応液中の四塩化チタンの濃度を0.2質量%に調整した上で昇温し、80℃で(2−エトキシエチル)メチルカーボネート0.2ml(1.4ミリモル)を添加し、80℃で1時間攪拌しながら反応させ、得られた反応液を静置し、上澄み液を除去することにより、スラリー状の反応生成物を得た。反応終了後、得られたスラリー状の反応生成物を、60℃のn−ヘプタン150mlを添加し、攪拌し、静置した後、上澄み液を除去する処理を2回繰り返すことにより洗浄して、オレフィン類重合用固体触媒成分(A1)約20gを得た。なお、この固体触媒成分中(A1)のマグネシウム原子の含有率は19.8質量%、チタン原子の含有率は1.6質量%、ハロゲン原子の含有率は62.6質量%であり、フタル酸ジエステルの含有量は11.6質量%、(2−エトキシエチル)メチルカーボネートの含有量は0.9質量%であった。
<プロピレン重合触媒(B1)の形成およびプロピレン重合>
窒素ガスで完全に置換された内容積2.0リットルの攪拌機付オートクレーブに、トリエチルアルミニウム1.32ミリモル、シクロヘキシルメチルジメトキシシラン(CMDMS)0.13ミリモルおよび上記固体触媒成分(A1)をチタン原子として0.0013ミリモル装入して、オレフィン類重合用触媒(B1)を調製した。上記内容積2.0リットルの攪拌機付オートクレーブに、さらに水素ガス9.0リットル、液化プロピレン1.4リットルを装入し、20℃、1.1MPaで5分間予備重合を行なった後に昇温し、70℃、3.5MPaで1時間重合反応を行なうことにより、プロピレン重合体(ポリプロピレン)を得た。上記重合反応時における固体触媒成分1g当たりの重合活性を測定するとともに、重合体のメルトフローレート(MFR)、重合体のp−キシレン可溶分の割合(XS)、重合体のアイソタクチック・ペンタッド分率(NMR−mmmm)、および重合体の曲げ弾性率(FM)を以下の方法で測定した。その結果を表1に示す。
(プロピレン重合活性)
固体触媒成分1g当たりのプロピレン重合活性を、下記式により求めた。
プロピレン重合活性(kg−pp/g−触媒)=ポリプロピレンの質量(kg)/オレフィン類重合用触媒中の固体触媒成分の質量(g)
<ポリプロピレンの溶融流れ性(MFR)>
ホモポリプロピレンの溶融流れ性を示すメルトフローレート(MFR)(g/10分間)を、ASTM D 1238、JIS K 7210に準じて測定した。
<ポリプロピレンのキシレン可溶分(XS)>
攪拌装置を具備したフラスコ内に、4.0gの重合体(ホモポリプロピレン)と、200mlのp−キシレンを装入し、外部温度をキシレンの沸点以上(約150℃)とすることにより、フラスコ内部のp-キシレンの温度を沸点下(137〜138℃)に維持しつつ、2時間かけて重合体を溶解した。その後1時間かけて液温を23℃まで冷却し、不溶解成分と溶解成分とを濾過分別した。上記溶解成分の溶液を採取し、加熱減圧乾燥によりp−キシレンを留去し、得られた残留物の重量を求め、生成した重合体(ホモポリプロピレン)に対する相対割合(質量%)を算出して、キシレン可溶分(XS)とした。
<ポリプロピレンのアイソタクチック・ペンタッド分率(NMR−mmmm)>
アイソタクチック・ペンタッド分率(NMR−mmmm)は、A.ZambelliらによってMacromolecules,6,925(1973)に記載されている方法によって測定されるポリプロピレン分子鎖中のペンタッド単位でのアイソタクチック連鎖(換言すればプロピレンモノマー単位が5個連続してメソ結合した連鎖)の中心にあるプロピレンモノマー単位の分率(%)であり、13C−NMRを用いて算出する。具体的には、13C−NMRスペクトルのメチル炭素領域の全吸収ピークに対するmmmmピークの面積分率を、アイソタクチック・ペンタッド分率として求めた。ポリプロピレンのアイソタクチック・ペンタッド分率(NMR−mmmm)は、日本電子(株)製JNM−ECA400を用いて、以下の条件で13C−NMR測定を行うことにより、算出した。
13C−NMR測定条件)
測定モード : プロトンデカップリング法
パルス幅 : 7.25μsec
パルス繰り返し時間 : 7.4sec
積算回数 : 10,000回
溶媒 : テトラクロロエタン−d2
試料濃度 : 200mg/3.0ml
<重合体の曲げ弾性率(FM)>
JIS K 7171に従い、上記重合体を用いて物性測定用の試験片を射出成形し23℃に調節された恒温室内で、状態調節を144時間以上行なった後、表面に液体や粉体の滲出が認められなかったものを試験片として用い、試験片の曲げ弾性率(FM)(MPa)を測定した。
なお、ジアルコキシマグネシウム粒子の円形度、固体触媒成分中のマグネシウム原子、チタン原子、ハロゲン原子および内部電子供与性化合物の含有量は、以下の方法により測定した。
(ジアルコキシマグネシウム粒子の円形度)
ジアルコキシマグネシウム粒子の円形度は、ジアルコキシマグネシウム粒子を走査型電子顕微鏡(日本電子株式会社製、JSM−7500F)により、500〜1000個の粒子が一画面に表示される程度の倍率で撮影し、撮影した粒子の中から無作為に500個以上を抽出し、画像解析処理ソフト(株式会社MOUNTECH製、MacView バージョン4.0)により各粒子の面積Sと周囲長Lを測定した後、各ジアルコキシマグネシウム粒子の円形度を下記式により算出したときの算術平均値として求めた。
各ジアルコキシマグネシウム粒子の円形度=4π×S÷L
(固体触媒成分中のマグネシウム原子の含有量)
固体触媒成分中のマグネシウム原子の含有量は、予め加熱減圧乾燥により溶媒成分を完全に除去した固体触媒成分を秤量後、塩酸溶液で溶解し、指示薬のメチルオレンジと飽和塩化アンモニウム溶液を加え、アンモニア水で中和後に加熱し、冷却後に一定容としたものをろ別して沈殿物(Tiの水酸化物)を除去し、得られたろ液を一定量分取し、加熱後に緩衝液とEBT混合指示薬を加え、EDTA溶液で滴定するEDTA滴定方法により測定した。
(固体触媒成分中のチタン原子含有量)
固体触媒成分中のチタン原子含有量は、JIS 8311−1997「チタン鉱石中のチタン定量方法」に記載の方法(酸化還元滴定)に準じて測定した。
(固体触媒成分中のハロゲン原子含有量)
固体触媒成分中のハロゲン原子含有量は、予め加熱減圧乾燥により溶媒成分を完全に除去した固体触媒成分を秤量し、硫酸と純水の混合溶液で処理して水溶液とした後に一定容としたものを所定量分取し、自動滴定装置(平沼産業株式会社製、COM−1500)を用い、硝酸銀標準溶液でハロゲン原子を滴定する硝酸銀滴定法により測定した。
(固体触媒成分中の内部電子供与性化合物の含有量)
固体触媒成分中に含まれる内部電子供与性化合物の含有量は、ガスクロマトグラフィー((株)島津製作所製、GC−14B)を用いて下記の条件にて測定することで求めた。また、各成分(各内部電子供与性化合物)のモル数については、ガスクロマトグラフィーの測定結果より、予め既知濃度において測定した検量線を用いて求めた。
<測定条件>
カラム:パックドカラム(φ2.6×2.1m, Silicone SE-30 10%,Chromosorb WAW DMCS 80/100、ジーエルサイエンス(株)社製)
検出器:FID(Flame Ionization Detector,水素炎イオン化型検出器)
キャリアガス:ヘリウム、流量40ml/分
測定温度:気化室280℃、カラム225℃、検出器280℃、または気化室265℃、カラム180℃、検出器265℃
(実施例2A)
<固体触媒成分(A2)の調製>
(1)第一の工程
前記固体触媒成分(A1)の調製における第1工程と同様の方法により、スラリー状の中間組成物(1)を得た。
(2)第二の工程
上記スラリー状の中間組成物(1)に、トルエン170ml(1600ミリモル)および四塩化チタン30ml(273ミリモル)を加えて110℃まで昇温し、2時間攪拌しながら反応させた。反応終了後、トルエンの上澄みを除去し、さらにトルエン180mlおよび四塩化チタン20ml(182ミリモル)を加えて昇温し、80℃でフタル酸ジ−n−プロピル0.4ml(1.7ミリモル)を添加した後、110℃まで昇温し、2時間攪拌しながら反応させ、得られた反応液を静置し、上澄み液を除去することにより、スラリー状の反応生成物を得た。反応終了後、得られたスラリー状の反応生成物に対し、100℃のトルエン187mlを添加し、攪拌し、静置した後、上澄み液を除去する処理を2回繰り返すことにより洗浄して、スラリー状の中間組成物(2)を得た。
(3)第三の工程
上記スラリー状の中間組成物(2)に、トルエン187ml(1760ミリモル)を加えて反応液中の四塩化チタンの濃度を1.3質量%に調整した上で昇温し、80℃で(2−エトキシエチル)メチルカーボネート0.4ml(2.8ミリモル)を添加した後、100℃まで昇温し、同温度で1時間攪拌しながら反応させ、得られた反応液を静置し、上澄み液を除去することにより、スラリー状の反応生成物を得た。反応終了後、得られたスラリー状の反応生成物に対し、60℃のn−ヘプタン150mlを添加し、攪拌し、静置した後、上澄み液を除去する処理を7回繰り返すことにより洗浄して、オレフィン類重合用固体触媒成分(A2)約20gを得た。
なお、この固体触媒成分(A2)中のマグネシウム原子の含有率は20.1質量%、チタン原子の含有率は1.5質量%、ハロゲン原子の含有率は62.3質量%、フタル酸ジエステルの含有量は12.1質量%、(2-エトキシエチル)メチルカーボネートの含有量は1.5質量%であった。
<重合触媒(B2-1)の形成およびプロピレン重合>
固体触媒成分(A1)に代えて、上記固体触媒成分(A2)を用いた以外は、実施例1と同様にして、プロピレン重合触媒(B2-1)を形成し、ポリプロピレンを調製して、プロピレン重合活性の評価を実施するとともに、得られた重合体の評価を実施した。結果を表1に示す。
(実施例2B)
<共重合触媒(B2-2)の形成およびエチレン・プロピレンブロック共重合>
上記固体触媒成分(A2)を用いて以下のとおり共重合触媒を調製した後、以下の方法により多段重合により共重合体を作製し、以下の方法により、共重合時における、エチレン・プロピレンブロック共重合活性(ICP(インパクトコポリマー)活性)を測定して重合活性持続性を評価するとともに、さらに得られたエチレン・プロピレンブロック共重合のブロック率、曲げ弾性率(FM)、アイゾッド衝撃強度を測定した。
窒素ガスで完全に置換された内容積2.0リットルの撹拌機付オートクレーブに、トリエチルアルミニウム2.4ミリモル、シクロヘキシルメチルジメトキシシラン0.24ミリモルおよび上記固体触媒成分(A2)をチタン原子換算で0.003ミリモル装入し、エチレン−プロピレン共重合触媒((B2-2)を調製した。
上記エチレン−プロピレン共重合触媒(B2-2)10.2mgを攪拌機付オートクレーブに装入し、さらに液化プロピレン15モルと水素ガス0.20MPa(分圧)を装入し、20℃で5分間予備重合を行なった後、70℃で75分間、一段目のホモポリプレン(ホモ段)重合反応を行なった後、常圧に戻した。
次に、エチレン/プロピレン/水素を、それぞれモル比が1.0/1.0/0.043となるように上記撹拌機付オートクレーブ内に投入した後、70℃まで昇温し、エチレン/プロピレン/水素を、それぞれリットル/分が2/2/0.086の割合となるように導入しつつ、1.2MPa、70℃、1時間の条件で反応させることにより、エチレン−プロピレン共重合体を得た。得られたエチレン−プロピレン共重合体について、共重合(ICP)活性(kg−ICP/(g−cat・時間))、ブロック率(質量%)及びアイゾット衝撃強度を以下の方法により測定した。なお、曲げ弾性率(FM)の測定は実施例1と同様である。結果を表2に示す。
<エチレン・プロピレンブロック共重合活性(ICP活性)(kg−ICP/(g−cat・時間))>
エチレン・プロピレンブロック共重合体形成時における共重合活性(ICP活性)および得られた共重合体のブロック率は、以下の式により算出した。
共重合(ICP)活性(kg−ICP/(g−cat・時間))=((I(kg)−G(kg))/オレフィン類重合用触媒に含まれる固体触媒成分の質量(g))/1.0(時間)
ここで、Iは共重合反応終了後のオートクレーブ質量(kg)、GはホモPP重合終了後、未反応モノマーを除去した後のオートクレーブ質量(kg)である。
<ブロック率(質量%)>
ブロック率(質量%)={(I(g)−G(g))/(I(g)−F(g))}×100
ここで、Iは共重合反応終了後のオートクレーブ質量(g)、GはホモPP重合終了後、未反応モノマーを除去した後のオートクレーブ質量(g)、Fはオートクレーブ質量(g)である。
<アイゾッド衝撃強度>
得られたエチレン−プロピレン共重合体に対し、IRGANOX 1010(BASF社製)0.10重量%、IRGAFOS 168(BASF社製)0.10重量%、およびステアリン酸カルシウム0.08重量%を配合し、単軸押出機にて混練造粒してペレット状のエチレン−プロピレン共重合体を得た。次いで、上記ペレット状の共重合体を、金型温度60℃、シリンダー温度230℃に保持した射出成形機に導入し、射出成形により物性測定用の試験片を射出成形した。成型後の試験片について、23℃に調節された恒温室内で、状態調節を144時間以上行った後、IZOD試験機(株式会社東洋精機製作所製、アイゾット衝撃試験機 型番A−121804405)を用い、JIS K7110 「アイゾット衝撃強さの試験方法」に従い、試験片のアイゾット衝撃強度を測定した。
試験片形状:ISO 180/4A、厚さ3.2mm、幅12.7mm、長さ63.5mmノッチ形状:タイプAノッチ(ノッチ半径0.25mm)、ノッチ付き金型にて形成
温度条件:23℃および−30℃
衝撃速度:3.5m/s
公称振り子エネルギー:23℃測定時 5.5J、−30℃測定時 2.75J
(実施例3A)
<重合触媒(B3-1)の形成および重合>
シクロヘキシルメチルジメトキシシラン(CMDMS)0.13ミリモルに代えて、ジシクロペンチルジメトキシシラン(DCPDMS)0.13ミリモルを用いた以外は、実施例2Aと同様にしてプロピレン重合触媒(B3-1)を調製し、ポリプロピレンを製造し、プロピレン重合活性の評価を実施するとともに、得られた重合体の評価を実施した。結果を表1に示す。
(実施例3B)
<共重合触媒(B3-2)の形成およびエチレン・プロピレンブロック共重合>
シクロヘキシルメチルジメトキシシラン(CMDMS)0.24ミリモルに代えて、ジシクロペンチルジメトキシシラン(DCPDMS)0.24ミリモルを用いた以外は、実施例2Bと同様にしてエチレン−プロピレン共重合触媒を調製し、エチレン・プロピレンブロック共重合体を製造して、エチレン・プロピレンブロック共重合(ICP)活性の評価を実施するとともに、得られた重合体の評価を実施した。結果を表2に示す。
(実施例4A)
<重合触媒(B4-1)の形成および重合>
シクロヘキシルメチルジメトキシシラン(CMDMS)0.13ミリモルに代えて、ジイソプロピルジメトキシシラン(DIPDMS)0.13ミリモルを用いた以外は実施例2Aと同様にしてプロピレン重合触媒(B4-1)を調製して、ポリプロピレンを製造して、プロピレン重合活性の評価を実施するとともに、得られた重合体の評価を実施した。結果を表1に示す。
(実施例4B)
<共重合触媒(B4-2)の形成およびエチレン・プロピレンブロック共重合>
シクロヘキシルメチルジメトキシシラン(CMDMS)0.24ミリモルに代えて、ジイソプロピルジメトキシシラン(DIPDMS)0.24ミリモルを用いた以外は、実施例2Bと同様にしてエチレン−プロピレン共重合触媒(B4-2)を調製して、エチレン・プロピレンブロック共重合体を調製して、エチレン・プロピレンブロック共重合(ICP)活性の評価を実施するとともに、得られた重合体の評価を実施した。結果を表2に示す。
(実施例5A)
<重合触媒(B5-1)の形成および重合>
シクロヘキシルメチルジメトキシシラン(CMDMS)0.13ミリモルに代えて、それぞれジシクロペンチルビス(エチルアミノ)シラン(DCPEAS)0.13ミリモルを用いたこと、水素ガス添加量9.0リットルに代えて、6.0リットルとした以外は、実施例2Aと同様にしてプロピレン重合触媒(B5-1)を調製し、ポリプロピレンを製造して、プロピレン重合活性の評価を実施するとともに、得られた重合体の評価を実施した。結果を表1に示す。
(実施例5B)
<共重合触媒(B5-2)の形成およびエチレン・プロピレンブロック共重合>
シクロヘキシルメチルジメトキシシラン(CMDMS)0.24ミリモルに代えて、ジシクロペンチルビス(エチルアミノ)シラン(DCPEAS)0.24ミリモルを用いた以外は、実施例2Bと同様にしてエチレン−プロピレン共重合触媒(B5-2)を調製し、エチレン・プロピレンブロック共重合体を製造して、エチレン・プロピレンブロック共重合(ICP)活性の評価を実施するとともに、得られた重合体の評価を実施した。結果を表2に示す。
(実施例6A)
<重合触媒(B6-1)の形成および重合>
シクロヘキシルメチルジメトキシシラン(CMDMS)0.13ミリモルに代えて、ジエチルアミノトリエトキシシラン(DEATES)0.13ミリモルを用い、水素ガス添加量9.0リットルに代えて、6.0リットルとした以外は、実施例2Aと同様にしてプロピレン重合触媒を形成し、ポリプロピレンを調製して、ホモプロピレン重合活性の評価を実施するとともに、得られた重合体の評価を実施した。結果を表1に示す。
(実施例6B)
<共重合触媒(B6-2)の形成およびエチレン・プロピレンブロック共重合>
シクロヘキシルメチルジメトキシシラン(CMDMS)0.24ミリモルに代えて、ジエチルアミノトリエトキシシラン(DEATES)0.24ミリモルを用いた以外は、実施例2Bと同様にしてエチレン−プロピレン共重合触媒(B6-2)を調製し、エチレン・プロピレンブロック共重合体を製造して、エチレン・プロピレンブロック共重合(ICP)活性の評価を実施するとともに、得られた重合体の評価を実施した。結果を表2に示す。
(実施例7A)
<重合触媒(B7-1)の形成および重合>
<重合触媒の形成および重合>
シクロヘキシルメチルジメトキシシラン(CMDMS)0.13ミリモルに代えて、ジシクロペンチルジメトキシシランとn−プロピルトリエトキシシランとをジシクロペンチルジメトキシシラン:n−プロピルトリエトキシシラン=5:95(モル/モル)の割合で混合したもの0.13ミリモルを用いた以外は、実施例2Aと同様にしてプロピレン重合触媒を調製し、ポリプロピレンを製造して、プロピレン重合活性の評価を実施するとともに、得られた重合体の評価を実施した。結果を表1に示す。
(実施例7B)
<共重合触媒(B7-2)の形成およびエチレン・プロピレンブロック共重合>
シクロヘキシルメチルジメトキシシラン(CMDMS)0.24ミリモルに代えて、ジシクロペンチルジメトキシシランとn−プロピルトリエトキシシランとをジシクロペンチルジメトキシシラン:n−プロピルトリエトキシシラン=5:95(モル/モル)の割合で混合したもの0.24ミリモルを用いた以外は、実施例2Bと同様にしてエチレン−プロピレン共重合触媒を調製し、エチレン・プロピレンブロック共重合体を製造して、エチレン・プロピレンブロック共重合(ICP)活性の評価を実施するとともに、得られた重合体の評価を実施した。結果を表2に示す。
(実施例8)
<固体触媒成分(A3)の調製>
第二の工程において、フタル酸ジ−n−プロピル0.4ml(1.7ミリモル)に代えて、(2−エトキシエチル)メチルカーボネート0.2ml(1.4ミリモル)を用いた以外は、実施例2と同様にして、固体触媒成分(A3)を調製した。この固体触媒成分(A3)中のマグネシウム原子の含有率は20.6質量%、チタン原子の含有率は1.1質量%、ハロゲン原子の含有率は63.0質量%であり、フタル酸ジエステルの合計含有量は12.7質量%、(2-エトキシエチル)メチルカーボネートの含有量は2.3質量%であった。
<重合触媒の形成およびプロピレン重合>
固体触媒成分(A1)に代えて、固体触媒成分(A3)を用いた以外は、実施例1と同様にして、触媒(B8)を調製し、ポリプロピレンを製造して、プロピレン重合活性の評価を実施するとともに、得られた重合体の評価を実施した。結果を表1に示す。
(実施例9)
<固体触媒成分(A4)の調製>
第三の工程の(2−エトキシエチル)メチルカーボネート0.4ml(2.8ミリモル)に代えて、(2−エトキシエチル)エチルカーボネート0.4ml(2.5ミリモル)とした以外は、実施例2と同様にして固体触媒成分(A4)を調製した。この固体触媒成分(A4)中のマグネシウム原子の含有率は19.5質量%、チタン原子の含有率は1.4質量%、ハロゲン原子の含有率は61.3質量%であり、フタル酸ジエステルの合計含有量は15.5質量%、エーテルカーボネート含有量は1.6質量%であった。
<重合触媒の形成および重合>
固体触媒成分(A1)に代えて、固体触媒成分(A4)を用いた以外は、実施例1と同様にして、触媒(B9)を調製し、ポリプロピレンを製造して、プロピレン重合活性の評価を実施するとともに、得られた重合体の評価を実施した。結果を表1に示す。
(実施例10)
<固体触媒成分(A5)の調製>
第三の工程の(2−エトキシエチル)メチルカーボネート0.4ml(2.8ミリモル)に代えて、(2−エトキシエチル)フェニルカーボネート0.4ml(2.1ミリモル)を用いた以外は、実施例2と同様にして固体触媒成分(A5)を調製した。この固体触媒成分(A5)中のマグネシウム原子の含有率は20.1質量%、チタン原子の含有率は1.4質量%、ハロゲン原子の含有率は61.8質量%であり、フタル酸ジエステルの合計含有量は13.0質量%、(2−エトキシエチル)フェニルカーボネートの含有率は1.1質量%であった。
<重合触媒の形成および重合>
固体触媒成分(A1)に代えて、固体触媒成分(A5)を用いた以外は、実施例1と同様にして、触媒(B10)を調製し、ポリプロピレンを調製して、プロピレン重合活性の評価を実施するとともに、得られた重合体の評価を実施した。結果を表1に示す。
(実施例11A)
<固体触媒成分(A6)の調製>
(1)第一の工程
窒素ガスで十分に置換した、容量500mlの丸底フラスコに、n−ヘプタン120ml(819ミリモル)を導入し、更に、無水塩化マグネシウム15g(158ミリモル)、テトラブトキシチタン106ml(274ミリモル)を添加して、90℃で1.5時間反応させて均一な溶解液とした後、40℃に冷却し、40℃の温度に保持したままメチルハイドロジェンポリシロキサン(20センチストークスのもの)を24ml(88ミリモル)添加し、5時間析出反応を行った。得られた反応液を静置し、上澄み液を除去することにより、スラリー状の反応生成物を得た後、得られた反応生成物をn−ヘプタンで充分に洗浄した。次いで、窒素ガスで充分に置換した、攪拌装置を備えた容量500mlの丸底フラスコに、上記反応生成物を40g導入し、更にn−ヘプタンを導入して、反応生成物の濃度が200mg/mlになる様に調整した後、さらにSiClを12ml(105ミリモル)添加して、90℃で3時間反応を行った。得られた反応液を静置し、上澄み液を除去することにより、スラリー状の反応生成物を得た後、得られた反応生成物をn−ヘプタンで充分に洗浄した。次いで、得られた反応生成物のスラリー濃度が100mg/mlになる様にn−ヘプタンを導入し、TiCl20ml(182ミリモル)を加えた後、フタル酸ジブチル7.2ml(27.1ミリモル)を添加し、95℃で3時間反応させた後、得られた反応液を静置し、上澄み液を除去することにより、スラリー状の反応生成物を得た。上記スラリー状の反応生成物に対し、n−ヘプタン120mLを添加し、攪拌し、静置した後、上澄み液を除去する処理を7回繰り返すことにより洗浄して、スラリー状の中間組成物(1)を得た。
(2)第二の工程
上記スラリー状の中間組成物(1)に、n−ヘプタン100ml(683ミリモル)および四塩化チタン20ml(182ミリモル)を加えて100℃まで昇温し、2時間攪拌しながら反応させた。反応終了後、トルエンの上澄みを除去し、さらにn−ヘプタン100mlを導入した。次いで、四塩化チタン20ml加えた後、フタル酸ジ−n−プロピル0.8ml(3.4ミリモル)を添加した後、95℃で3時間反応させ、得られた反応液を静置し、上澄み液を除去することにより、スラリー状の反応生成物を得た。
反応終了後、得られたスラリー状の反応生成物を還流下のヘプタン100mlで処理し、静置した後、上澄み液を除去する処理を2回繰り返すことにより洗浄して、スラリー状の中間組成物(2)を得た。
(3)第三の工程
上記スラリー状の中間組成物(2)に、トルエン187ml(1760ミリモル)を加えて反応液中の四塩化チタンの濃度を2.5質量%に調整した上で昇温し、80℃で(2−エトキシエチル)メチルカーボネート0.8ml(5.6ミリモル)を添加した後、還流下で1時間攪拌しながら反応させ、得られた反応液を静置し、上澄み液を除去することにより、スラリー状の反応生成物を得た。反応終了後、得られたスラリー状の反応生成物に対し、60℃のn−ヘプタン150mlを添加し、攪拌し、静置した後、上澄み液を除去する処理を7回繰り返すことにより洗浄した後、減圧乾燥することにより、粉末状のオレフィン類重合用固体触媒成分(A6)を得た。なお、この固体触媒成分(A6)中のマグネシウム原子の含有率は19.6質量%、チタン原子の含有率は1.8質量%、ハロゲン原子の含有率は62.6質量%であり、フタル酸ジエステルおよびエーテル化合物の合計含有量は13.1質量%、(2−エトキシエチル)メチルカーボネートの含有量は1.1質量%であった。
<重合触媒(B11-1)の形成および重合>
固体触媒成分(A2)に代えて、固体触媒成分(A6)を用いた以外は、実施例2Aと同様にして、プロピレン重合触媒(B11-1)を調製し、ポリプロピレンを調製して、プロピレン重合活性の評価を実施するとともに、得られた重合体の評価を実施した。結果を表1に示す。
<共重合触媒(B11-2)の形成およびエチレン・プロピレンブロック共重合>
固体触媒成分(A2)に代えて、固体触媒成分(A6)を用いた以外は、実施例2Bと同様にして、エチレン−プロピレン共重合触媒(B11-2)を調製し、ポリプロピレンおよびエチレン・プロピレンブロック共重合体を製造して、エチレン・プロピレンブロック共重合(ICP)活性の評価を実施するとともに、得られた重合体の評価を実施した。結果を表2に示す。
(比較例1)
<固体触媒成分(a1)の調製>
(1)第一の工程
窒素ガスで十分に置換され、攪拌機を具備した容量500mlの丸底フラスコに、四塩化チタン40ml(364ミリモル)およびトルエン60ml(565ミリモル)を装入して、混合溶液を形成した。次いで、球状のジエトキシマグネシウム(円形度:1.10)20g(175ミリモル)とトルエン80ml(753ミリモル)および、(2−エトキシエチル)エチルカーボネート1.2ml(7.5ミリモル)を用いて形成された懸濁液を、前記混合溶液中に添加した。その後、−5℃で1時間攪拌し、110℃まで昇温した。昇温途中で、(2−エトキシエチル)エチルカーボネート2.5ml(15.6ミリモル)を分割添加した。110℃に保持し、2時間攪拌しながら反応させた後、得られた反応液を静置し、上澄み液を除去することにより、スラリー状の反応生成物を得た。上記スラリー状の反応生成物に対し、100℃のトルエン187mlを添加し、攪拌し、静置した後、上澄み液を除去する処理を4回繰り返すことにより洗浄して、スラリー状の固体成分を含む反応生成物(1)を得た。
(2)第二の工程
上記スラリー状の反応生成物(1)に、トルエン170ml(1600ミリモル)および四塩化チタン30ml(273ミリモル)を加えて110℃まで昇温し、2時間攪拌しながら反応させた。反応終了後、トルエンの上澄みを除去し、さらにトルエン180mlおよび四塩化チタン20ml(182ミリモル)を加えて昇温し、110℃まで昇温し、2時間攪拌しながら反応させ、得られた反応液を静置し、上澄み液を除去することにより、スラリー状の反応生成物(2)を得た。反応終了後、得られたスラリー状の反応生成物(2)を、60℃のn−ヘプタン150mlを添加し、攪拌し、静置した後、上澄み液を除去する処理を2回繰り返すことにより洗浄して、オレフィン類重合用固体触媒成分(a1)約20gを得た。なお、この固体触媒成分中(a1)のマグネシウム原子の含有率は21.7質量%、チタン原子の含有率は2.2質量%、ハロゲン原子の含有率は64.6質量%であり、炭酸(2−エトキシエチル)エチル合計含有量は5.5質量%あった。
<重合触媒(b1-1)の形成および重合>
固体触媒成分(A1)に代えて、固体触媒成分(a1)を用いた以外は、実施例1と同様にして、プロピレン重合触媒(b1-1)を調製し、ポリプロピレンを調製して、プロピレン重合活性の評価を実施するとともに、得られた重合体の評価を実施した。結果を表1に示す。
<共重合触媒(b1-2)の形成およびエチレン・プロピレンブロック共重合>
固体触媒成分(A6)に代えて、固体触媒成分(a1)を用いた以外は、実施例6Bと同様にして、エチレン−プロピレン共重合触媒(b1-2)を調製し、エチレン・プロピレンブロック共重合体を調製して、エチレン・プロピレンブロック共重合(ICP)活性の評価を実施するとともに、得られた重合体の評価を実施した。結果を表2に示す。
(比較例2)
<固体触媒成分(a2)の調製>
第一の工程の最初と分割添加の(2−エトキシエチル)エチルカーボネートに代えて、それぞれ同モルのフタル酸ジ−n−プロピルとした以外は、比較例1と同様にして固体触媒成分(a2)を調製した。この固体触媒成分(a2)中のマグネシウム原子の含有率は19.2質量%、チタン原子の含有率は2.8質量%、ハロゲン原子の含有率は61.3質量%であり、フタル酸ジエステルの合計含有量は16.2質量%であった。
<重合触媒(b2-1)の形成および重合>
固体触媒成分(a1)に代えて、固体触媒成分(a2)を用いた以外は、比較例1Aと同様にして、プロピレン重合触媒(b2-1)を形成し、ポリプロピレンを製造して、プロピレン重合活性の評価を実施するとともに、得られた重合体の評価を実施した。結果を表1に示す。
<共重合触媒(b2-2)の形成およびエチレン・プロピレンブロック共重合>
固体触媒成分(a1)に代えて、固体触媒成分(a2)を用いた以外は、比較例1と同様にして、エチレン−プロピレン共重合触媒(b2-2)を形成し、さらにエチレン・プロピレンブロック共重合体を調製して、エチレン・プロピレンブロック共重合(ICP)活性の評価を実施するとともに、得られた重合体の評価を実施した。結果を表2に示す。
Figure 2014132777
Figure 2014132777
表1および表2の結果から、実施例1〜実施例11で得られた固体触媒成分を用いて調製されたオレフィン類重合用触媒は、オレフィン類の重合活性が高く、ICP活性が高いことから共重合時におけるオレフィン類の重合持続性に優れ、また、得られたホモ重合体は、溶融流れ性(MFR)が良好であることから成形性に優れるとともに、キシレン可溶分(XS)およびアイソタクチック・ペンタッド分率(NMR−mmmm)が良好であることから立体規則性に優れ、さらに、得られた共重合体は、ブロック率が良好であることから、インパクトコポリマー(ICP)共重合性能に優れることが分かる。一方、成分(A)および成分(B)で表される化合物を内部電子供与性化合物として使用しない固体触媒成分は、ICP活性が低いことからオレフィン類の重合持続性に劣り、また得られたホモ重合体は、キシレン可溶分(XS)およびアイソタクチック・ペンタッド分率(NMR−mmmm)が低いことから立体規則性に劣ることが分かる。
本発明によれば、オレフィン類の重合活性および重合時の対水素活性に優れるとともに、MFRや立体規則性が高く優れた剛性を有するオレフィン類重合体を製造し得る新規なオレフィン類重合用固体触媒成分を提供することができるとともに、オレフィン類重合用触媒およびオレフィン類重合体の製造方法を提供することができる。
上記一般式のRおよびRは炭素数1〜12のアルキル基であり、RおよびRは、互いに同一であってもよいし異なっていてもよい。炭素数1〜12のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、n−ヘキシル基、イソヘキシル基、2,2−ジメチルブチル基、2,2−ジメチルペンチル基、イソオクチル基、2,2−ジメチルヘキシル基、n−ノニル基、イソノニル基、n−デシル基、イソデシル基、n−ドデシル基が挙げられる。この中でもエチル基、n−プロピル基、n−ブチル基、イソブチル基、t−ブチル基、ネオペンチル基、イソヘキシル基、イソオクチル基が好ましく、エチル基、n−プロピル基、n−ブチル基、イソブチル基、ネオペンチル基がより好ましい。
また、反応試剤を含む固体触媒成分(I)は、更に、一般式(8);
〔CH=CH−(CHSi 17 4−t (8)
(式中、 17 は水素原子または炭素数1〜20のアルキル基、シクロアルキル基、フェニル基、ビニル基、ハロゲン原子を示し、同一または異なっていてもよく、uは0または1〜5の整数であり、tは1〜4の整数である。)で表わされる不飽和アルキル基を有する有機ケイ素化合物を含有するものであってもよい。これにより、得られる固体触媒成分のさらなる重合活性や水素応答性を向上できる。
不飽和アルキル基とはビニル基あるいはアルケニル基のことであり、具体的には、ビニル基含有アルキルシラン、ビニル基含有アルコキシシラン、ビニル基含有シクロアルキルシラン、ビニル基含有フェニルシラン、ビニル基含有ハロゲン化シラン、ビニル基含有アルキルハロゲン化シラン、アルケニル基含有ビニルシラン、アルケニル基含有アルキルシラン、アルケニル基含有アルコキシシラン、アルケニル基含有シクロアルキルシラン、アルケニル基含有フェニルシラン、アルケニル基含有ハロゲン化シラン、アルケニル基含有アルキルハロゲン化シランである。なお、ビニル基とはCH=CH−基のことで、アルケニル基とは、CH=CH−(CH−基のことである。上記の中でも、ビニルトリアルキルシラン、アリルトリアルキルシラン、ジビニルジアルキルシラン、ジアリルジアルキルシラン、トリビニルアルキルシランおよびトリアリルアルキルシランが好ましく、特に好ましくは、アリルジメチルビニルシラン、ジアリルジメチルシラン、トリアリルメチルシラン、ジ−3−ブテニルジメチルシラン、ジアリルジクロロシラン、アリルトリエチルシランである。なお、上記の不飽和アルキル基を有する有機ケイ素化合物は1種あるいは2種以上含んでいてもよい。
上記外部電子供与性化合物(III)のうち、Si−O−C結合を有する有機ケイ素化合物としては、下記一般式(4);
Si(OR4−q (4)
(式中、Rは炭素数1〜12のアルキル基、ビニル基、炭素数3〜12のアルケニル基、炭素数3〜12のシクロアルキル基あるいはシクロアルケニル基、炭素数6〜15の芳香族炭化水素基あるいは置換基を有する芳香族炭化水素基を示し、同一または異なっていてもよい。Rは炭素数1〜4のアルキル基、ビニル基、炭素数3〜12のアルケニル基、炭素数3〜6のシクロアルキル基、または炭素数6〜12の芳香族炭化水素基あるいは置換基を有する炭素数7〜12の芳香族炭化水素基を示し、同一または異なっていてもよく、qは0≦q≦3の整数である。)
で表される有機ケイ素化合物が挙げられる。
また、2位に置換基を有する1,3−ジエーテル類としては、下記一般式(6);
12OCHCR1314CHOR15 (6)
(式中、R13およびR14は水素原子、ハロゲン原子、炭素数1〜12のアルキル基、ビニル基、炭素数3〜12のアルケニル基、炭素数3〜12のシクロアルキル基あるいはシクロアルケニル基、炭素数6〜12の芳香族炭化水素基あるいはハロゲン置換芳香族炭化水素基、置換基を有する炭素数7〜12の芳香族炭化水素基、炭素数1〜12のアルキルアミノ基または炭素数2〜12のジアルキルアミノ基を示し、同一または異なっていてもよく、互いに結合して環を形成してもよい。R12および 15 は炭素数1〜12のアルキル基、ビニル基、炭素数3〜12のアルケニル基、炭素数3〜6のシクロアルキル基、炭素数6〜12の芳香族炭化水素基あるいはハロゲン置換芳香族炭化水素基または置換基を有する炭素数7〜12の芳香族炭化水素基を示し、同一または異なっていてもよい。)で表されるジエーテル化合物から選択される。

Claims (8)

  1. マグネシウム、チタン、ハロゲンと、下記一般式(1);
    (R4−k(COOR)(COOR) (1)
    (式中、Rは炭素数1〜8のアルキル基またはハロゲン原子を示し、RおよびRは炭素数1〜12のアルキル基であり、同一であっても異なっていてもよく、また、置換基Rの数kは0、1または2であり、kが2のとき、各Rは同一であっても異なっていてもよい。)で表される化合物、および下記一般式(2);
    O−C(=O)−O−Z−OR (2)
    (式中、RおよびRは、炭素数1〜20の直鎖状アルキル基、炭素数3〜20の分岐アルキル基、ビニル基、炭素数3〜20の直鎖状アルケニル基または分岐アルケニル基、炭素数1〜20の直鎖状ハロゲン置換アルキル基、炭素数3〜20の分岐ハロゲン置換アルキル基、炭素数2〜20の直鎖状ハロゲン置換アルケニル基、炭素数3〜20の分岐ハロゲン置換アルケニル基、炭素数3〜20のシクロアルキル基、炭素数3〜20のシクロアルケニル基、炭素数3〜20のハロゲン置換シクロアルキル基、炭素数3〜20のハロゲン置換シクロアルケニル基、炭素数6〜24の芳香族炭化水素基、炭素数6〜24のハロゲン置換芳香族炭化水素基、結合末端が炭素原子である炭素数2〜24の窒素原子含有炭化水素基、結合末端が炭素原子である炭素数2〜24の酸素原子含有炭化水素基または結合末端が炭素原子である炭素数2〜24のリン含有炭化水素基を示し、同一でも異なっていてもよく、但し、該炭素数2〜24の窒素原子含有炭化水素基は、結合末端がC=N基であるもの、該炭素数2〜24の酸素原子含有炭化水素基は、結合末端がカルボニル基であるもの、該炭素数2〜24のリン含有炭化水素基は、結合末端がC=P基であるものをそれぞれ除く。Zは、炭素原子又は炭素鎖を介して結合する結合性基を示す。)で表される化合物を含有することを特徴とするオレフィン類重合用固体触媒成分。
  2. 請求項1のいずれか1項に記載のオレフィン類重合用固体触媒成分及び下記一般式(3);
    AlQ3−r (3)
    ( 式中、Rは炭素数1〜6のヒドロカルビル基を示し、複数個ある場合は、同一でも異なってもよく、Qは水素原子、炭素数1〜6のヒドロカルビルオキシ基、あるいはハロゲン原子を示し、pは0<p≦3の実数である。)で表わされる有機アルミニウム化合物から形成されることを特徴とするオレフィン類重合用触媒。
  3. 更に、外部電子供与性化合物を接触させて得られることを特徴とする請求項2に記載のオレフィン類重合用触媒。
  4. 前記(III)外部電子供与性化合物が、下記一般式(4);
    Si(OR4−q (4)
    (式中、Rは炭素数1〜12のアルキル基、ビニル基、炭素数3〜12のアルケニル基、炭素数3〜12のシクロアルキル基あるいはシクロアルケニル基、炭素数6〜15の芳香族炭化水素基あるいは置換基を有する芳香族炭化水素基を示し、同一または異なっていてもよい。Rは炭素数1〜4のアルキル基、ビニル基、炭素数3〜12のアルケニル基、炭素数3〜6のシクロアルキル基、または炭素数6〜12の芳香族炭化水素基あるいは置換基を有する炭素数7〜12の芳香族炭化水素基を示し、同一または異なっていてもよく、qは0≦q≦3の整数である。)で表される有機ケイ素化合物および一般式(5);
    (R10N)SiR11 4−s (5)
    (式中、RとR10は水素原子、炭素数1〜20のアルキル基、ビニル基、炭素数3〜20のアルケニル基、炭素数3〜20のシクロアルキル基あるいはシクロアルケニル基または炭素数6〜20のアリール基を示し、RとR10は同一でも異なってもよく、また互いに結合して環を形成してもよい。R11は炭素数1〜20のアルキル基、ビニル基、炭素数3〜12のアルケニル基、炭素数1〜20のアルコキシ基、ビニルオキシ基、炭素数3〜20のアルケニルオキシ基、炭素数3〜20のシクロアルキル基あるいはシクロアルキルオキシ基、または炭素数6〜20のアリール基あるいはアリールオキシ基を示し、R11が複数ある場合、複数のR11は同一でも異なってもよい。sは1から3の整数である。)で表されるアミノシラン化合物から選択される1種または2種以上であることを特徴とする請求項8記載のオレフィン類重合用触媒。
  5. 前記(III)外部電子供与性化合物が、フェニルトリメトキシシラン、n−ブチルトリメトキシシラン、シクロペンチルトリメトキシシラン、シクロヘキシルトリメトキシシラン、フェニルトリエトキシシラン、n−ブチルトリエトキシシラン、シクロペンチルトリエトキシシラン、シクロヘキシルトリエトキシシラン、t−ブチルメチルジメトキシシラン、t−ブチルエチルジメトキシシラン、ジイソプロピルジメトキシシラン、ジイソブチルジメトキシシラン、ジイソペンチルジメトキシシラン、ジフェニルジメトキシシラン、ジシクロペンチルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、シクロヘキシルシクロペンチルジメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、t−ブチルメチルビス(エチルアミノ)シラン、ジシクロヘキシルビス(エチルアミノ)シラン、ジシクロペンチルビス(エチルアミノ)シラン、ビス(パーヒドロイソキノリノ)ジメトキシシラン、ジエチルアミノトリメトキシシランまたはジエチルアミノトリエトキシシランであることを特徴とする請求項8記載のオレフィン類重合用触媒。
  6. 前記(III)外部電子供与性化合物が、下記一般式(6);
    12OCHCR1314CHOR15 (6)
    (式中、R13およびR14は水素原子、ハロゲン原子、炭素数1〜12のアルキル基、ビニル基、炭素数3〜12のアルケニル基、炭素数3〜12のシクロアルキル基あるいはシクロアルケニル基、炭素数6〜12の芳香族炭化水素基あるいはハロゲン置換芳香族炭化水素基、置換基を有する炭素数7〜12の芳香族炭化水素基、炭素数1〜12のアルキルアミノ基または炭素数2〜12のジアルキルアミノ基を示し、同一または異なっていてもよく、互いに結合して環を形成してもよい。R12およびR15は炭素数1〜12のアルキル基、ビニル基、炭素数3〜12のアルケニル基、炭素数3〜6のシクロアルキル基、炭素数6〜12の芳香族炭化水素基あるいはハロゲン置換芳香族炭化水素基または置換基を有する炭素数7〜12の芳香族炭化水素基を示し、同一または異なっていてもよい。)で表される1,3−ジエーテル化合物であることを特徴とする請求項8記載のオレフィン類重合用触媒。
  7. 前記1,3−ジエーテル化合物が、2−イソプロピル−2−イソブチル−1,3−ジメトキシプロパン、2−イソプロピル−2−イソペンチル−1,3−ジメトキシプロパン、または9,9−ビス(メトキシメチル)フルオレンであることを特徴とする請求項6記載のオレフィン類重合用触媒。
  8. 請求項2〜請求項7のいずれか1項に記載のオレフィン重合用触媒の存在下にオレフィン類の重合を行なうことを特徴とするオレフィン類重合体の製造方法。
JP2015502841A 2013-02-27 2014-02-07 オレフィン類重合用固体触媒成分、オレフィン類重合用触媒およびオレフィン類重合体の製造方法 Active JP6297022B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013037834 2013-02-27
JP2013037834 2013-02-27
PCT/JP2014/052886 WO2014132777A1 (ja) 2013-02-27 2014-02-07 オレフィン類重合用固体触媒成分、オレフィン類重合用触媒およびオレフィン類重合体の製造方法

Publications (2)

Publication Number Publication Date
JPWO2014132777A1 true JPWO2014132777A1 (ja) 2017-02-02
JP6297022B2 JP6297022B2 (ja) 2018-03-20

Family

ID=51428051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015502841A Active JP6297022B2 (ja) 2013-02-27 2014-02-07 オレフィン類重合用固体触媒成分、オレフィン類重合用触媒およびオレフィン類重合体の製造方法

Country Status (9)

Country Link
US (1) US9206273B2 (ja)
EP (1) EP2963062B1 (ja)
JP (1) JP6297022B2 (ja)
KR (1) KR102103486B1 (ja)
CN (1) CN104822712B (ja)
IN (1) IN2015DN01714A (ja)
SG (1) SG11201501881YA (ja)
TW (1) TWI593713B (ja)
WO (1) WO2014132777A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6270722B2 (ja) * 2012-07-18 2018-01-31 東邦チタニウム株式会社 オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒の製造方法およびオレフィン類重合体の製造方法
WO2014132759A1 (ja) 2013-02-27 2014-09-04 東邦チタニウム株式会社 プロピレン系ブロック共重合体の製造方法
EP3317311B1 (en) * 2015-06-30 2020-05-20 Borealis AG Process for preparing propylene polymer compositions
CN105111336B (zh) * 2015-09-29 2018-09-21 四川锦成化学催化剂有限公司 一种乙烯聚合催化剂的给电子体、类球形催化剂、制备方法
WO2018025862A1 (ja) * 2016-08-03 2018-02-08 住友化学株式会社 オレフィン重合用固体触媒成分の製造方法
CN109679010B (zh) * 2017-10-19 2022-02-01 中国石油天然气股份有限公司 一种高抗冲聚丙烯的制备方法
WO2019125526A1 (en) * 2017-12-19 2019-06-27 Exxonmobil Chemical Patents Inc. Polypropylenes and methods for making them
CN111138470B (zh) * 2018-11-05 2021-04-23 中国科学院化学研究所 有机硅烷化合物、聚烯烃树脂及其制备方法和应用
KR102656050B1 (ko) * 2018-11-27 2024-04-11 롯데케미칼 주식회사 폴리올레핀 중합용 촉매 조성물, 그 촉매의 제조방법 및 이를 이용한 폴리올레핀의 제조방법
KR102656051B1 (ko) * 2018-11-27 2024-04-11 롯데케미칼 주식회사 폴리올레핀 중합용 촉매 조성물, 그 촉매의 제조방법 및 이를 이용한 폴리올레핀의 제조방법
US20220372052A1 (en) * 2021-04-28 2022-11-24 Toho Titanium Co., Ltd. Solid catalyst component for olefin polymerization, method for producing solid catalyst component for olefin polymerization, method for producing catalyst for olefin polymerization and method for producing polymer of olefin

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5883006A (ja) * 1981-11-13 1983-05-18 Mitsui Petrochem Ind Ltd オレフインの重合方法
JPH06100639A (ja) * 1992-09-18 1994-04-12 Tosoh Corp プロピレンブロック共重合体の製造方法
JP2003034664A (ja) * 2001-07-18 2003-02-07 Mitsubishi Chemicals Corp エーテル基を有する炭酸エステルの製造方法
WO2012060361A1 (ja) * 2010-11-04 2012-05-10 東邦チタニウム株式会社 オレフィン類重合用固体触媒成分、オレフィン類重合用触媒およびオレフィン類重合体の製造方法
WO2013042400A1 (ja) * 2011-09-20 2013-03-28 東邦チタニウム株式会社 オレフィン類重合用固体触媒成分、オレフィン類重合用触媒及びオレフィン類重合体の製造方法
WO2014013916A1 (ja) * 2012-07-18 2014-01-23 東邦チタニウム株式会社 オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒およびオレフィン類重合体の製造方法
JP2014037521A (ja) * 2012-07-18 2014-02-27 Toho Titanium Co Ltd オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒およびオレフィン類重合体の製造方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841832A (ja) 1981-09-07 1983-03-11 Idemitsu Kosan Co Ltd マグネシウムジアルコキシドの製造方法
JPH0655783B2 (ja) * 1984-07-31 1994-07-27 東燃株式会社 オレフイン重合用触媒成分
GB8521431D0 (en) 1985-08-28 1985-10-02 Shell Int Research Spherical magnesium alkoxide particles
JPH0720898B2 (ja) 1989-08-16 1995-03-08 コルコートエンジニアリング株式会社 球形で粒度分布の狭いマグネシウムアルコラートの合成方法
JP2505326B2 (ja) 1991-06-18 1996-06-05 出光石油化学株式会社 マグネシウムジアルコキシドの製造方法
US5494872A (en) 1992-04-03 1996-02-27 Toho Titanium Company, Ltd. Catalyst and solid catalyst component for preparing polyolefins with broad molecular weight distribution
JPH07292029A (ja) 1994-04-28 1995-11-07 Toho Titanium Co Ltd オレフィン類重合用触媒および重合方法
US5684173A (en) 1994-04-28 1997-11-04 Toho Titanium Co., Ltd. Organosilicon compound and ziegler-natta catalyst containing the same
JP3772331B2 (ja) 1994-09-07 2006-05-10 日本曹達株式会社 マグネシウムエチラート球状微粒品の製造方法
BR9607042A (pt) 1995-02-13 1997-12-30 Toho Titanium Co Ltd Componente de catalisador sólido para a polimerização de olefinas e catalisadro para a polimerização de olefinas
US5932510A (en) 1995-09-01 1999-08-03 Toho Titanium Co., Ltd. Solid catalyst component and catalyst for polymerization of olefins
JPH1112316A (ja) 1997-06-26 1999-01-19 Toho Titanium Co Ltd オレフィン類重合用固体触媒成分及び触媒
TW396168B (en) 1997-08-28 2000-07-01 Toho Titanium K K Solid catalyst component and catalyst for polymerization of olefins
WO2000039171A1 (fr) 1998-12-25 2000-07-06 Toho Titanium Co., Ltd. Composant catalyseur solide pour polymerisation du propylene et catalyseur
KR100468012B1 (ko) 2000-04-24 2005-01-24 도호 티타늄 가부시키가이샤 올레핀류 중합용 고체 촉매성분 및 촉매
KR20020022717A (ko) 2000-04-24 2002-03-27 아라이 요이치 프탈산디에스테르 유도체 및 전자 공여체
BR0107270A (pt) 2000-09-29 2002-08-06 Toho Titanium Co Ltd Catalisador de polimerização de propileno
BR0204687B1 (pt) 2001-03-30 2012-12-11 componente de catalisador sólido para a polimerização de olefinas, catalisador para a polimerização de olefinas, e, copolìmero em bloco de propileno.
JP4098588B2 (ja) 2002-09-18 2008-06-11 東邦キャタリスト株式会社 オレフィン類重合用固体触媒成分および触媒
TWI253451B (en) 2002-08-29 2006-04-21 Toho Catalyst Co Ltd Solid catalyst component, catalyst for polymerization of olefins, and polymerizing method of olefins
JP2005320362A (ja) 2004-05-06 2005-11-17 Toho Catalyst Co Ltd オレフィン類重合用触媒およびオレフィン類の重合方法
EP1790667A4 (en) 2004-05-18 2011-05-18 Toho Titanium Co Ltd CATALYST FOR THE POLYMERIZATION OF OLEFINES AND METHOD FOR POLYMERIZING OLEFINES
EP1829898A4 (en) 2004-12-13 2011-06-01 Toho Titanium Co Ltd SOLID CATALYST COMPONENT AND CATALYST FOR POLYMERIZING OLEFIN AND METHOD FOR PRODUCING OLEFINE POLYMER OR COPOLYMER THEREWITH
BRPI0611189B1 (pt) 2005-05-31 2017-06-06 Toho Titanium Co Ltd catalisador para a polimerização de olefinas, e, processo para a produção de um polímero de olefina
WO2007018280A1 (ja) 2005-08-08 2007-02-15 Toho Catalyst Co., Ltd. オレフィン類重合用触媒成分および触媒並びにこれを用いたオレフィン類重合体の製造方法
WO2007026903A1 (ja) 2005-08-31 2007-03-08 Toho Catalyst Co., Ltd. オレフィン類重合用固体触媒成分および触媒並びにこれを用いたオレフィン類重合体の製造方法
JP5543430B2 (ja) 2009-03-17 2014-07-09 東邦チタニウム株式会社 オレフィン類重合用固体触媒成分および触媒並びにこれを用いたオレフィン類重合体の製造方法
WO2013005463A1 (ja) 2011-07-06 2013-01-10 東邦チタニウム株式会社 オレフィン類重合用固体触媒成分、オレフィン類重合用触媒及びオレフィン類重合体の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5883006A (ja) * 1981-11-13 1983-05-18 Mitsui Petrochem Ind Ltd オレフインの重合方法
JPH06100639A (ja) * 1992-09-18 1994-04-12 Tosoh Corp プロピレンブロック共重合体の製造方法
JP2003034664A (ja) * 2001-07-18 2003-02-07 Mitsubishi Chemicals Corp エーテル基を有する炭酸エステルの製造方法
WO2012060361A1 (ja) * 2010-11-04 2012-05-10 東邦チタニウム株式会社 オレフィン類重合用固体触媒成分、オレフィン類重合用触媒およびオレフィン類重合体の製造方法
WO2013042400A1 (ja) * 2011-09-20 2013-03-28 東邦チタニウム株式会社 オレフィン類重合用固体触媒成分、オレフィン類重合用触媒及びオレフィン類重合体の製造方法
WO2014013916A1 (ja) * 2012-07-18 2014-01-23 東邦チタニウム株式会社 オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒およびオレフィン類重合体の製造方法
JP2014037521A (ja) * 2012-07-18 2014-02-27 Toho Titanium Co Ltd オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒およびオレフィン類重合体の製造方法

Also Published As

Publication number Publication date
US20150240003A1 (en) 2015-08-27
CN104822712B (zh) 2018-02-23
IN2015DN01714A (ja) 2015-05-29
TW201446817A (zh) 2014-12-16
EP2963062B1 (en) 2018-04-04
EP2963062A1 (en) 2016-01-06
KR102103486B1 (ko) 2020-04-22
EP2963062A4 (en) 2016-11-02
WO2014132777A1 (ja) 2014-09-04
CN104822712A (zh) 2015-08-05
TWI593713B (zh) 2017-08-01
KR20150124942A (ko) 2015-11-06
JP6297022B2 (ja) 2018-03-20
US9206273B2 (en) 2015-12-08
SG11201501881YA (en) 2015-09-29

Similar Documents

Publication Publication Date Title
JP6297022B2 (ja) オレフィン類重合用固体触媒成分、オレフィン類重合用触媒およびオレフィン類重合体の製造方法
JP6270722B2 (ja) オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒の製造方法およびオレフィン類重合体の製造方法
JP6316277B2 (ja) オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒の製造方法およびオレフィン類重合体の製造方法
JP6293726B2 (ja) オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒の製造方法およびオレフィン類重合体の製造方法
JP6283653B2 (ja) プロピレン系ブロック共重合体の製造方法
JP5624680B2 (ja) オレフィン類重合用固体触媒成分、オレフィン類重合用触媒及びオレフィン類重合体の製造方法
JP6198409B2 (ja) オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒の製造方法およびオレフィン類重合体の製造方法
JP6234682B2 (ja) オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒の製造方法およびオレフィン類重合体の製造方法
JP6810653B2 (ja) オレフィン類重合体の製造方法
JP6137669B2 (ja) オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒の製造方法およびオレフィン類重合体の製造方法
JP2013075992A (ja) オレフィン類重合用固体触媒成分、オレフィン類重合用触媒及びオレフィン類重合体の製造方法
JP2015086336A (ja) オレフィン類重合用固体触媒成分、オレフィン類重合用触媒およびオレフィン類重合体の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170203

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171011

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180220

R150 Certificate of patent or registration of utility model

Ref document number: 6297022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250