JPWO2013035176A1 - 電池制御装置、蓄電装置および車両 - Google Patents

電池制御装置、蓄電装置および車両 Download PDF

Info

Publication number
JPWO2013035176A1
JPWO2013035176A1 JP2013532361A JP2013532361A JPWO2013035176A1 JP WO2013035176 A1 JPWO2013035176 A1 JP WO2013035176A1 JP 2013532361 A JP2013532361 A JP 2013532361A JP 2013532361 A JP2013532361 A JP 2013532361A JP WO2013035176 A1 JPWO2013035176 A1 JP WO2013035176A1
Authority
JP
Japan
Prior art keywords
cell controller
cell
battery
control device
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013532361A
Other languages
English (en)
Other versions
JP5860886B2 (ja
Inventor
金井 友範
友範 金井
明広 町田
明広 町田
彰彦 工藤
彰彦 工藤
光夫 野田
光夫 野田
隼二 太田
隼二 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Publication of JPWO2013035176A1 publication Critical patent/JPWO2013035176A1/ja
Application granted granted Critical
Publication of JP5860886B2 publication Critical patent/JP5860886B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0084Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to control modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/12Buck converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

複数の電池セルを直列接続した複数個のセルグループを直列または直並列に接続した電池モジュールを制御する電池制御装置は、複数個のセルグループを各々制御する複数のセルコントローラICと、複数のセルコントローラICを電池モジュールに接続するために設けられた1つ以上のコネクタとを備える。複数のセルコントローラICは、第1および第2のセルコントローラICを含む。第1のセルコントローラICのGND端子側配線と第2のセルコントローラICのVCC端子側配線とを電池制御装置の外部で接続するための補助接続部材(ピン)を設け、第1のセルコントローラICのGND端子側配線と第2のセルコントローラICのVCC端子側配線との間にスイッチを設けた。

Description

本発明は電池制御装置と、これを備えた蓄電装置および車両とに関する。
電気自動車およびハイブリッド型自動車においては、リチウム単電池等の二次電池セル(単電池)を直列または直並列に複数個接続したセルグループを、更に複数個直列または直並列に接続した電池モジュールを使用している。またこの電池モジュールを複数個直列または直並列に接続したものが、これらの電池モジュールを制御する電池制御回路とともに蓄電装置として使用されている。
直列に多数接続された二次電池セルとこれらの電池の電圧を検出するための制御装置とを接続する場合に、内蔵された集積回路に高電圧が印加されて破損しないように、大電流が制御装置に流れないような工夫が必要である。例えば特許文献1では、複数の二次電池を直並列に接続した電池パック(セルグループ)を制御装置に接続する際、電池パック内で電池電圧の低電位側から順番に電圧検出線が接続されるように、コネクタのピンの長さが変更された特殊なコネクタが用いられている。
特開2007−280872号公報
特許文献1に開示されているような、数個の二次電池を直列接続した場合では、全体の電圧はせいぜい10V程度であり、この電池制御装置に用いられる素子に対する、耐圧等の対策により対応することが可能である。しかしながら、電気自動車およびハイブリッド型自動車等において、電池モジュールを複数個直列または直並列に接続した場合は、全体の電圧は1個のセルグループの場合よりはるかに高くなり、数百Vにまで達することがある。このような場合にはセルグループを複数個接続する際に、複数のセルグループとこれらの電池制御装置との接続のための更なる工夫が必要である。
本発明の第1の態様による電池制御装置は、複数の電池セルを直列接続した複数個のセルグループを直列または直並列に接続した電池モジュールを制御するものであって、複数個のセルグループを各々制御する複数のセルコントローラICと、複数のセルコントローラICを電池モジュールに接続するために設けられた1つ以上のコネクタとを備える。複数のセルコントローラICは、2つ以上直列に接続したセルグループを制御するように連続して設けられた第1および第2のセルコントローラICを含む。第1のセルコントローラICのGND端子側配線と第2のセルコントローラICのVCC端子側配線とを電池制御装置の外部の接続点で接続するための補助接続部材(ピン)を設け、第1のセルコントローラICのGND端子側配線と第2のセルコントローラICのVCC端子側配線との間にスイッチを設けている。
本発明の第2の態様によると、第1の態様の電池制御装置において、スイッチは機械的スイッチであってよい。
本発明の第3の態様によると、第1の態様の電池制御装置において、スイッチは、第2のセルコントローラICからの信号により制御される電気的スイッチであってもよい。
本発明の第4の態様によると、第1乃至第3のいずれかの態様の電池制御装置において、少なくとも接続点からコネクタまでの間について、第1のセルコントローラICのGND端子側配線と第2のセルコントローラICのVCC端子側配線とを耐ノイズケーブルで構成してもよい。
本発明の第5の態様による電池制御装置は、複数の電池セルを直列接続した複数個のセルグループを直列または直並列に接続した電池モジュールを制御するものであって、複数個のセルグループを各々制御する複数のセルコントローラICと、複数のセルコントローラICを電池モジュールに接続するために設けられた1つ以上のコネクタとを備える。複数のセルコントローラICは、2つ以上直列に接続したセルグループを制御するように連続して設けられた第1および第2のセルコントローラICを含む。第1のセルコントローラICのGND端子側配線と第2のセルコントローラICのVCC端子側配線とを電池制御装置の外部の接続点で接続するための補助接続部材(ピン)を設け、少なくとも接続点からコネクタまでの間について、第1のセルコントローラICのGND端子側配線と第2のセルコントローラICのVCC端子側配線とを耐ノイズケーブルで構成している。
本発明の第6の態様による蓄電装置は、第1乃至第5のいずれかの態様の電池制御装置と、複数の電池セルを直列接続した複数個のセルグループを直列または直並列に接続した電池モジュールと、電池モジュール側のコネクタとを備える。
本発明の第7の態様による電動走行可能な車両は、第6の態様の蓄電装置と、蓄電装置で制御される電力で駆動される走行用電動機とを備える。
本発明によれば、複数のセルグループと接続するのに適した電池制御装置と、これを備えた蓄電装置および車両とを提供することができる。
ハイブリッド自動車用駆動システムの構成を示すブロック図である。 車両用回転電機の駆動システムを示すブロック図である。 電池制御用IC(セルコントローラIC)の内部回路の概略を示す図である。 従来の電源制御装置の構成を示す図である。 本発明の第1の実施形態による電源制御装置の構成を示す図である。 本発明の第2の実施形態による電源制御装置の構成を示す図である。 本発明の第2の実施の形態による電源制御装置においてスイッチにFETを用いた例を示す図である。 本発明の第2の実施の形態による電源制御装置においてスイッチにPNP型のバイポーラトランジスタを用いた例を示す図である。 本発明の第3の実施形態による電源制御装置の構成を示す図である。
以下、図を参照して本発明を実施するための形態について説明する。以下に説明する実施形態では、本発明による電池制御装置および蓄電装置をハイブリッド自動車用駆動システムに適用した場合について説明する。なお、以下に説明する実施形態の構成は、ハイブリッド電車などの鉄道車両などにも適用できる。また本発明による電池制御装置および蓄電装置は電気自動車にも適用可能である。
<ハイブリッド自動車用駆動システムの概略構成>
まず、図1を用いて、ハイブリッド自動車用駆動システムについて説明する。図1に示すハイブリッド自動車1の駆動システムは、駆動輪2に機械的に接続された車軸3がデファレンシャルギア4と接続され、デファレンシャルギア4の入力軸が変速機5と接続されている。そして、内燃機関であるエンジン6と電動発電機7の駆動力が駆動力切替装置8によって切り替えられ、駆動輪2の駆動源として、駆動力切替装置8を介して変速機5に入力される構成となっている。
図1では駆動輪2の駆動源として、エンジン6と電動発電機7とが並列に配置された、いわゆるパラレルハイブリッド方式の駆動システムを示している。この他にも、ハイブリッド自動車用駆動システムには、駆動輪2の駆動源として電動発電機7のエネルギーを用い、エンジン6のエネルギーは電動発電機7の駆動源、すなわち蓄電器を充電するために用いるようにした、いわゆるシリアルハイブリッド方式のものがある。本発明はこれらのいずれの方式の駆動システムにも採用することができる。また、これらを組合せた方式の駆動システムにも採用することができる。
電動発電機7には、電力変換装置9を介して、電源装置である蓄電装置11が電気的に接続されている。電力変換装置9は制御装置10によって制御される。
電動発電機7を電動機として作動させる時には、電力変換装置9は、蓄電装置11から出力された直流電力を三相交流電力に変換する直流−交流変換回路として機能する。また、回生制動の際に電動発電機7を発電機として作動させる時には、電力変換装置9は、電動発電機7から出力された三相交流電力を直流電力に変換する交流−直流変換回路として機能する。電力変換装置9の直流側には、蓄電装置11のモジュール電池の正負極端子が電気的に接続される。電力変換装置9の交流側には、2つのスイッチング半導体素子による3つの直列回路がある。各直列回路の2つのスイッチング半導体素子の中間には、電動発電機7の電機子巻線の各相に対応する巻線がそれぞれ電気的に接続されるようになっている。
電動発電機7は、駆動輪2を駆動するための電動機として機能し、電機子(固定子)と、電機子に対向配置され、回転可能に保持された界磁(回転子)とを備える。電機子は、磁性体である電機子鉄心(固定子鉄心)と、電機子鉄心に装着された三相の電機子巻線(固定子巻線)とを備えている。界磁は、電動発電機7を電動機または発電機として駆動する時に界磁磁束を発生させる部位であり、磁性体である界磁鉄心(回転子鉄心)と、界磁鉄心に装着された永久磁石とを備えている。すなわち電動発電機7は、永久磁石を界磁に用いた永久磁石界磁式三相交流同期回転電機である。電動発電機7は、電機子巻線に供給された三相交流電力により形成されて同期速度で回転する回転磁界と、永久磁石の磁束との磁気的な作用に基づいて、駆動輪2の駆動に必要な回転動力を発生する。
電動発電機7を電動機として駆動する時には、電機子は、電力変換装置9によって制御された三相交流電力の供給を受けて回転磁界を発生させる。一方、電動発電機7を発電機として駆動する時には、電機子は、磁束の鎖交により三相交流電力を発生させる。
なお、電動発電機7としては、永久磁石界磁式三相交流同期回転電機以外のものでもよい。例えば、電機子巻線に供給された三相交流電力により形成されて同期速度で回転する回転磁界と、巻線の励磁による磁束との磁気的な作用に基づいて、回転動力を発生する巻線界磁式三相交流同期回転電機や、三相交流誘導回転電機などを採用してもよい。巻線界磁式三相交流同期回転電機の場合、電機子の構成は永久磁石界磁式三相交流同期回転電機と基本的に同じである。一方、界磁の構成は異なっており、磁性体である界磁鉄心に界磁巻線(回転子巻線)を巻いた構成になっている。なお、巻線界磁式三相交流同期回転電機では、界磁巻線が巻かれた界磁鉄心に永久磁石を装着し、巻線による磁束の漏れを抑える場合もある。界磁巻線は外部電源から界磁電流の供給を受けて励磁されることにより磁束を発生する。
電動発電機7には、駆動力切替装置8、変速機5およびデファレンシャルギア4を介して、駆動輪2の車軸3が機械的に接続されている。変速機5は、電動発電機7から出力された回転動力を変速してデファレンシャルギア4に伝達する。デファレンシャルギア4は、変速機5から出力された回転動力を左右の車軸3に伝達する。駆動力切替装置8は、エンジン制御や走行制御などを行う上位制御装置(不図示)からの指令によって切替動作を行う。例えば、エンジン制御での加速走行、アイドルストップからの電動発電機7によるエンジン始動、ブレーキ制御における回生ブレーキ協調などの状況に応じて、変速機5およびデファレンシャルギア4を介して車軸3と電動発電機7を接続し、電動発電機7を電動機または発電機として動作させる。
蓄電装置11は、電動発電機7が回生時に発生した電力を電動発電機7の駆動用電力として充電しておき、電動発電機7を発電機として駆動する際に、この駆動に必要な電力を放電する駆動用車載電源である。例えば、100V以上の定格電圧を有するように、数十本のリチウムイオン電池により構成されたバッテリシステムが蓄電装置11として用いられる。なお、蓄電装置11の詳細な構成については後述する。
蓄電装置11には、電動発電機7の他に、車載補機(例えばパワーステアリング装置、エアーブレーキ等)に動力を供給する電動アクチュエータや、蓄電装置11よりも定格電圧が低く、車内電装品(例えばライト、オーディオ、車載電子制御装置等)に駆動電力を供給する電装用電源である低圧バッテリなどが、DC/DCコンバータを介して電気的に接続されていてもよい。DC/DCコンバータは、蓄電装置11の出力電圧を降圧して電動アクチュエータや低圧バッテリなどに供給したり、低圧バッテリの出力電圧を昇圧して蓄電装置11などに供給したりする昇降圧装置である。低圧バッテリには、例えば定格電圧12Vの鉛バッテリを用いることができる。または、これと同じ定格電圧を有するリチウムイオンバッテリやニッケル水素バッテリを低圧バッテリとして用いてもよい。
ハイブリッド自動車1の力行時(発進、加速、通常走行など)に、制御装置10に正のトルク指令が与えられて電力変換装置9の作動が制御されると、蓄電装置11に蓄電された直流電力が電力変換装置9により三相交流電力に変換されて電動発電機7に供給される。これにより、電動発電機7が駆動されて回転動力が発生する。発生した回転動力は、駆動力切替装置8、変速機5およびデファレンシャルギア4を介して車軸3に伝達され、駆動輪2を駆動する。
一方、ハイブリッド自動車1の回生時(減速、制動など)に、制御装置10に負のトルク指令が与えられて電力変換装置9の作動が制御されると、駆動輪2の回転動力により電動発電機7が駆動され、電動発電機7から三相交流電力が発生する。この三相交流電力が電力変換装置9により直流電力に変換されて蓄電装置11に供給される。これにより、蓄電装置11が充電される。
制御装置10は、上位制御装置(不図示)から出力されたトルク指令値から電流指令値を演算し、その電流指令値と、電力変換装置9の間を流れる実電流との差分に基づいて電圧指令値を演算する。こうして演算された電圧指令値に基づいてPWM(パルス幅変調)信号を発生し、そのPWM信号を電力変換装置9に出力する。
<蓄電装置11の全体構成>
次に図2を参照して、本発明による電池制御装置を含む蓄電装置11を備えた、電気自動車およびハイブリッド型自動車に適用可能な、モータの駆動装置について説明する。
図2は車両用回転電機の駆動システムを示すブロック図である。図2に示す駆動システムは、図1の電動発電機7、電力変換装置9および蓄電装置11を備えている。蓄電装置11は、電池モジュール20と、電池モジュール20を監視する電池制御装置100とを有している。電力変換装置9と電池制御装置100とはCAN通信で結ばれている。電力変換装置9は、前述したように制御装置10(図1参照)からの指令情報に基づいて動作し、電池制御装置100に対して上位コントローラとして機能する。
電力変換装置9は、パワーモジュール226と、パワーモジュール226を駆動するためのドライバ回路224と、ドライバ回路224を制御するためのMCU222とを有している。パワーモジュール226は、電池モジュール20から供給される直流電力を、電動発電機7をモータとして駆動するための3相交流電力に変換する。なお、図示していないが、パワーモジュール226が電池モジュール20に接続される強電ラインHV+,HV−間には、約700μF〜約2000μF程度の大容量の平滑キャパシタが設けられている。この平滑キャパシタは、電池制御装置100に設けられた集積回路に加わる電圧ノイズを低減する働きをする。
電力変換装置9の動作開始状態では平滑キャパシタの電荷は略ゼロであるため、後述する電池ディスコネクトユニットBDUのリレーRLを閉じると、大きな初期電流が電池モジュール20から平滑キャパシタへ流れ込む。この大電流のために、リレーRLが融着して破損するおそれがある。この問題を解決するために、MCU222は、制御装置10からの命令に従い、電動発電機7の駆動開始時に、まずプリチャージリレーRLPを開状態から閉状態にして平滑キャパシタを充電する。このとき、抵抗RPを介して最大電流を制限しながら平滑キャパシタの充電を行う。その後にリレーRLを開状態から閉状態として、電池モジュール20から電力変換装置9への電力の供給を開始する。このような動作を行うことで、リレー回路を保護すると共に、電池モジュール20や電力変換装置9を流れる最大電流を所定値以下に低減でき、高い安全性を維持できる。
なお、電力変換装置9は、電動発電機7の回転子に対してパワーモジュール226により発生する交流電力の位相を制御して、車両制動時には電動発電機7を発電機として動作させる。すなわち回生制動制御を行い、発電機運転により発電された電力を電池モジュール20に回生して電池モジュール20を充電する。また、電池モジュール20の充電状態が基準状態より低下した場合にも、電力変換装置9は電動発電機7を発電機として運転する。電動発電機7で発電された3相交流電力は、パワーモジュール226により直流電力に変換されて電池モジュール20に供給される。その結果、電池モジュール20は充電される。
回生制動制御により電池モジュール20を充電する場合には、MCU222は、電動発電機7の回転子の回転に対して遅れ方向の回転磁界を発生するようにドライバ回路224を制御する。この制御に応じて、ドライバ回路224はパワーモジュール226のスイッチング動作を制御する。これにより、電動発電機7からの交流電力がパワーモジュール226に供給され、パワーモジュール226により直流電力に変換されて電池モジュール20へ供給される。その結果、電動発電機7は発電機として作用することとなる。
一方、電動発電機7をモータとして力行運転する場合には、MCU222は、制御装置10の命令に従い、電動発電機7の回転子の回転に対して進み方向の回転磁界を発生するようにドライバ回路224を制御する。この制御に応じて、ドライバ回路224はパワーモジュール226のスイッチング動作を制御する。これにより、電池モジュール20からの直流電力がパワーモジュール226に供給され、パワーモジュール226により交流電力に変換されて電動発電機7へ供給される。
電力変換装置9のパワーモジュール226は、導通および遮断動作を高速で行い、直流電力と交流電力間の電力変換を行う。このとき、大電流を高速で遮断するので、直流回路の有するインダクタンスにより大きな電圧変動が発生する。この電圧変動を抑制するため、電力変換装置9には上述した大容量の平滑キャパシタが設けられている。
電池モジュール20は、複数の電池モジュールブロックによって構成されている。図2に示す例では、直列接続された2つの電池モジュールブロック20A、20Bで電池モジュール20が構成されている。各電池モジュールブロック20A、20Bは、複数の電池セルを直列接続したセルグループをさらに複数直列に接続されたものを備えている。電池モジュールブロック20Aと電池モジュールブロック20Bとは、スイッチとヒューズとが直列接続された保守・点検用のサービスディスコネクトSD−SWを介して直列接続される。このサービスディスコネクトSD−SWが開くことで電池モジュールブロック20Aと20Bの直列回路が遮断されるため、仮に電池モジュールブロック20A、20Bのどこかで車両との間に1箇所接続回路ができたとしても電流が流れることはない。このような構成により高い安全性を維持できる。また、点検時にサービスディスコネクトSD−SWを開くことで、作業者がHV+とHV−の間を触っても、高電圧が人体に印加されないので安全である。
電池モジュール20と電力変換装置9との間の強電ラインHV+には、リレーRL、抵抗RPおよびプリチャージリレーRLPを備えた電池ディスコネクトユニットBDUが設けられている。抵抗RPとプリチャージリレーRLPとの直列回路は、リレーRLと並列に接続されている。
電池制御装置100は、主に電池モジュール20の各セルに対する電圧の測定、総電圧の測定、電流の測定、セル温度およびセルの容量調整等を行う。そのために、セルコントローラとして、複数の電池制御用IC(集積回路)が設けられている。各電池モジュールブロック20A、20B内に設けられた複数の電池セルは、複数のセルグループ(組電池)に分けられている。電池制御装置100には、この各セルグループ毎に、各セルグループに含まれる電池セルを制御するセルコントローラICが1つずつ設けられている。
以下では説明を簡単にするため、各セルグループは4個の電池セルで構成されているとする。また各電池モジュールブロック20A、20Bは、2つのセルグループ(20A1、20A2と20B1、20B2)で構成されているとする。しかしながら、各セルグループに含まれる電池セルは4個に限定するものでなく、5個あるいはこれ以上であってもよい。また、異なる電池セル数のセルグループ、例えば4個の電池セルによるセルグループと6個の電池セルによるセルグループとが組み合わされていてもよい。各セルグループに対応して設けられるセルコントローラICは、これらのセルグループに含まれる電池セルの数が任意の数、例えば4個であっても、また5個以上であっても使用できるように設計したものを使用することができる。
また、電気自動車やハイブリッド自動車で必要とされる電圧および電流を得るために、上記のように各電池モジュールブロックではセルグループを複数個直列または直並列に接続してもよい。さらに、複数の電池モジュールブロックを直列または直並列に接続してもよい。
電池制御装置100において各セルグループを制御するセルコントローラIC1〜IC4は、各々が通信系602と1ビット通信系604とを備えている。セル電圧値読み取りや各種コマンド送信のための通信系602においては、絶縁素子(例えばフォトカプラ)PHを介してデイジーチェーン方式で、セルコントローラIC1〜IC4と電池モジュール20を制御するマイコン30とがシリアル通信を行う。一方、1ビット通信系604においては、セル過充電が検知されたときの異常信号がセルコントローラIC1〜IC4からマイコン30へ送信される。図2に示す例では、通信系602は、電池モジュールブロック20AのセルコントローラIC1、IC2に対する上位の通信経路と、電池モジュールブロック20BのセルコントローラIC3、IC4に対する下位の通信経路とに分けられている。
各セルコントローラICは異常診断を行い、自分自身が異常と判断した場合、あるいは上位のセルコントローラICから異常信号を受信端子FFIで受信した場合に、送信端子FFOから異常信号を送信する。一方、既に受信端子FFIで受信していた上位のセルコントローラICからの異常信号が消えたり、あるいは自分自身の異常判断が正常判断となったりした場合には、送信端子FFOからの異常信号の伝送を停止する。この異常信号は本実施形態では1ビット信号である。
一方、マイコン30は、異常信号の伝送路である1ビット通信系604が正しく動作することを診断するために、擬似異常信号であるテスト信号を1ビット通信系604に送出する。このテスト信号を受信したセルコントローラIC1は異常信号を1ビット通信系604へ送出し、その異常信号がセルコントローラIC2によって受信される。他のセルコントローラICでも同様にすることで、異常信号がセルコントローラIC2からセルコントローラIC3、IC4の順に送信され、最終的にはセルコントローラIC4からマイコン30へと返信される。1ビット通信系604が正常に動作していれば、マイコン30から送信された擬似異常信号は1ビット通信系604を介してマイコン30に戻ってくる。このように擬似異常信号をマイコン30が送受することで1ビット通信系604の診断ができるため、システムの信頼性が向上する。
電池ディスコネクトユニットBDU内にはホール素子等の電流センサSiが設置されている。電流センサSiの出力はマイコン30に入力される。また、電池モジュール20から出力される電池モジュール20の総電圧および温度に関する信号もマイコン30に入力され、それぞれマイコン30のAD変換器(ADC)によって測定される。例えば温度センサは、電池モジュールブロック20A、20B内の複数箇所に設けられている。
<セルコントローラICの構成>
次に図3および図2を参照して、本発明による電池制御装置と蓄電装置に用いられるセルコントローラICの回路の概略について説明する。
図3は電池制御用ICである、セルコントローラICの内部ブロックの概略を示す図である。図3では、電池モジュールブロック20Aを構成する前述のセルグループ20A1、20A2のうち、セルグループ20A1に含まれる4つの電池セルBC1〜BC4が接続されるセルコントローラIC1を例に示した。なお、説明は省略するが、他のセルコントローラICに関しても同様の構成となっている。また上述したように、各セルグループに含まれる電池セルは4個に限定されず、6個あるいはこれ以上であってもよい。セルコントローラICは、接続されるセルグループに含まれる電池セルの個数に対応できるように設計されている。例えば、最大6個の電池セルに対応できるように設計されており、後述するバランシングスイッチを6個備えている。このセルコントローラICが4個の電池セルによって構成されるセルグループに接続された場合は、6個のバランシングスイッチのうち4個のみを使用すればよい。
図3に示すように、セルコントローラIC1には、電池状態検出回路としてのマルチプレクサ120、アナログデジタル変換器122A、IC制御回路123、診断回路130、放電制御回路132、伝送入力回路138および142、伝送出力回路140および143、起動回路147、タイマ回路150、制御信号検出回路160、差動増幅器262およびOR回路288が設けられている。
電池セルBC1〜BC4の端子電圧は、電圧検出線SL1〜SL5、電圧入力端子CV1〜CV4およびGND端子を介してマルチプレクサ120に入力される。マルチプレクサ120は、電圧入力端子CV1〜CV4およびGND端子の中からいずれか2つの組み合わせを選択して、その端子間電圧を差動増幅器262に入力する。差動増幅器262の出力は、アナログデジタル変換器122Aによりデジタル値に変換される。デジタル値に変換された端子間電圧はIC制御回路123に送られ、内部のデータ保持回路125に保持される。ここで、電圧入力端子CV1〜CV4,GND端子に入力される各電池セルBC1〜BC4の端子電圧は、セルコントローラIC1のGND電位に対して直列接続された電池セルの端子電圧に基づく電位でバイアスされている。しかし、上記のようにマルチプレクサ120および差動増幅器262を用いて端子間電圧を測定することにより、バイアス電位の影響が除去され、各電池セルBC1〜BC4の端子電圧に基づくアナログ値がアナログデジタル変換器122Aに入力される。
IC制御回路123は、演算機能を有すると共に、前述のデータ保持回路125と、電圧測定や状態診断を周期的に行うタイミング制御回路126と、診断回路130からの診断フラグがセットされる診断フラグ保持回路128とを有している。IC制御回路123は、伝送入力回路138から入力された通信コマンドの内容を解読し、その内容に応じた処理を行う。伝送入力回路138からIC制御回路123へ入力される通信コマンドには、例えば、各電池セルの端子間電圧の計測値を要求するコマンド、各電池セルの充電状態を調整するための放電動作を要求するコマンド、当該セルコンロトーラICの動作を開始するコマンド(Wake UP)、動作を停止するコマンド(スリープ)、アドレス設定を要求するコマンド、等がある。
診断回路130は、IC制御回路123からの計測値に基づいて、各種診断、例えば過充電診断や過放電診断を行う。データ保持回路125は、例えばレジスタ回路で構成されており、検出した各電池セルBC1〜BC4の各端子間電圧を各電池セルBC1〜BC4に対応づけて記憶する。また、その他の検出値を、予め定められたアドレスに読出し可能に保持することもできる。
セルコントローラIC1の内部回路には、少なくとも2種類の電源電圧VCCとVDDが使用される。図3に示す例では、電圧VCCは直列接続された電池セルBC1〜BC4で構成される電池セルグループの総電圧である。一方、電圧VDDは定電圧電源134によって生成され、電圧VCCよりも低電圧である。セルコントローラIC1が有する前述の各回路のうち、マルチプレクサ120および信号伝送のための伝送入力回路138,142は電圧VCCで動作する。一方、アナログデジタル変換器122A、IC制御回路123、診断回路130、および信号伝送のための伝送出力回路140,143などは、電圧VDDで動作する。
セルコントローラIC1は、図2の通信系602に対応する受信端子LIN1および送信端子LIN2と、1ビット通信系604に対応する受信端子FFIおよび送信端子FFOとを備える。セルコントローラIC1の受信端子LIN1で受信した信号は伝送入力回路138に入力され、受信端子FFIで受信した信号は伝送入力回路142に入力される。伝送入力回路138は、隣接する他のセルコントローラICからの信号を受信する回路231と、フォトカプラPHを介したマイコン30からの信号を受信する回路234とを備えている。伝送入力回路142は、伝送入力回路138と同様の回路構成となっている。
図3に示したセルコントローラIC1の場合には、マイコン30からの信号がフォトカプラPHを介して受信端子LIN1に入力される。一方、セルコントローラIC2の場合には、隣接するセルコントローラIC1からの信号が受信端子LIN1に入力される。そのため、伝送入力回路138において回路231と回路234のどちらを使用するかは、図3の制御端子CTに印加される制御信号に基づき、切換器233により選択される。制御端子CTに印加された制御信号は、制御信号検出回路160に入力される。切換器233は、制御端子CTに印加された制御信号に基づいて行われる制御信号検出回路160からの指令により、回路231と回路234の切り替え動作を行う。
すなわち、信号伝送方向に対して最上位のセルコントローラICであるセルコントローラIC1の受信端子LIN1に上位コントローラであるマイコン30からの信号が入力される場合には、切換器233の下側接点が閉じられ、回路234の出力信号が伝送入力回路138から出力される。一方、信号伝送方向に対して最上位ではない下位のセルコントローラICの受信端子LIN1に隣接する上位セルコントローラICからの信号が入力される場合には、切換器233の上側接点が閉じられ、回路232の出力信号が伝送入力回路138から出力される。例えば、セルコントローラIC2の場合、伝送入力回路138には上位のセルコントローラIC1からの信号が入力されるので、切換器233の上側接点が閉じられる。ここで、上位コントローラであるマイコン30からの出力とセルコントローラICの送信端子LIN2からの出力とでは、出力波形の波高値が異なっており、信号レベルを判定するための閾値が異なる。そのため、制御端子CTの制御信号に基づいて、上記のように伝送入力回路138では、信号の受信に用いる回路を切換器233により回路231と回路234の間で切り換えるようにしている。なお、1ビット通信系604についても同様の構成となっている。
受信端子LIN1で受信された通信コマンドは、伝送入力回路138を通ってIC制御回路123に入力される。IC制御回路123は、受信した通信コマンドに応じたデータやコマンドを伝送出力回路140へ出力する。それらのデータやコマンドは、伝送出力回路140を介して送信端子LIN2から送信される。なお、伝送出力回路143も、伝送出力回路140と同様の構成である。
一方、受信端子FFIで受信する信号は、異常状態(過充電信号)を伝送するために使用される。受信端子FFIから異常を表す信号を受信すると、その信号は伝送入力回路142およびOR回路288を介して伝送出力回路143に入力され、伝送出力回路143から送信端子FFOを介して出力される。また診断回路130で異常を検知すると、受信端子FFIでの受信内容に関係なく、診断フラグ保持回路128からOR回路288を介して伝送出力回路143に異常を表す信号が入力され、伝送出力回路143から送信端子FFOを介して出力される。
フォトカプラPHを介してマイコン30からセルコントローラIC1へ伝送されてきた信号が受信端子LIN1に入力されると、その信号は起動回路147においても受信され、これに応じて起動回路147からタイマ回路150へ起動信号が出力される。この起動信号に応じてタイマ回路150が動作すると、定電圧電源134に電圧VCCが供給される。これにより、定電圧電源134が動作状態となり、前述の電圧VDDを出力する。定電圧電源134から電圧VDDが出力されると、セルコントローラIC1はスリープ状態から立ち上がり動作状態となる。他のセルコントローラICでも、隣接する上位のセルコントローラICからの信号が受信端子LIN1へ入力されると同様の動作が行われ、定電圧電源134が動作して電圧VDDを出力する。
セルコントローラIC1の電圧入力端子CV1〜CV4は、セルグループ20A1に含まれる各電池セルBC1〜BC4のセル電圧を計測するための端子である。電圧入力端子CV1〜CV4には、それぞれ電圧検出線SL1〜SL4が接続されている。電圧検出線SL1〜SL4は、各電圧入力端子CV1〜CV4と各電池セルBC1〜BC4の正極または負極とを接続しており、端子保護と容量調整の放電電流制限のための抵抗RCVがそれぞれ設けられている。なお、電圧検出線SL5は電池セルBC4の負極からGND端子に接続されている。
例えば、電池セルBC1のセル電圧を計測する場合には、マルチプレクサ120により電圧入力端子CV1、CV2を選択し、電圧入力端子CV1−CV2間の電圧を計測する。また、電池セルBC4のセル電圧を計測する場合には、マルチプレクサ120により電圧入力端子CV4、GNDを選択し、電圧入力端子CV4−GND端子間の電圧を計測する。隣接する電圧検出線間には、コンデンサCvおよびCinが、ノイズ対策として設けられている。また後述するように、電圧検出線SL1〜SL4は、電池モジュール20と電池制御装置100を接続するコネクタにより、電池セルBC1〜BC4側(セルグループ20A1側)の部分とセルコントローラIC1側の部分とに分けられている。
図2の電池モジュール20の性能を最大限に活用するためには、電池モジュールブロック20Aを構成するセルグループ20A1、20A2の各電池セルのセル電圧と、電池モジュールブロック20Bを構成するセルグループ20B1、20B2の各電池セルのセル電圧とを均等化する必要がある。すなわち、全部で16個の電池セルのセル電圧を均等化する必要がある。例えば、セル電圧間のばらつきが大きいと、回生充電時にセル電圧が最も高い電池セルが上限電圧に達した時点で回生動作を停止する必要がある。この場合、その他の電池セルのセル電圧は上限に達していないにもかかわらず、回生動作を停止して、ブレーキとしてエネルギーを消費することになる。このようなことを防止するために、各セルコントローラICは、マイコン30からのコマンドで電池セルの容量調整のための放電を行う。
図3に示すように、セルコントローラIC1は、CV1−BR1、BR2−CV3、CV3−BR3およびBR4−GNDの各端子間に、セル容量調整用のバランシングスイッチBS1〜BS4を備えている。例えば、電池セルBC1の放電を行う場合には、バランシングスイッチBS1をオンする。そうすると、電池セルBC1の正極→抵抗RCV→CV1端子→バランシングスイッチBS1→BR1端子→抵抗RB→電池セルBC1の負極の経路でバランシング電流が流れる。なお、RBおよびRBBはこのバランシング用の抵抗であり、BR1〜BR4はこのバランシングを行うための端子である。
このように、セルコントローラIC1内には、電池セルBC1〜BC4の充電量を調整するためのバランシングスイッチBS1〜BS4が設けられている。実際のセルコントローラIC1では、例えば、バランシングスイッチBS1,BS3にはPMOSスイッチが用いられ、バランシングスイッチBS2,BS4にはNMOSスイッチが用いられている。なお、他のセルコントローラICについても同様である。
これらのバランシングスイッチBS1〜BS4の開閉は、放電制御回路132によって制御される。マイコン30からの指令に基づいて、放電させるべき電池セルに対応したバランシングスイッチを導通させるための指令信号が、IC制御回路123から放電制御回路132に送られる。IC制御回路123は、マイコン30から各電池セルBC1〜BC4に対応した放電時間の指令を通信により受け、その放電時間に応じた指令信号を放電制御回路132へ出力することで、上記放電の動作を実行する。
セルコントローラIC1とセルコントローラIC2の間には、上述したように通信系602と1ビット通信系604が設けられている。マイコン30からの通信コマンドは、フォトカプラPHを介して通信系602に入力され、通信系602を介してセルコントローラIC1の受信端子LIN1で受信される。セルコントローラIC1の送信端子LIN2からは、通信コマンドに応じたデータやコマンドがセルコントローラIC2へ送信され、セルコントローラIC2の受信端子LIN1で受信される。このようにセルコントローラIC1、IC2間で順に受信および送信が行われる。セルコントローラIC2からの伝送信号は、セルコントローラIC2の送信端子LIN2から送信され、フォトカプラPHを介してマイコン30の受信端子で受信される。
セルコントローラIC1とセルコントローラIC2は、受信した通信コマンドに応じて、セル電圧等の測定データのマイコン30への送信や、上述したバランシング動作を行う。さらに、セルコントローラIC1とIC2は、測定したセル電圧に基づいてセル過充電を検知する。その検知結果(異常信号)は、セルコントローラIC1、IC2から1ビット通信系604を介してマイコン30へ送信される。
なお、ESD(静電気放電)対策用として、各セルコントローラICには、例えば各電圧検出線SL1〜SL5に対応して、それぞれ図3に示すようなESD保護用ダイオードD1、D2が設けられている。これらのダイオードは、通常は電流が流れないような向きに設けられている。
<従来の電池モジュールと電池制御装置>
次に図4を参照して、従来の電池モジュールと電池制御装置について説明する。図4は、従来例による電池制御装置100の構成例を示す。なお、図4では、図2、3で説明した上記の例とは異なり、電池モジュール20がそれぞれ4つの電池セルを有する3つのセルグループ101〜103で構成されており、電池制御装置100内に設けられたセルコントローラIC1〜IC3によってセルグループ101〜103をそれぞれ制御する例を示している。
図4において、セルグループ101〜103内のBC1〜BC12はリチウム単電池等の単セル電池(電池セル)をそれぞれ示し、SL1〜SL13は各電池セルBC1〜BC12の端子電圧を検出するための電圧検出線をそれぞれ示している。また、CN1は電圧検出線SL1〜SL13を電池制御装置100に接続するためのコネクタである。このコネクタCN1を介して、電池モジュール20に設けられたセルグループ101〜103と、セルグループ101〜103をそれぞれ制御するセルコントローラIC1〜IC3とが接続される。
なお、電池制御装置100内において、電圧検出線SL1〜SL13には、保護回路やノイズ対策用のコンデンサおよび抵抗などの配線回路が接続されているが、図4ではその図示を省略している。
セルコントローラIC1〜IC3は、セルグループ101〜103に含まれる各電池セルセルBC1〜BC12のセル電圧を計測する機能を備えた集積回路である。これらのセルコントローラICの各々は、前述の電圧VCCを入力するための電源端子や、GND端子、ESD保護用ダイオードD1、D2などを内蔵している。さらに、各セルコントローラIC1〜IC3は、電圧VCCを用いて所定の電圧VDDUを出力するためのチャージポンプ(CP)104と、各セル電圧の計測結果や過充電または過放電を検知した時の異常信号等を送受信するための通信部105と、上位セルコントローラを起動するためのウェイクアップ回路(wakeup)106とをそれぞれ有している。なお、通信部105は図3の伝送入力回路138、142および伝送出力回路140、143に対応し、ウェイクアップ回路106は図3の起動回路147に対応している。
配線回路201、204は、上位コントローラであるマイコン30と絶縁素子(例えば図2のフォトカプラPH)を介して接続されている。配線回路202、203は、セルコントローラIC1−IC2間とセルコントローラIC2−IC3間をそれぞれ接続する通信経路である。これらの配線回路201〜204を介して、マイコン30と各セルコントローラIC1〜IC3との間で信号の送受信が行われる。例えば、マイコン30からのセル電圧測定要求が配線回路201を介してセルコントローラIC1へ伝送されると、セルコントローラIC1はこれに応じて対応する電池セルBC1〜BC4の各セル電圧を測定し、その測定結果を配線回路202を介してセルコントローラIC2へ送信する。次のセルコントローラIC2においても同様に、対応する電池セルBC5〜BC8の各セル電圧を測定し、その測定結果を配線回路203を介してセルコントローラIC3へ送信する。次のセルコントローラIC3では、対応する電池セルBC9〜BC12の各セル電圧を測定し、その測定結果を配線回路204を介してマイコン30へ送信する。また、測定したセル電圧において過充電や過放電を検知した場合、セルコントローラIC1〜IC3は前述と同様の通信経路により、そのことをマイコン30へ通知する。このようにしてマイコン30は、配線回路201〜204を通じて、いわゆるデイジーチェーン接続で互いに接続されたセルコントローラIC1〜IC3のセル電圧やセル電圧の過充電、過放電情報を得る事ができる。なお、配線回路201〜204によって形成される通信経路は、図2の通信系602および1ビット通信系604に対応している。
C1〜C3は、各セルコントーラIC1〜IC3の電圧を安定化するためのバイパスコンデンサを示している。セルコントローラIC間の通信経路202、203上に設けられたEP1、EP2は、電流を制限するための回路であり、抵抗やコンデンサなどの電子部品によって構成されている。
各セルコントローラIC1〜IC3は、ウェイクアップ回路106に所定の電圧が与えられることによって起動する。配線回路303は絶縁素子(例えばフォトカプラ)を介して上位コントローラであるマイコン30と接続されている。マイコン30からの起動信号が配線回路303を経由してセルコントローラIC3のウェイクアップ回路106に入力されると、当該ウェイクアップ回路106はセルコントローラIC3を起動させる。セルコントローラIC3が起動すると、セルコントローラIC3内のチャージポンプ104は、電圧VCCよりも高い所定の電圧VDDUを発生し、セルコントローラIC2のウェイクアップ回路106へ出力する。これを受けると、当該ウェイクアップ回路106はVDDUとVCCの電位差を利用してセルコントローラIC2を起動させる。こうしてセルコントローラIC2が起動すると、セルコントローラIC2内のチャージポンプ104は、前述のセルコントローラIC3内のものと同様に所定の電圧VDDUを発生し、セルコントローラIC1のウェイクアップ回路106へ出力する。これを受けると、当該ウェイクアップ回路106は前述のセルコントローラIC2内のものと同様に、VDDUとVCCの電位差を利用してセルコントローラIC1を起動させる。
ここで、コネクタCN1に用いられる一般的なコネクタでは、コネクタ接合時に端子の接続される順番を制御できない。そのため、充電された状態の電池モジュール20と電池制御装置100をコネクタCN1により活線接続する場合、電池モジュール20の各電池セルBC1〜BC12と電池制御装置100の各電圧検出線SL1〜SL13とが接続される順番によっては、次のような理由から電池制御装置100内のセルコントローラIC1〜IC3が破損される恐れがある。
セルコントローラIC1〜IC3が破損するメカニズムの具体例について説明する。以下の説明では一例として、コネクタCN1の接合時に電圧検出線SL2とSL13が最初に接続され、それ以外の電圧検出線は未接続の場合を仮定する。この場合、図2中の太い破線の矢印I1で示したように、電圧検出線SL2からセルコントローラIC1内のESDダイオードD1とパイパスコンデンサC1〜C3を介して電圧検出線SL13へ充電電流I1が流れる。この充電電流I1がセルコントローラIC1内のダイオードD1の許容電流を超えると、セルコントローラIC1が破損する。なお、上記のようにしてダイオードD1に流れる電流を抑制するため、電池制御装置100内の電圧検出線SL1〜SL13にそれぞれコンデンサを配置してダイオードD1の電流を抑制することも可能であるが、これには部品点数の増加やコストアップ等の問題がある。
上記の充電電流I1の大きさは、バイパスコンデンサC1〜C3の容量値や、電圧検出線SL2とSL13間の電圧差に依存する。バイパスコンデンサC1〜C3の容量値は、ハイブリッド自動車や電気自動車などインバータを搭載したシステムでは、インバータノイズ耐性を上げる目的で大きくなる傾向にある。そのため、充電電流I1も増加する傾向にある。また、電圧検出線SL2とSL13間の電圧差は、電池モジュール20における電池セルの直列接続数に応じて増加し、これはセルコントーラICの接続数に依存する。したがって、電池セルの直列接続数が多くなるほど電圧差が大きくなり、充電電流I1が増加することになる。
以上説明したように、従来の電池モジュールと電池制御装置では、セルコントローラIC1〜IC3を搭載した電池制御装置100を電池モジュール20のセルグループ101〜103へ活線接続する場合に、これらのセルコントローラICが破損するという課題があった。したがって、その対策が必要となる。
<第1の実施形態>
次に図5を参照して、上記の従来例における課題を解決するための本発明の第1の実施形態について説明する。なお、図5において図4と同じ構成要素を表す部分には同一の符号を付している。この部分について従来例と重複する説明は省略する。
図5は、本発明の第1の実施形態による電池制御装置100の構成例を示す。本実施形態による電池制御装置100では、上記従来例で説明した問題を解決するために、セルコントローラIC1のGND端子に接続された配線GNDLが、コネクタCN1内に設けられた端子CN1−5に接続されている。また、セルコントローラIC2のVCC端子に接続された配線VCCLが、コネクタCN1内に補助接続部材(ピン)として設けられた端子CN1−5Aに接続されている。そして、これらの端子CN1−5およびCN1−5Aを、電池制御装置100の外側に設けられた電気的接続点1において、電池セルBC4の負極と電池セルBC5の正極に接続された電圧検出線SL5へ接続するようにした。すなわち、図4で示した従来例では、セルコントローラIC1とセルコントローラIC2の間で共通としていた端子CN1−5への配線を、図5に示す本実施形態では、セルコントローラIC1側の配線GNDLとセルコントローラIC2側の配線VCCLの2つに分離している。そして、配線GNDLを端子CN1−5に接続すると共に、コネクタCN1内に端子CN1−5Aを新たに設けて配線VCCLをこれに接続している。
同様に、図5においてセルコントローラIC2のGND端子に接続された配線GNDLと、セルコントローラIC3のVCC端子に接続された配線VCCLも、コネクタCN1内に設けられた端子CN1−9と、コネクタCN1内に補助接続部材(ピン)として設けられた端子CN1−9Aにそれぞれ接続されている。そして、これらの端子CN1−9およびCN1−9Aが、電池制御装置100の外側に設けられた電気的接続点2において、電池セルBC8の負極と電池セルBC9の正極に接続された電圧検出線SL9へ接続されている。すなわち、図4で示した従来例では、セルコントローラIC2とセルコントローラIC3の間で共通であった端子CN1−9への配線を、図5に示す本実施形態では、セルコントローラIC2側の配線GNDLとセルコントローラIC3側の配線VCCLの2つに分離している。そして、配線GNDLを端子CN1−9に接続すると共に、コネクタCN1内に端子CN1−9Aを新たに設けて配線VCCLをこれに接続している。
上記のような構成とすることで、従来例では問題となったセルコントローラICの破損を防止できる。これについて、以下にその具体例を説明する。
コネクタCN1の接合により、例えば電圧検出線SL2とSL13が最初に電池制御装置100と接続されると、電池制御装置100では図5中の破線矢印に示す経路により、パイパスコンデンサC1に充電電流I1が流れようとする。しかし、図4に示した従来例の場合とは異なり、ここではパイパスコンデンサC1とバイパスコンデンサC2、C3が電池制御装置100内で電気的に接続されていないため、パイパスコンデンサC1〜C3を介して電圧検出線SL13へ充電電流I1が流れることはない。また、電圧検出線SL5とセルコントローラIC1の配線GNDLが接続されていないため、電圧検出線SL5へ充電電流I1が流れることもない。その結果、図5において充電電流I1は流れない。
一方、例えば電圧検出線SL5とSL9が端子CN1−5、CN1−5A、CN1−9およびCN1−9Aを介して最初に電池制御装置100と接続された場合、電池制御装置100では、セルコントローラIC2の配線VCCLからバイパスコンデンサC2を経由してセルコントローラIC2の配線GNDLに充電電流が流れる。その後、さらに電圧検出線SL2が電池制御装置100と接続されると、電圧検出線SL2からセルコントローラIC1内のダイオードD1およびパイパスコンデンサC1を経由してセルコントローラIC1の配線GNDLに充電電流が流れる。また、電圧検出線SL13が電池制御装置100と接続されると、セルコントローラIC3の配線VCCLからパイパスコンデンサC3を経由して電圧検出線SL13に充電電流が流れる。しかし、この場合であっても、各パイパスコンデンサC1〜C3には対応するセルグループ101〜103の電圧のみがそれぞれ個別に印加されるため、セルグループ101〜103の電圧が直列に印加される図4の従来と比べて充電電流を抑制することが可能である。したがって、図5に示す本実施形態の電池制御装置100では、各セルグループ101〜103に含まれる電池セル数(図5の構成例では4つ)に応じた分の電圧に相当する充電電流に対して故障しないように、セルコントローラIC1〜IC3を設計しておけばよい。
しかし、図5に示したような本実施形態の電池制御装置100では、通信波形へのノイズ重畳という弊害が生じることがある。すなわち、電力変換装置9等からのノイズが電圧検出線SL5に重畳されると、そのノイズは、電池制御装置100の外側に設けられた電気的接続点1やコネクタCN1の端子CN1−5、CN1−5Aを経由して、セルコントローラIC1の配線GNDLやセルコントローラIC2の配線VCCLに伝搬される。同様に、電圧検出線SL9に重畳されたノイズは、電気的接続点2やコネクタCN1の端子CN1−9、CN1−9Aを経由して、セルコントローラIC2の配線GNDLやセルコントローラIC3の配線VCCLに伝搬される。ここで、セルコントローラIC1〜IC3の各通信部105は、配線VCCLの電位VCCや配線GNDLの電位GNDを基準として動作するため、これらの配線にノイズが重畳されると、各通信部105から出力される信号波形においてノイズが重畳される。その結果、マイコン30や各セルコントローラIC1〜IC3の間で通信不良等の問題を生じることがある。
また、さらに他の弊害として、電池モジュール20からコネクタCN1の間で断線が起きたときに、セルコントローラIC1〜IC3において起動不良が生じることがある。ここで、電池モジュール20からコネクタCN1の間はハーネス等の線材で接続されているため断線が生じやすい。例えば図5に符号Aで示した部分が断線した場合、セルコントローラIC1のGND電位は、本来の値よりもダイオードD2と電池セルBC4の電圧分だけ低くなる。
一例として、ダイオードD2のドロップ電圧を0.7Vとし、電池セルBC4の電圧を3.0Vとする。また、セルコントローラIC2のチャージポンプ104から出力される電圧VDDUとセルコントローラIC1内の電圧VCCとの間の電位差を3.3Vとし、セルコントローラIC1のウェイクアップ回路106の動作電圧を1.4V以上と仮定する。この場合、電池モジュール20からコネクタCN1の間で断線が無いときには、セルコントローラIC1のウェイクアップ回路106には、セルコントローラIC1のGND電位を基準として、上記のVDDU−VCC間の電位差に相当する3.3Vの電圧が印加される。そのため、ウェイクアップ回路106が動作してセルコントローラIC1が起動される。
一方、電池モジュール20からコネクタCN1の間でAに示す部分が断線すると、セルコントローラIC1のウェイクアップ回路106には、セルコントローラIC1のGND電位を基準として、VDDU−VCC間の電位差から上記のダイオードD2のドロップ電圧と電池セルBC4の電圧の合計分を差し引いた電圧が印加される。すなわち、ウェイクアップ回路106に印加される電圧は、以下の式(1)で計算される値となる。
3.3V−0.7V−3.0V=−0.4V ・・・(1)
上記式(1)から、断線時にウェイクアップ回路106に印加される電圧は−0.4Vであり、これは動作電圧の1.4V未満である。そのため、この場合にはウェイクアップ回路106が動作せず、セルコントローラIC1が起動できない。
なお、図5に符号Bで示した部分が断線した場合には、セルコントローラIC2のチャージポンプ104から出力される電圧VDDUがダイオードD1と電池セルBC5の電圧分低くなる。そのため、Aに示す部分が断線した場合と同様に、このときセルコントローラIC1のウェイクアップ回路106に印加される電圧は式(1)から求められ、セルコントローラIC1のGND電位を基準として−0.4Vとなる。したがって、ウェイクアップ回路106が動作せずにセルコントローラIC1の起動ができない。
<第2の実施形態>
次に図6〜8を参照して、上記の第1の実施形態における課題を解決するための本発明の第2の実施形態について説明する。なお、図6〜8において図4、5と同じ構成要素を表す部分には同一の符号を付している。この部分について従来例や第1の実施形態と重複する説明は省略する。
図6は、本発明の第2の実施形態による電池制御装置100の構成例を示す。本実施形態による電池制御装置100では、セルコントローラIC1の配線GNDLとセルコントローラIC2の配線VCCLの間、および、セルコントローラIC2の配線GNDLとセルコントローラIC3の配線VCCLの間に、各配線間の電気的な接続状態を切り替えるためのスイッチSWがそれぞれ設けられている。各スイッチSWは、電池モジュール20と電池制御装置100を活線接続する際には、対応する配線GNDLと配線VCCLの間を非接続(開放)状態とする。そして、活線接続後にスイッチSWを切り替え、対応する配線GNDLと配線VCCLの間を接続(短絡)状態とする。
上記のように、活線接続時にはスイッチSWが開放されているため、第1の実施形態で説明したのと同様の効果が得られる。すなわち、活線接続時にセルコントローラIC1〜IC3に流れる充電電流を抑制することができ、セルコントローラICの破損を防ぐことができる。
一方、活線接続後にはスイッチSWにより配線VCCLと配線GNDLが短絡されるため、第1の実施形態で説明したような通信波形へのノイズ重畳を防ぐことができる。すなわち、電圧検出線SL5、9に重畳されたノイズが電池制御装置100の外側に設けられた電気的接続点1、2やコネクタCN1の端子CN1−5、CN1−5A、CN1−9、CN1−9Aを経由して配線VCCLや配線GNDLへ伝搬されるのを防ぎ、通信部105から出力される信号波形に対する悪影響を抑制することができる。
また、活線接続後に配線VCCLと配線GNDLが短絡されることから、第1の実施形態で説明したようなセルコントローラIC1〜IC3における断線時の起動不良をも防ぐことができる。すなわち、図5で説明したのと同様に、例えば図6に符号Aおよび符号Bで示した部分のいずれか少なくとも一方が断線したとしても、対応するスイッチSWにより、セルコントローラIC1の配線GNDLとセルコントローラIC2の配線VCCLの間の接続状態を維持することができる。そのため、セルコントローラIC1のGND電位は断線していない場合と比べて変化しない。したがって、セルコントローラIC2のチャージポンプ104から出力される電圧VDDUを用いて、セルコントローラIC1内のウェイクアップ回路106を動作させてセルコントローラIC1を起動させることができる。なお、電気的接続点2から端子CN1−9、CN1−9Aの間で断線が生じた場合についても同様に、対応するスイッチSWにより、セルコントローラIC2の配線GNDLとセルコントローラIC3の配線VCCLの間の接続状態を維持することができる。したがって、セルコントローラIC3のチャージポンプ104から出力される電圧VDDUを用いて、セルコントローラIC2内のウェイクアップ回路106を動作させてセルコントローラIC2を起動させることができる。
本実施形態による電池制御装置100では、以上説明したような構成および動作により、電池モジュール20と電池制御装置100を接続する際に、電池制御装置100内のセルコントローラICに高電圧が印加されて破壊されるのを確実に防ぎつつ、ノイズ耐性や断線時のセルコントローラICの起動性能を向上することができる。そのため、信頼性の高い電池制御装置を提供することが可能となる。
ここで、スイッチSWの構造について説明する。スイッチSWとしては、例えば機械的スイッチを用いることができる。機械的スイッチとは、操作者の機械的な操作に応じて2つの接点間を接続または開放するものであり、例えば、トグルスイッチ、押しボタンスイッチ、ショートバーを利用したスイッチ等がある。これらの機械的スイッチを電池制御装置100にスイッチSWとして設けた場合、電池モジュール20と電池制御装置100を活線接続する際にはスイッチSWをOFFとしておき、接続後に操作者がスイッチSWを操作してONに切り替えるようにする。これにより、スイッチSWを介して互いに隣接する配線VCCLと配線GNDL間を接続することができ、上述した本実施形態の構成および動作を実現することができる。
また、スイッチSWとして、例えばリレーやトランジスタのように、電気信号に応じて2つの接点間を接続または開放可能な電気的スイッチを用いてもよい。このような電気的スイッチを電池制御装置100にスイッチSWとして設けた場合、電池モジュール20と電池制御装置100が活線接続された後に、スイッチSWを自動的にOFFからONに切り替えて互いに隣接する配線VCCLと配線GNDL間が接続されるようにし、上述した本実施形態の構成および動作を実現することができる。
スイッチSWに電気的スイッチの一種であるFET(電界効果型トランジスタ)を用いた一例を、図7を参照して説明する。図7に例示する電池制御装置100では、セルコントローラIC1の配線GNDLとセルコントローラIC2の配線VCCLの間、および、セルコントローラIC2の配線GNDLとセルコントローラIC3の配線VCCLの間に、スイッチSWとしてのFETが設けられている。各FETのゲートには、セルコントローラIC2、IC3の各チャージポンプ104から出力される電圧VDDUがそれぞれ接続されている。
電池モジュール20と電池制御装置100を活線接続する際にはセルコントローラIC1〜IC3が起動しておらず、チャージポンプ104は非動作状態である。そのため、各FETのゲートには電圧VDDUが印加されておらず、各FETはOFF状態である。活線接続後に、上位コントローラであるマイコン30から配線回路303を介してセルコントローラIC3に起動信号が入力されると、セルコントローラIC3のチャージポンプ104が動作して電圧VDDUを出力する。これにより、セルコントローラIC2とセルコントローラIC3の間に配置されたFETのゲートに、セルコントローラIC3からの電気信号として電圧VDDUが印加され、当該FETがONされる。その結果、セルコントローラIC3の配線VCCLとセルコントローラIC2の配線GNDLが接続される。また、セルコントローラIC2のウェイクアップ回路106にも電圧VDDUが印加され、当該ウェイクアップ回路106が動作してセルコントローラIC2が起動される。こうしてセルコントローラIC2が起動されると、セルコントローラIC2のチャージポンプ104が動作して電圧VDDUを出力する。これにより、セルコントローラIC1とセルコントローラIC2の間に配置されたFETのゲートに、セルコントローラIC2からの電気信号として電圧VDDUが印加され、当該FETがONされる。その結果、セルコントローラIC2の配線VCCLとセルコントローラIC1の配線GNDLが接続される。また、セルコントローラIC1のウェイクアップ回路106にも電圧VDDUが印加され、当該ウェイクアップ回路106が動作してセルコントローラIC1が起動される。
上記の動作が行われることにより、電池モジュール20と電池制御装置100の活線接続時には各FETがOFFであるため、セルコントローラIC1〜IC3に流れる充電電流を抑制してセルコントローラICの破損を防ぐことができる。また、活線接続後には各FETがONに切り替えられるので、セルコントローラIC1〜IC3における通信波形へのノイズ重畳や断線時の起動不良を防ぐことができる。
他の電気的スイッチとして、スイッチSWにPNP型のバイポーラトランジスタを用いた一例を、図8を参照して説明する。図8に例示する電池制御装置100では、セルコントローラIC1の配線GNDLとセルコントローラIC2の配線VCCLの間、および、セルコントローラIC2の配線GNDLとセルコントローラIC3の配線VCCLの間に、スイッチSWとしてのPNP型のバイポーラトランジスタPNPが設けられている。また、セルコントローラIC1の配線GNDLとセルコントローラIC2の配線GNDLの間、および、セルコントローラIC2の配線GNDLとセルコントローラIC3の配線GNDLの間に、NPN型のバイポーラトランジスタNPNが設けられている。セルコントローラIC1〜IC3の内部には電圧調整用のレギュレータRGがそれぞれ設けられており、セルコントローラIC2、IC3の各レギュレータRGからの出力が対応する各トランジスタNPNのベースに接続されている。各トランジスタNPNのコレクタと配線GNDLの間には分圧抵抗R1、R2がそれぞれ設けられており、これらの分圧抵抗R1、R2の間に各トランジスタPNPのベースが接続されている。このような構成により、分圧抵抗R1、R2で分圧された電圧が各トランジスタPNPのベースに入力される。
電池モジュール20と電池制御装置100を活線接続する際にはセルコントローラIC1〜IC3が起動しておらず、レギュレータRGは非動作状態であるため、トランジスタNPNはOFF状態である。また、トランジスタNPNがOFF状態であることから、トランジスタPNPもOFF状態である。活線接続後にセルコントローラIC1〜IC3が起動されてレギュレータRGが動作状態になると、セルコントローラIC2、IC3の各レギュレータRGから各トランジスタNPNのベースに電気信号として所定の電圧が出力され、各トランジスタNPNがOFFからONに切り替えられる。すると、分圧抵抗R1、R2によって分圧された電圧が各トランジスタPNPのベースへ出力され、各トランジスタPNPがOFF状態からON状態へと切り替えられる。その結果、セルコントローラIC2の配線VCCLとセルコントローラIC1の配線GNDL、および、セルコントローラIC3の配線VCCLとセルコントローラIC2の配線GNDLが接続される。
上記の動作が行われることにより、電池モジュール20と電池制御装置100の活線接続時には各トランジスタPNPがOFFであるため、セルコントローラIC1〜IC3に流れる充電電流を抑制してセルコントローラICの破損を防ぐことができる。また、活線接続後には各トランジスタPNPがONに切り替えられるので、セルコントローラIC1〜IC3における通信波形へのノイズ重畳や断線時の起動不良を防ぐことができる。
なお、前述の図7に示した例では、チャージポンプ104の出力電圧VDDUを用いてウェイクアップ回路106を起動すると共に各FETをONする構成としたが、チャージポンプ104の電流供給能力が不足していると、これらの動作に時間を要したり、動作不能となったりする場合がある。これに対して、図8に示した例では、電池モジュール20からの電圧VCCを直接レギュレータRGに入力し、これを用いてトランジスタPNPをONするため、トランジスタPNPへの電流供給とウェイクアップ回路106への電流供給を分散化することができ、電流供給不足を回避することができる。
なお、以上説明した第2の実施形態では、スイッチSWの例として、機械的スイッチや電気的スイッチの場合を説明したが、本発明はこれに限らず、磁気的スイッチなど他のスイッチを用いてもよい。また、例として挙げた以外の機械的スイッチや電気的スイッチを用いてもよい。さらに、電気的スイッチをONする回路構成も図7や図8で例示したものに限らない。電池モジュール20と電池制御装置100が活線接続された後に、互いに隣接する配線VCCLと配線GNDL間が短絡されるものであれば、どのような回路構成であってもよい。
<第3の実施形態>
次に図9を参照して、本発明の第3の実施形態について説明する。なお、図9において図4〜8と同じ構成要素を表す部分には同一の符号を付している。この部分について従来例や第1および第2の実施形態と重複する説明は省略する。
図9は、本発明の第3の実施形態による電池制御装置100の構成例を示す。本実施形態による電池制御装置100では、電圧検出線SL5において電気的接続点1からコネクタCN1の端子CN1−5、CN1−5Aまでの間、および、電圧検出線SL9において電気的接続点2からコネクタCN1の端子CN1−9、CN1−9Aまでの間が、ツイストペアケーブルを用いて配線されている。これ以外の構成要素については、図5に示した第1の実施の形態と同一である。
上記の構成により、電圧検出線SL5、SL9において電磁誘導により重畳されるノイズをキャンセルすることができる。そのため、セルコントローラIC1、IC2において配線GNDLの電圧が安定し、通信不良の発生を回避することができる。また、前述の第1の実施の形態と同様に、電池モジュール20と電池制御装置100の活線接続時にセルコントローラIC1〜IC3に流れる充電電流を抑制してセルコントローラICの破損を防ぐことができる。
なお、以上説明した第3の実施形態では、電圧検出線SL5において電気的接続点1からコネクタCN1の端子CN1−5、CN1−5Aまでの間、および、電圧検出線SL9において電気的接続点2からコネクタCN1の端子CN1−9、CN1−9Aまでの間を、ツイストペアケーブルを用いて配線することとしたが、他の耐ノイズケーブルを使用してもよい。ここでいう耐ノイズケーブルとは、ノイズ対策が施されている耐ノイズ性能の高いケーブルのことであり、ツイストペアケーブルの他に例えばシールドケーブル等がある。すなわち、少なくとも電気的接続点1および2からコネクタCN1までの間について、セルコントローラIC1の配線GNDLとセルコントローラIC2の配線VCCL、および、セルコントローラIC2の配線GNDLとセルコントローラIC3の配線VCCLを、耐ノイズケーブルで構成することができる。また、電圧検出線SL5、SL9以外の配線についても同様に、耐ノイズケーブルを使用してもよい。
以上説明した第1〜第3の各実施形態では、電池制御装置100において3つのセルコントローラIC1〜IC3を直列に配置した場合について説明したが、本発明のセルコントローラICの直列数はこれに限らない。また、複数のセルコントローラICを直並列に配置してもよい。電池モジュール20におけるセルグループの配置に応じて少なくとも2つ以上のセルコントローラICが直列または直並列に配置されていれば、その直列数や直並列数がどのようなものであっても、本発明を適用することができる。
以上説明した第1〜第3の各実施形態では、一般的な汎用コネクタをコネクタCN1として利用することができる。そのため、各実施形態で説明したような本発明による電池制御装置100を安価に実現することができる。
以上説明した各実施形態や各種の変形例は、それぞれ単独で適用しても、任意に組み合わせて適用してもよい。
以上説明した各実施形態や各種の変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。

Claims (7)

  1. 複数の電池セルを直列接続した複数個のセルグループを直列または直並列に接続した電池モジュールを制御する電池制御装置において、
    前記複数個のセルグループを各々制御する複数のセルコントローラICと、
    複数のセルコントローラICを前記電池モジュールに接続するために設けられた1つ以上のコネクタとを備え、
    前記複数のセルコントローラICは、2つ以上直列に接続した前記セルグループを制御するように連続して設けられた第1および第2のセルコントローラICを含み、
    前記第1のセルコントローラICのGND端子側配線と前記第2のセルコントローラICのVCC端子側配線とを前記電池制御装置の外部の接続点で接続するための補助接続部材(ピン)を設け、
    前記第1のセルコントローラICのGND端子側配線と前記第2のセルコントローラICのVCC端子側配線との間にスイッチを設けた電池制御装置。
  2. 請求項1に記載の電池制御装置において、
    前記スイッチは、機械的スイッチである電池制御装置。
  3. 請求項1に記載の電池制御装置において、
    前記スイッチは、前記第2のセルコントローラICからの信号により制御される電気的スイッチである電池制御装置。
  4. 請求項1乃至3のいずれか1項に記載の電池制御装置において、
    少なくとも前記接続点から前記コネクタまでの間について、前記第1のセルコントローラICのGND端子側配線と前記第2のセルコントローラICのVCC端子側配線とを耐ノイズケーブルで構成した電池制御装置。
  5. 複数の電池セルを直列接続した複数個のセルグループを直列または直並列に接続した電池モジュールを制御する電池制御装置において、
    前記複数個のセルグループを各々制御する複数のセルコントローラICと、
    複数のセルコントローラICを前記電池モジュールに接続するために設けられた1つ以上のコネクタとを備え、
    前記複数のセルコントローラICは、2つ以上直列に接続した前記セルグループを制御するように連続して設けられた第1および第2のセルコントローラICを含み、
    前記第1のセルコントローラICのGND端子側配線と前記第2のセルコントローラICのVCC端子側配線とを前記電池制御装置の外部の接続点で接続するための補助接続部材(ピン)を設け、
    少なくとも前記接続点から前記コネクタまでの間について、前記第1のセルコントローラICのGND端子側配線と前記第2のセルコントローラICのVCC端子側配線とを耐ノイズケーブルで構成した電池制御装置。
  6. 請求項1乃至5のいずれか1項に記載の電池制御装置と、
    前記複数の電池セルを直列接続した複数個のセルグループを直列または直並列に接続した電池モジュールと、
    前記電池モジュール側のコネクタとを備える蓄電装置。
  7. 請求項6に記載の蓄電装置と、
    前記蓄電装置で制御される電力で駆動される走行用電動機とを備えた電動走行可能な車両。
JP2013532361A 2011-09-07 2011-09-07 電池制御装置、蓄電装置および車両 Active JP5860886B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/070392 WO2013035176A1 (ja) 2011-09-07 2011-09-07 電池制御装置、蓄電装置および車両

Publications (2)

Publication Number Publication Date
JPWO2013035176A1 true JPWO2013035176A1 (ja) 2015-03-23
JP5860886B2 JP5860886B2 (ja) 2016-02-16

Family

ID=47831662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013532361A Active JP5860886B2 (ja) 2011-09-07 2011-09-07 電池制御装置、蓄電装置および車両

Country Status (2)

Country Link
JP (1) JP5860886B2 (ja)
WO (1) WO2013035176A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107650684A (zh) * 2016-07-25 2018-02-02 罗伯特·博世有限公司 高电压电池、用于运行高电压电池的方法、电池系统和车辆

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6347254B2 (ja) * 2013-04-01 2018-06-27 ソニー株式会社 蓄電装置、蓄電システムおよび電動車両
EP3233560B1 (en) * 2014-12-15 2019-02-06 Volvo Truck Corporation A method and device for charging an electric energy storage system in a vehicle
JP6265157B2 (ja) 2015-03-26 2018-01-24 トヨタ自動車株式会社 通信システム
JP6675339B2 (ja) * 2017-02-17 2020-04-01 日立オートモティブシステムズ株式会社 蓄電池制御装置
JP6477787B2 (ja) * 2017-06-19 2019-03-06 トヨタ自動車株式会社 通信システム
KR102180138B1 (ko) * 2017-11-24 2020-11-17 주식회사 엘지화학 무선 배터리 관리 시스템 및 그것을 이용하여 배터리팩을 보호하는 방법
JP7235220B2 (ja) * 2019-05-07 2023-03-08 エルジー エナジー ソリューション リミテッド バッテリーコントローラ、無線バッテリー制御システム、バッテリーパック及びバッテリーバランシング方法
JP7310532B2 (ja) 2019-10-16 2023-07-19 株式会社デンソー 電圧監視装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218680A (ja) * 2006-02-15 2007-08-30 Hitachi Ulsi Systems Co Ltd 充放電監視装置
JP2008289234A (ja) * 2007-05-16 2008-11-27 Hitachi Vehicle Energy Ltd セルコントローラ、電池モジュールおよび電源システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007280872A (ja) * 2006-04-11 2007-10-25 Sony Corp 電池パックおよびコネクタ
JP5486822B2 (ja) * 2009-02-17 2014-05-07 株式会社日立製作所 電池システム
JP5470073B2 (ja) * 2010-02-05 2014-04-16 日立ビークルエナジー株式会社 電池制御装置および電池システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218680A (ja) * 2006-02-15 2007-08-30 Hitachi Ulsi Systems Co Ltd 充放電監視装置
JP2008289234A (ja) * 2007-05-16 2008-11-27 Hitachi Vehicle Energy Ltd セルコントローラ、電池モジュールおよび電源システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107650684A (zh) * 2016-07-25 2018-02-02 罗伯特·博世有限公司 高电压电池、用于运行高电压电池的方法、电池系统和车辆

Also Published As

Publication number Publication date
WO2013035176A1 (ja) 2013-03-14
JP5860886B2 (ja) 2016-02-16

Similar Documents

Publication Publication Date Title
JP5895029B2 (ja) 蓄電装置および車両
JP5860886B2 (ja) 電池制御装置、蓄電装置および車両
JP5760144B2 (ja) 蓄電池制御装置および蓄電装置
JP5470073B2 (ja) 電池制御装置および電池システム
JP5732570B2 (ja) 蓄電装置、蓄電装置の充放電方法、蓄電装置の運転方法および車両
JP5594893B2 (ja) 電池制御装置およびこれを備えた蓄電装置
JP5331493B2 (ja) 電池制御装置
JP5486780B2 (ja) 電池システム
JP5552218B2 (ja) 電源装置
JP5276915B2 (ja) 二次電池を用いた電源装置
JP5677261B2 (ja) 蓄電システム
WO2013057820A1 (ja) 電池システムの監視装置およびこれを備えた蓄電装置
JP2010130827A (ja) 蓄電装置
WO2011148926A1 (ja) 電源装置
JP5401239B2 (ja) 電池制御装置
JP2012186873A (ja) 電池制御装置
JP2012074333A (ja) 蓄電装置及びそれに用いられる監視制御装置
JP7349510B2 (ja) 車載電池システム
JP5685624B2 (ja) 電池システム
JP7373372B2 (ja) 電池制御装置
JP2010133758A (ja) 温度検出装置および蓄電装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151221

R150 Certificate of patent or registration of utility model

Ref document number: 5860886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250