JPWO2012124499A1 - 塩素ドープ酸化スズ粒子及びその製造方法 - Google Patents

塩素ドープ酸化スズ粒子及びその製造方法 Download PDF

Info

Publication number
JPWO2012124499A1
JPWO2012124499A1 JP2013504646A JP2013504646A JPWO2012124499A1 JP WO2012124499 A1 JPWO2012124499 A1 JP WO2012124499A1 JP 2013504646 A JP2013504646 A JP 2013504646A JP 2013504646 A JP2013504646 A JP 2013504646A JP WO2012124499 A1 JPWO2012124499 A1 JP WO2012124499A1
Authority
JP
Japan
Prior art keywords
chlorine
tin oxide
oxide particles
doped tin
max
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013504646A
Other languages
English (en)
Inventor
暁 茂木
暁 茂木
加藤 和彦
和彦 加藤
健司 鈴岡
健司 鈴岡
泰規 田平
泰規 田平
八島 勇
勇 八島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Publication of JPWO2012124499A1 publication Critical patent/JPWO2012124499A1/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Abstract

塩素ドープ酸化スズ粒子は、ラマンスペクトル測定において、少なくとも108±5cm-1、122±5cm-1及び133±5cm-1にピークを示す構造を有する。塩素ドープ酸化スズ粒子は更に、337±10cm-1にラマンスペクトルのピークが観察されることが好適である。塩素ドープ酸化スズ粒子は、比表面積が10〜300m2/gであることも好適である。塩素ドープ酸化スズ粒子は、一次粒子の平均粒径が3〜200nmであることも好適である。塩素ドープ酸化スズ粒子は、酸素欠損を実質的に非含有であることも好適である。

Description

本発明は、塩素ドープ酸化スズ粒子及びその製造方法に関する。
非導電性材料、例えばプラスチックに導電性を付与する方法として、プラスチックに導電性粉末を添加する方法が知られている。導電性粉末としては、例えば、金属粉末、カーボンブラック、アンチモン等をドープした酸化スズ等が知られている。しかし、金属粉末やカーボンブラックをプラスチックに添加すると得られるプラスチックが黒色になり、プラスチックの用途が限定されることがある。一方、アンチモン等をドープした酸化スズをプラスチックに添加すると、プラスチックが青黒色になり、カーボンブラック等と同様にやはりプラスチックの用途が限定されることがある。またアンチモンの使用に起因する環境負荷の問題もある。そこで、ドーパントとしてアンチモン等の環境負荷の大きい元素を用いない酸化スズについての検討が種々行われている。
そこでドーパント元素として、環境負荷の小さい元素であるハロゲンを用いた酸化スズが提案されている(特許文献1ないし3参照)。具体的には、特許文献1には、フッ素及び塩素を含んだ酸化スズを主成分とする透明導電膜が記載されている。特許文献2には、酸化スズ粉末を、不活性ガス雰囲気下にて10〜40vol%のフッ素ガスと接触させることにより、該酸化スズにフッ素をドープして導電性を付与することが記載されている。特許文献3には、アンチモン、リン及びインジウムのいずれも含有せず、フッ素を0.3〜5.0%含有する透明酸化スズ粉末が記載されている。
特開平1−236525号公報 特開平2−197014号公報 特開2008−184373号公報
しかし前記の各特許文献で得られた酸化スズ粒子の導電性は未だ満足できるものではない。
したがって本発明の課題は、前述した従来技術が有する種々の欠点を解消し得る塩素ドープ酸化スズ粒子を提供することにある。
本発明は、ラマンスペクトル測定において、少なくとも108±5cm-1、122±5cm-1及び133±5cm-1にピークを示す構造を有することを特徴とする塩素ドープ酸化スズ粒子を提供するものである。
また本発明は、エネルギー分散X線分光法によってO及びSnを分析したとき、Oの検出強度aの平均値aAVG及び最大値aMAXが最大値aMAX<平均値aAVG×3を満たす測定領域において、Oの検出強度aが、該測定領域でのOの検出強度の最大値aMAXの1/5以下である検出位置pと、Clの検出強度bが、該測定領域でのClの検出強度の最大値bMAXの1/2以下である検出位置qとが略一致することを特徴とする塩素ドープ酸化スズ粒子を提供するものである。
更に本発明は、前記の塩素ドープ酸化スズ粒子の好適な製造方法として、
塩化スズ(II)と塩基性化合物とを水中で混合して、塩素を含むスズの沈殿物を生成させ、該沈殿物を含酸素雰囲気下に焼成することを特徴とする塩素ドープ酸化スズ粒子の製造方法を提供するものである。
本発明の塩素ドープ酸化スズ粒子は、導電性が高く、また導電性の経時安定性が高いものである。
図1は、実施例1及び比較例3で得られた酸化スズ粒子のラマンスペクトルである。 図2(a)は、エネルギー分散X線分光法によって塩素ドープ酸化スズ粒子におけるO及びClの検出位置を同定するときの測定領域を決定する方法を示す透過型電子顕微鏡像であり、図2(b)は、図2(a)に示す線分析方向の模式図である。 図3(a)及び(b)は、実施例1で得られた塩素ドープ酸化スズ粒子におけるO及びClの検出位置を示すエネルギー分散X線分光法の分析結果を示すグラフである。 図4(a)及び(b)は、実施例3で得られた塩素ドープ酸化スズ粒子におけるO及びClの検出位置を示すエネルギー分散X線分光法の分析結果を示すグラフである。 図5(a)及び(b)は、比較例2で得られた塩素ドープ酸化スズ粒子におけるO及びClの検出位置を示すエネルギー分散X線分光法の分析結果を示すグラフである。
以下本発明を、その好ましい実施形態に基づき説明する。本発明の塩素ドープ酸化スズ粒子は導電性粒子である。本発明においては、該粒子の導電性を高める目的で塩素がドープされている。本発明の塩素ドープ酸化スズ粒子は、酸化スズの結晶中において酸素原子の位置が塩素原子で置換された構造を有していると考えられる。本発明の塩素ドープ酸化スズ粒子はN型半導体の性質を有し、電子がキャリアとなって導電性を発現すると考えられる。
本発明の塩素ドープ酸化スズ粒子は、ラマンスペクトル測定において、低波数領域、具体的には少なくとも108±5cm-1、122±5cm-1及び133±5cm-1にピークを示す構造を有するものである。つまり本発明の酸化スズ粒子はラマン活性を有するものである。これまで知られている酸化スズはこれらの波数の位置にラマンスペクトルのピークを示さない。つまり、これらの波数の位置にラマンスペクトルのピークを示す塩素ドープ酸化スズ粒子はこれまで知られておらず、本発明の塩素ドープ酸化スズ粒子は極めて新規なものである。
本発明の塩素ドープ酸化スズ粒子は、ラマンスペクトル測定において、上述したラマン散乱光のピークに加え、337±10cm-1にもラマンスペクトルのピークが観察されることがある。この位置にピークが観察される塩素ドープ酸化スズ粒は、上述の位置にピークが観察される塩素ドープ酸化スズ粒よりも一層高い導電性を示す。ラマンスペクトルの測定手順は、後述する実施例において詳述する。
前記の波数の位置にラマンシフトのピークが観察される本発明の塩素ドープ酸化スズ粒子は、該ピークが観察されない酸化スズ粒子に比べて導電性が高くなる。このような本発明の塩素ドープ酸化スズ粒子のラマン活性は、該塩素ドープ酸化スズ粒子を熱処理することによって消失することが本発明者らの検討の結果判明した。そして、ラマン活性が消失した酸化スズ粒子はもはや高導電性のものではなくなり、高抵抗を示す。このことから、本発明の塩素ドープ酸化スズ酸化スズ粒子の導電性は、該導電性を発現する格子振動に由来するのではないかと本発明者は考えている。前記の熱処理は、例えば大気雰囲気中、450℃以上において2時間以上行われる。
従来知られている導電性酸化スズは、一般に四価のスズに、フッ素、アンチモン、ニオブ、タンタル等のドーパント元素をドープして導電性を高めていたところ、本発明においては塩素ドープ酸化スズ中におけるラマンスペクトルに反映される格子振動をコントロールすることで、導電性を高めている。具体的には、本発明の塩素ドープ酸化スズ粒子が示すラマン活性は、電子伝導性を発現する導電パスに起因していると考えられる。尤も、粉末X線回折測定を行うと、本発明の塩素ドープ酸化スズ粒子と、これまで知られている酸化スズ(SnO2)粒子とでは実質的な違いが観察されないことから、本発明の塩素ドープ酸化スズ粒子は、粉末X線回折測定に現れるような中長距離的な結晶構造の秩序が、従来の酸化スズ粒子と相違している訳ではなく、近距離又は原子間結合のようなミクロな構造が、従来の酸化スズ粒子と相違していると考えられる。そして、その相違に起因してキャリア移動度が高まり、低抵抗を実現できたのではないかと、本発明者らは考えている。この構成を採用することによって、従来用いられてきたドーパント元素が有する不都合、例えば経済的に不利であることや、環境負荷が大きいこと等を克服しつつ、塩素ドープ酸化スズ粒子の導電性を高めることが可能となった。
ラマン活性を有する塩素ドープ酸化スズ粒子を得るためには、後述する製造方法に従い塩素ドープ酸化スズ粒子を製造すればよい。
上述したラマン活性を有する塩素ドープ酸化スズ粒子を対象とし、エネルギー分散X線分光法(以下、「EDS」ともいう。)を用いO及びClの分析を行ったところ、後述する図3及び図4に示すとおり、Oの検出強度aが、Oの検出強度の最大値aMAXの1/5以下である検出位置pと、Clの検出強度bが、Clの検出強度の最大値bMAXの1/2以下である検出位置qとが略一致することが判明した。このことは、酸化スズにおけるOの位置にClが固溶されていることを示唆しており、このことに起因して本発明の塩素ドープ酸化スズ粒子は導電性が高くなるものと考えられる。
EDSを用いたOの検出位置p及びClの検出位置qの同定は、EDSにおいて、Oの検出強度aの平均値aAVG及び最大値aMAXが最大値aMAX<平均値aAVG×3を満たす測定領域を対象として行われる。この条件を満たす測定領域は、Oの検出強度に大きなばらつきがないので、検出位置の同定の再現性を高くできるからである。後述する図3においては、検出強度aが、Oの検出強度の最大値aMAXの1/5以下である検出位置p1、p2及びp3と、Clの検出強度bが、Clの検出強度の最大値bMAXの1/2以下である検出位置q1、q2及びq3とが略一致している。図4においては、検出強度aが、Oの検出強度の最大値aMAXの1/5以下である検出位置p1、p2、p3及びp4と、Clの検出強度bが、Clの検出強度の最大値bMAXの1/2以下である検出位置q1、q2、q3及びq4とが略一致している。このように、Oの検出位置とClの検出位置とが略一致している塩素ドープ酸化スズ粒子は、上述した波数の位置にラマンスペクトルのピークを示す。なお「略一致」とは、Oの検出位置pとClの検出位置qとの差の絶対値が、線分析距離で表して5Å以内であることをいう。
Oの検出位置pの同定において、該検出位置pをOの検出強度の最大値aMAXの1/5以下である位置とした理由は、そのような位置は主にSnの列で構成され、Oの存在が疎な場所であり、そのような位置は検出位置として適切だからである。一方、Clの検出位置qの同定において、該検出位置qをClの検出強度の最大値aMAXの1/2以下である位置とした理由は、Oと同等の位置に存在するClはドーパントであるため存在数が少なく測定のばらつきが大きくなることから、Oの場合よりも検出強度の最大値に対する値を高くして、測定にばらつきが生じることを抑制したものである。
ところで、二価のスズのみからなる酸化物は、導電性は有するものの黒色となり、透明性が要求される用途、例えば透明導電膜等に利用することができない。一方、四価のスズのみからなる酸化物は、二価のスズのみからなる酸化物に比べて導電性を高くすることができない。これに対して、本発明の塩素ドープ酸化スズ粒子は白色系であり、透明導電膜等に利用することができ、かつ導電性が高いので、該透明導電膜等の導電性を高めることが可能となる。なお、本発明の塩素ドープ酸化スズ粒子は、これを粉末X線回折測定すると、四価のSnO2と同様の回折ピークを呈する。したがって、本発明の塩素ドープ酸化スズ粒子におけるスズの価数は大部分が四価であると考えられる。
本発明の塩素ドープ酸化スズ粒子におけるドーパントである塩素の含有量は、塩素ドープ酸化スズの全量に対して1.0×10-3〜5質量%、特に5.0×10-3〜2質量%であることが、経済性を損なうことなく、塩素ドープ酸化スズ粒子の導電性を高め得る点から好ましい。また、塩素ドープ酸化スズ粒子におけるスズと酸素との割合は、スズ1モル対して酸素原子が1.5〜2.5モル、特に1.8〜2.2モルであることが好ましい。
本発明の塩素ドープ酸化スズ粒子は、ドーパントとして塩素のみを含有していてもよく、あるいは塩素に加えて他の元素を含有していてもよい。そのような元素としてはフッ素が挙げられる。ドーパントとして塩素に加えてフッ素が含まれていることで、塩素と同族であるフッ素が、酸化スズ中の結晶中において酸素原子の位置と置換してキャリア電子を発生させる結果、塩素ドープ酸化スズ粒子が一層低抵抗になる。この観点から、本発明の塩素ドープ酸化スズ粒子に、塩素に加えてフッ素が含まれている場合、フッ素の含有量は、塩素ドープ酸化スズ粒子の全量に対して1.0×10-3〜2質量%、特に5.0×10-3〜1質量%であることが好ましい。
酸化スズが導電性を発現するためには、一般にその結晶中に酸素欠損を有することが必要であるとされている。これとは対照的に、本発明の塩素ドープ酸化スズ粒子は、後述する製造方法から明らかなように、酸素欠損を実質的に非含有である。酸素欠損を実質的に非含有であることは、電気抵抗の経時安定性が高いという利点をもたらす。従来知られているハロゲンドープ酸化スズ粒子は、その製造時に酸素欠損が生ずるような条件を採用しており、そのことに起因して酸化スズの結晶中においてハロゲンが十分に固定されず、その結果、電気抵抗の経時安定性が劣るものになると考えられる。
本発明の塩素ドープ酸化スズ粒子が酸素欠損を実質的に非含有であることは、以下の条件で行ったプレッシャークッカーテスト(以下「PCT」ともいう。)の前後での圧粉抵抗の増加率を指標に判断することができる。詳細には、PCTの前後での圧粉抵抗の増加率が低い場合、具体的には圧粉抵抗の増加率であるRb/Raの値が好ましくは10以下である場合、更に好ましくは8以下である場合には、酸素欠損を実質的に非含有であると判断できる。ここで、Raは、PCT前の塩素ドープ酸化スズ粒子の圧粉抵抗を表し、Rbは、PCT後の塩素ドープ酸化スズ粒子の圧粉抵抗を表す。PCTは以下の方法で行われる。
塩素ドープ酸化スズ粒子2gと水1gとを30mlの耐圧容器に入れて密封した後、大気雰囲気下に180℃を3時間維持する。耐圧容器が室温に戻ってから粒子を取り出し、80℃で2時間大気乾燥した後に圧粉抵抗を測定する。圧粉抵抗の測定方法は後述する。
上述のとおり、本発明の塩素ドープ酸化スズ粒子は圧粉抵抗の増加率が低いものであるところ、塩素ドープ酸化スズ粒子の圧粉抵抗それ自体は、500kgf/cm2下での圧粉抵抗が103Ω・cm以下、特に102Ω・cm以下、とりわけ101Ω・cm以下という低い値である。
本発明の塩素ドープ酸化スズ粒子は、一次粒子の平均粒径が好ましくは1〜5000nm、更に好ましくは3〜3000nm、一層好ましくは3〜1000nm、更に一層好ましくは3〜200nmである。一次粒子の平均粒径の測定方法は、後述する実施例において説明する。塩素ドープ酸化スズ粒子の粒径は、例えば後述する製造方法において、水酸基を有する有機化合物の使用の有無や使用量によって調整することができる。
また、本発明の塩素ドープ酸化スズ粒子は高比表面積を有するものである。具体的には、BET比表面積が10〜300m2/g、特に10〜100m2/g、とりわけ10〜40m2/gという高比表面積を有するものである。塩素ドープ酸化スズ粒子の比表面積は、例えば後述する製造方法において、水酸基を有する有機化合物の使用の有無や使用量によって調整することができる。
本発明の塩素ドープ酸化スズ粒子は、これを膜状に成形した場合に、透明性の高いものである。例えば厚さ2〜3μmで、塩素ドープ酸化スズ粒子の含有量が30〜80質量%の膜を製造した場合、この膜の可視光の全光線透過率は85%以上、特に90%以上という透明性の高いものとなる。また本発明の塩素ドープ酸化スズ粒子は、赤外光に対する透明性が低いものである。例えば厚さ2〜3μmで、塩素ドープ酸化スズ酸化スズ粒子の含有量が30〜80質量%の膜を製造した場合、波長1500nmにおける赤外光の透過率は好ましくは80%以下、更に好ましくは70%以下であり、波長2000nmにおける赤外光の透過率は好ましくは50%以下、更に好ましくは30%以下という赤外光遮蔽性の高いものとなる。膜の形成方法や、全光線透過率及び赤外光透過率は、後述する実施例において詳述する。
次に本発明の塩素ドープ酸化スズ粒子の好ましい製造方法について説明する。本製造方法においては、塩化スズ(II)と塩基性化合物とを水中で混合して、塩素を含むスズの沈殿物を生成させ、該沈殿物を含酸素雰囲気下に焼成する。以下、具体的な工程について説明する。
先ず原料として塩化スズ(II)の水溶液を用意する。水溶液中における塩化スズ(II)の濃度は1.0×10-3〜2.5mol/l、特に1.0×10-2〜1mol/lであることが好ましい。原料として二価のスズに代えて四価のスズを用いると、高抵抗の酸化スズしか得られない。
塩化スズ(II)の水溶液とは別に塩基性化合物(アルカリ)の水溶液も用意する。塩基性化合物としては、例えば水酸化ナトリウムや水酸化カリウム等のアルカリ金属の水酸化物、水酸化マグネシウム等のアルカリ土類金属の水酸化物、NaHCO3やNH4HCO3等の炭酸塩、アンモニア等が挙げられる。塩基性化合物の水溶液中の水酸化物イオンの濃度は、1.0×10-3〜6mol/l、特に1.0×10-2〜1mol/lであることが好ましい。
このようにして得られた塩化スズ(II)の水溶液と塩基性化合物の水溶液とを混合して塩素を含むスズの沈殿物を生成させる。沈殿物の生成に際しては、塩化スズ(II)の水溶液を母液とし、これに塩基性化合物の水溶液をフィード液として添加してもよく、あるいは塩基性化合物の水溶液を母液とし、これに塩化スズ(II)の水溶液をフィード液として添加してもよい。いずれを母液とする場合においても、塩化スズ(II)の水溶液と、塩基性化合物の水溶液との混合の割合は、1モルのスズ(II)に対して水酸化物イオンが好ましくは0.1〜5モル、更に好ましくは0.5〜4モルとなる割合とすることが好ましい。また、いずれを母液とする場合においても、添加液の添加は逐次添加及び一括添加のいずれでもよい。反応の制御のしやすさの点からは、逐次添加を採用することが好ましい。
塩化スズ(II)の水溶液と塩基性化合物の水溶液との混合は、加熱下又は非加熱下のどちらで行ってもよい。混合を加熱下で行う場合、例えば母液を所定温度に加熱しておき、該母液に加熱されているか又は非加熱の添加液を添加することができる。加熱温度は30〜100℃、特に40〜95℃とすることが好ましい。
塩化スズ(II)の水溶液と塩基性化合物の水溶液との混合によって生成する塩素を含むスズの沈殿物は、目的とする塩素ドープ酸化スズ粒子の前駆体である。この前駆体の詳細は現在のところ明確ではないが、スズと酸素とを含み、スズの価数が二価のものであると考えられる。前駆体中のスズと酸素とのモル比は、ICP等の化学分析とガス分析によりスズ及び酸素を定量し、定量した値から求めることができる。
塩化スズ(II)の水溶液と塩基性化合物の水溶液との混合に先立ち、塩化スズ(II)の水溶液に、水酸基を有する有機化合物を水に添加しておくことが有利であることが本発明者の検討の結果判明した。塩化スズ(II)の水溶液に水酸基を有する有機化合物を共存させておくことで、該水溶液中における二価のスズのイオンの量と、塩基性化合物の水溶液の添加量とを広い範囲で設定することができるからである。つまり、塩化スズ(II)及び塩基性化合物の添加量の自由度及び反応温度の自由度が高くなる。その結果、得られる塩素ドープ酸化スズ粒子の粒径や比表面積の調整が容易になる。また副生成物であるSnOの生成も抑制される。
水酸基を有する有機化合物としては、低分子量の化合物及び高分子化合物を用いることができる。水酸基を有する低分子量の有機化合物としては、例えば一価のアルコールを用いることができる。この一価アルコールは、脂肪族のものでもよく、脂環式のものでもよく、あるいは芳香族のものでもよい。脂肪族の一価のアルコールとしては、例えば炭素数1〜6の一価アルコールであるメタノール、エタノール、n−ブタノール、n−ヘキサノール等が挙げられる。脂環式の一価のアルコールとしてはシクロヘキサノール、テルピネオール等が挙げられる。芳香族の一価のアルコールとしては、例えばベンジルアルコール等が挙げられる。
一方、水酸基を有する高分子有機化合物としてはポリビニルアルコールやポリオールが挙げられる。ポリビニルアルコールとしては、変性されていないポリビニルアルコールそのもの及び変性されたポリビニルアルコールを用いることができる。ポリビニルアルコールは、完全けん化型と部分けん化型(けん化度=80〜90%)のどちらでもよい。変性されたポリビニルアルコールとしては、例えばカルボキシル基変性、アルキル変性、アセトアセチル変性、アクリル酸変性、メタクリル酸変性、ピロリドン変性、ビニリデン変性又はシラノール変性ポリビニルアルコール等を用いることができる。ポリビニルアルコール〔−CH(OH)CH2−〕nは、その平均重合度が、n=200〜30000、特にn=500〜10000のものを用いることが好ましい。この重合度は、例えばサイズ排除クロマトグラフィー(Size Exclusion Chromatography、SEC)を用いて測定することができる。一方、ポリオールとしては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、グリセロール、ヘキサントリオール、ブタントリオール、ペトリオールを用いることができる。また、メトキシエタノール、エトキシエタノール、プロポキシエタノール、ブトキシエタノール、メトキシエトキシエタノール、エトキシエトキシエタノール、プロポキシエトキシエタノール及びブトキシエトキシエタノール等のカルビトールを用いることもできる。
塩化スズ(II)の水溶液中における水酸基を有する有機化合物の濃度は、該有機化合物が一価のアルコールである場合、0.005〜30質量%、特に0.01〜10質量%であることが好ましい。この範囲内であれば、水酸基を有する有機化合物の効果が十分に発現し、また増粘等の問題も起こりにくく、均一な粒径を有するFTO粒子を首尾良く得ることができる。同様の理由により、水酸基を有する有機化合物が高分子化合物の場合、該有機化合物の濃度は、0.005〜10質量%、特に0.01〜5質量%であることが好ましい。
塩化スズ(II)の水溶液中における二価のスズと水酸基を有する有機化合物との比率は、Sn/OH(モル比)で表して、0.01〜150、特に0.03〜75であることが好ましい。この範囲内であれば、水中に未反応のSnイオンが残存しにくくなり、また副生成物であるスズの酸化物やスズのオキシ水酸化物が析出しづらくなる。
塩化スズ(II)の水溶液と塩基性化合物の水溶液との混合によって、塩素を含むスズの沈殿物が液中に生成する。この液中には副生成物として、スズのオキシ水酸化物が共存している場合がある。このオキシ水酸化物の除去を目的として、過酸化水素を添加して該オキシ水酸化物を酸化してもよい。過酸化水素は、所定の濃度に希釈された水溶液として添加されることが好ましい。この観点から、希釈された過酸化水素の濃度は0.1〜5質量%程度であることが好ましい。過酸化水素の添加量が多すぎると、目的とする塩素ドープ酸化スズが生成せず、二酸化スズが生成するだけになってしまう。
塩素を含むスズの沈殿物は、濾別後にリパルプ洗浄を行うことで不純物が除去される。リパルプ洗浄後、熱風乾燥機を用いて大気中で乾燥させた後、焼成炉において大気中で焼成処理に付される。この焼成処理によって、目的とする塩素ドープ酸化スズ粒子が得られる。焼成処理の温度は200〜800℃、特に200〜700℃が好ましく、時間は0.5〜24時間、特に0.5〜5時間が好ましい。焼成温度が高すぎると、塩素が揮発してしまい、二酸化スズが生成するだけになってしまう。
焼成処理は、上述のとおり大気中で行われる。つまり含酸素雰囲気中で行われる。これまでのハロゲンドープ酸化スズ粒子の製造における焼成は、結晶中に酸素欠損を生じさるために不活性雰囲気中又は還元性雰囲気中で行われることが通常であったところ、これとは対照的に本発明においては酸化性雰囲気中で焼成が行われる。したがって、本発明においては、理論上、焼成によって酸素欠損が生じることはない。つまり、得られた塩素ドープ酸化スズ粒子は、酸素欠損を実質的に非含有のものとなる。酸素欠損を実質的に非含有である塩素ドープ酸化スズ粒子の利点は、先に述べたとおりである。
このようにして得られた塩素ドープ酸化スズ粒子は、例えばビーズミル等のメディアミルを用いた解砕操作に付され、所定の粒径に調整される。解砕操作後の塩素ドープ酸化スズ粒子は、例えばこれを水や有機溶媒に分散させて、単分散した透明分散液とすることができる。分散には例えばビーズミルやペイントシェイカーなどを用いることができる。有機溶媒としては、例えば多価アルコール、モノアルコール、セロソルブ、カルビトール、ケトン又はそれらの混合溶媒などを用いることができる。この透明分散液における塩素ドープ酸化スズ粒子の濃度は0.1〜50質量%、特に1〜40質量%とすることが好ましい。この透明分散液は保存安定性の高いものである。この透明分散液は、例えばこれにバインダーを添加することで、インク原料として用いることができる。
前記の多価アルコールとしては、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、グリセロール、ヘキサントリオール、ブタントリオール、ペトリオール、グリセリン等が挙げられる。モノアルコールとしては、例えばメタノール、エタノール、プロパノール、ペンタノール、ヘキサノール、オクタノール、ノナノール、デカノール、テルピネオール、ベンジルアルコール、シクロヘキサノール等が挙げられる。カルビトールとしては、例えばメトキシエタノール、エトキシエタノール、プロポキシエタノール、ブトキシエタノール、メトキシエトキシエタノール、エトキシエトキシエタノール、プロポキシエトキシエタノール、ブトキシエトキシエタノール等が挙げられる。ケトンとしては、例えばアセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン、ジアセトンアルコール等が挙げられる。
このようにして得られた塩素ドープ酸化スズ粒子は、例えばその高い導電性を利用して、プリンタや複写機関連の帯電ローラー、感光ドラム、トナー、静電ブラシ等の分野、フラットパネルディスプレイ、CRT、ブラウン管、タッチパネル、太陽電池等の分野、塗料、インク、エマルジョンの分野等など、幅広い用途に適用できる。また、赤外光に対する反射率が高いことの利点を生かして、赤外光遮蔽材の用途に適用することもできる。
以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」は「質量%」を意味する。
〔実施例1〕
4.51gの水酸化ナトリウムを490gの純水に溶解し、塩基性水溶液を調整した。これをA液とする。これとは別に、純水100gが入った200mlのビーカーに、ポリビニルアルコール(平均重合度400〜600、完全けん化型、以下「PVA」という。)5.0gを加え、90℃に加熱しながら溶解させてPVA水溶液を得た。これをB液とする。更にこれらとは別のビーカーに、390gの純水を入れ、これに二塩化スズ12.57gを溶解させてスズ水溶液を得た。これをC液とする。次いで、先に準備したB液を、C液に全量加え、十分に混合した。このようにして母液を得た。これをD液とする。
D液をパドル翼で攪拌しながら90℃に加温し、この中に、先に準備したA液をチューブポンプで全量フィードした。このときのD液のpHは3〜4であった。A液の添加終了後、5分間エージングを行った。次いで30%過酸化水素水0.75gを純水30gに希釈した液(E液)をゆっくりとフィードした。その後、5分間エージングし、二酸化スズ前駆体を得た。
この前駆体を、濾紙(アドバンテック社製 5C)を用いてろ過し、ろ過後、1リットルの純水を加え通水洗浄した。このようにして得られたケーキを純水1リットルにリパルプ洗浄し再度、ろ過及び通水洗浄した。この操作を3回繰り返して前駆体粒子を洗浄した。洗浄ケーキを120℃設定した熱風乾燥機で大気中において10時間乾燥させた後、メノウ乳鉢で解砕した。この前駆体粒子中のハロゲン量をXRF(RIGAKU社製 ZSX PrimusII)で測定したころ、Clが0.5重量%含まれていた。この前駆体粒子を、電気炉にて大気中350℃で3時間焼成し、目的とする塩素ドープ酸化スズ粒子を得た。
〔実施例2〕
実施例1において、A液とD液との混合を室温(≒25℃)とし、かつE液(過酸化水素水)を添加しなかった。これら以外は実施例1と同様にして塩素ドープ酸化スズ粒子を得た。
〔実施例3〕
実施例2において、B液(PVA水溶液)を添加しなかった。これ以外は実施例1と同様にして塩素ドープ酸化スズ粒子を得た。
〔比較例1〕
本比較例は、過酸化水素の使用量を多量にした例である。実施例1において、E液として30%過酸化水素水7.5gを純水30gに希釈した液を用いた。これ以外は実施例1と同様にして塩素ドープ酸化スズ粒子を得た。
〔比較例2〕
本比較例は、前駆体の焼成温度を高温にした例である。実施例1において、前駆体の焼成温度を1000℃×3時間とした以外は実施例1と同様にして塩素ドープ酸化スズ粒子を得た。
〔比較例3〕
本比較例では、酸化スズ粒子として高純度化学社製の試薬を用いた。
〔評価1〕
実施例及び比較例で得られた酸化スズ粒子について、塩素含有率、XRD測定による構造同定、元素分析(スズ及び酸素)、BET窒素吸着法による比表面積、一次粒子の平均粒径、圧粉抵抗、可視光の全光線透過率及び波長1500nmでの赤外光透過率を以下の方法で測定した。それらの結果を以下の表1に示す。また、実施例1及び比較例3の粒子についてラマン分光測定を行った。その結果を図1に示す。ラマン分光測定は以下のとおりに行った。
〔塩素含有量〕
「ZSX PrimusII」リガク社製にて測定した。
〔XRD測定〕
・「RINT TTRIII」リガク社製
・装置専用の粉末XRD用のガラスホルダーに粉末を充填
・測定範囲:2θ(deg./CuKα)=5〜80°
・管電圧:50kV
・管電流:300mA
・サンプリング角:4°/min
〔元素分析(スズ及び酸素)〕
スズは、ICP(SPS−3000/SIIナノテクノロジー社製)を用いて定量した。酸素はガス分析装置(EMGA−620/堀場製作所社製)を用いて定量した。なお表1中、スズと酸素の合計量が100%にならない理由は、スズと酸素とで分析方法が異なるからである。
〔BET比表面積〕
・「フローソーブ2300」島津製作所社製にて測定した。
・測定粉末量:0.3g
・予備脱気条件:窒素流通下120℃×10分
〔一次粒子の平均粒径〕
上述の方法で測定したBET比表面積から換算した粒径を一次粒子の平均粒径とした。
〔圧粉抵抗〕
圧力500kgf/cm2で圧縮して得られたサンプルについて、三菱化学社製ロレスタPAPD−41を用い、四端子法に従い抵抗を測定した。
〔可視光の全光透過率〕
FTO粒子7.4gを市販のアクリル樹脂6.4gとともにトルエン:ブタノール=7:3(質量比)混合溶液10gに添加し、次いでペイントシェイカーを用いてビーズ分散して分散液を調製した。この分散液をPETフィルムに塗布し、1時間風乾して透明薄膜を形成した。この薄膜の膜圧を電子顕微鏡で観察したところ2μmであった。この薄膜を日本電色工業社製の光線透過率測定装置「NDH−1001DP」を用いて全光線透過率を測定した。
〔波長1500nmでの赤外光透過率〕
可視光の全光線透過率の測定で形成した前記の薄膜の赤外光透過率を、分光光度計「U−4000」日立ハイテクノロジー社製を用いて測定した。
〔ラマン分光測定〕
レーザーラマン「NRS−2100」日本分光社製を用い、顕微分析法(CCDモード)によって測定した。励起光には、波長514.5nmのレーザー(出力100mW)を使用し、50〜500cm-1の範囲を測定してスペクトルを得た。露光時間は10秒であり、積算回数は2回とした。測定試料はペレットとした。ペレットは、粉末0.1gを10φの金型に充填し、1ton/cm2プレスすることで作製した。
〔評価2〕
実施例1及び実施例3並びに比較例2で得られた酸化スズ粒子について、EDSを用いて酸素原子及び塩素原子の検出位置を同定した。その結果を図3ないし図5に示す。EDS分析は以下の手順で行った。
(1)よく解砕した粉末を極少量採取し、エタノールに希釈した希薄分散液を準備する。分散液中の粒子をコロジオン膜ですくい取り、FE−TEM測定用の試料を調製する。
(2)前記試料をFE−TEMで観察し、観察位置を決定する。測定位置を決定するために、単結晶からなる重なりのない一つの粒子を選び、かつ結晶軸のc軸方向から観察できるものを選ぶ(本操作は、観察面に対して垂直方向にSnとOとが混在するのを避けるための操作である。)。
(3)図2(a)及び(b)に示すとおり、酸化スズにおけるSnとOとの原子間隔が最も大きくなる<110>方向に線分析を行う。
EDSの測定装置及び測定条件は以下のとおりである。
・FE−TEM装置名:「JEM−ARM200F」日本電子社製
・EDX検出器:「SDDタイブ」(液体窒素フリータイブ)日本電子社製
・観察モード:STEMモード
・スポットサイズ(公称):1Å
・加速電圧:200kV
・線分析測定長:約30Å
・測定ステップ幅:約1.4Å
図1に示す結果から明らかなように、実施例1のFTO粒子は低波数領域にラマンスペクトルのピークが観察されることが判る。これらのピークは、約108cm-1、約122cm-1 、約133cm-1 及び約337cm-1の位置に観察された。これに対して、比較例3の粒子にはそのようなピークは観察されない。なお、図1には示していないが、他の実施例で得られた塩素ドープ酸化スズ粒子についても実施例1と同様のラマンスペクトルが観察された。
また図3ないし図5に示す結果から明らかなように、実施例1及び実施例3のFTO粒子では、Oの検出位置piとClの検出位置qiとが略一致しており、酸化スズにおけるOの位置にClが固溶されていることが示唆される。これに対して比較例2の粒子ではOの検出位置piにClは検出されていないことが判る。
更に、表1に示す結果から明らかように、実施例で得られた塩素ドープ酸化スズ粒子は、導電性が高く、可視光の透過率が高く、また比表面積の大きいものであることが判る。更にPCTの結果も良好であることが判る。なお、比較例2及び3は、酸素欠損を有さないのでPCTの結果は良好であるものの、酸素欠損を有さないことに起因して抵抗自体が高いことに留意すべきである。また比較例2及び3は、BET比表面積が小さいこと(すなわち粒子径が大きいこと)に起因して、塗膜の全光線透過率が低くなった。

Claims (9)

  1. ラマンスペクトル測定において、少なくとも108±5cm-1、122±5cm-1及び133±5cm-1にピークを示す構造を有することを特徴とする塩素ドープ酸化スズ粒子。
  2. 更に337±10cm-1にラマンスペクトルのピークが観察される請求項1に記載の塩素ドープ酸化スズ粒子。
  3. エネルギー分散X線分光法によってO及びClを分析したとき、Oの検出強度aの平均値aAVG及び最大値aMAXが最大値aMAX<平均値aAVG×3を満たす測定領域において、Oの検出強度aが、該測定領域でのOの検出強度の最大値aMAXの1/5以下である検出位置pと、Clの検出強度bが、該測定領域でのClの検出強度の最大値bMAXの1/2以下である検出位置qとが略一致することを特徴とする塩素ドープ酸化スズ粒子。
  4. 比表面積が10〜300m2/gである請求項1又は3に記載の塩素ドープ酸化スズ粒子。
  5. 一次粒子の平均粒径が1〜5000nmである請求項1又は3に記載の塩素ドープ酸化スズ粒子。
  6. 酸素欠損を実質的に非含有である請求項1又は3に記載の塩素ドープ酸化スズ粒子。
  7. エネルギー分散X線分光法によってO及びClを分析したとき、Oの検出強度aの平均値aAVG及び最大値aMAXが最大値aMAX<平均値aAVG×3を満たす測定領域において、Oの検出強度aが、該測定領域でのOの検出強度の最大値aMAXの1/5以下である検出位置pと、Clの検出強度bが、該測定領域でのClの検出強度の最大値bMAXの1/2以下である検出位置qとが略一致する請求項1に記載の塩素ドープ酸化スズ粒子。
  8. 塩化スズ(II)と塩基性化合物とを水中で混合して、塩素を含むスズの沈殿物を生成させ、該沈殿物を含酸素雰囲気下に焼成することを特徴とする塩素ドープ酸化スズ粒子の製造方法。
  9. 水酸基を有する有機化合物を更に混合する請求項8に記載の製造方法。
JP2013504646A 2011-03-16 2012-03-01 塩素ドープ酸化スズ粒子及びその製造方法 Pending JPWO2012124499A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011058411 2011-03-16
JP2011058411 2011-03-16
PCT/JP2012/055270 WO2012124499A1 (ja) 2011-03-16 2012-03-01 塩素ドープ酸化スズ粒子及びその製造方法

Publications (1)

Publication Number Publication Date
JPWO2012124499A1 true JPWO2012124499A1 (ja) 2014-07-17

Family

ID=46830574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013504646A Pending JPWO2012124499A1 (ja) 2011-03-16 2012-03-01 塩素ドープ酸化スズ粒子及びその製造方法

Country Status (4)

Country Link
US (1) US20130344336A1 (ja)
JP (1) JPWO2012124499A1 (ja)
TW (1) TW201246228A (ja)
WO (1) WO2012124499A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5711981B2 (ja) * 2011-01-19 2015-05-07 三井金属鉱業株式会社 酸化スズ粒子及びその製造方法
JP6019214B2 (ja) * 2013-10-25 2016-11-02 三井金属鉱業株式会社 導電性粒子及びその製造方法
JP5942054B1 (ja) * 2014-12-19 2016-06-29 三井金属鉱業株式会社 フッ素含有酸化スズ粒子及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2096796T3 (es) * 1992-04-25 1997-03-16 Merck Patent Gmbh Pigmento conductor de la electricidad.
JP3456540B2 (ja) * 1993-06-14 2003-10-14 三井金属鉱業株式会社 導電性超微粉二酸化スズの製造方法
JP5058580B2 (ja) * 2006-12-19 2012-10-24 石原産業株式会社 二酸化スズ前駆体粒子の分散体の製造方法
WO2010001818A1 (ja) * 2008-07-02 2010-01-07 石原産業株式会社 酸化スズ粒子及びその製造方法
US8491822B2 (en) * 2009-07-21 2013-07-23 Mitsui Mining & Smelting Co., Ltd. Tin oxide particles and process for producing the same

Also Published As

Publication number Publication date
US20130344336A1 (en) 2013-12-26
TW201246228A (en) 2012-11-16
WO2012124499A1 (ja) 2012-09-20

Similar Documents

Publication Publication Date Title
JP5788694B2 (ja) フッ素ドープ酸化スズ粒子及びその製造方法
US8491822B2 (en) Tin oxide particles and process for producing the same
Ouni et al. Structural and electrical properties of the sol–gel prepared Sr1− xErxSnO3− δ compounds
US9273073B2 (en) Tin dioxide nanopartcles and method for making the same
JP5835860B2 (ja) 熱線遮蔽組成物とその製造方法
Jin et al. Solution synthesis of pure 2H CuFeO 2 at low temperatures
WO2012124499A1 (ja) 塩素ドープ酸化スズ粒子及びその製造方法
CN116888076A (zh) 掺杂金属的硫化钼粉体及其制造方法
US8916070B2 (en) Tin oxide particles and method for producing same
JP5564207B2 (ja) 赤外線遮蔽材料、赤外線遮蔽用塗料、赤外線遮蔽膜、並びに、赤外線遮蔽基材
JP5829386B2 (ja) 結晶性の高い微細なito粉末とその用途および製造方法等
CN110446687B (zh) 用于生产镍氧化物纳米颗粒的方法和使用其生产的镍氧化物纳米颗粒
CN114653382B (zh) 一种p-n型硫化亚锡-锡酸锌半导体材料及其制备方法和应用
JP5514436B2 (ja) 酸化錫層を有する白色導電性粉末の製造方法
KR101776610B1 (ko) 전기적 특성이 우수한 ito 투명도전막의 제조 방법
Taniguchi et al. Insights into the solvothermal reaction for synthesizing tin (iv) oxide porous spheres
TWI568676B (zh) ITO powder and its manufacturing method
JP2013087027A (ja) 錫ドープ酸化インジウム粒子
JP5592067B2 (ja) 導電性酸化錫粉末の製造方法
Narayan et al. Copper oxide nanoparticles: synthesis and characterization
WO2024029595A1 (ja) モリブデン炭化物、複合体、触媒インク、モリブデン炭化物の製造方法、及び複合体の製造方法
WO2024029558A1 (ja) 複合体、触媒インク、及び複合体の製造方法
JP5486752B2 (ja) 棒状酸化錫インジウム粉末を含有する熱線遮蔽組成物とその製造方法
KR20200128973A (ko) 산화니켈 입자 및 산화니켈입자의 제조 방법
Hemalatha et al. Synthesis of Zinc-Doped Copper Oxide Nanoparticles: Structural and Morhphological Characterizations

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20151217