JPWO2012111102A1 - ハイブリッド車両の排気浄化システムおよびその制御方法 - Google Patents

ハイブリッド車両の排気浄化システムおよびその制御方法 Download PDF

Info

Publication number
JPWO2012111102A1
JPWO2012111102A1 JP2012530038A JP2012530038A JPWO2012111102A1 JP WO2012111102 A1 JPWO2012111102 A1 JP WO2012111102A1 JP 2012530038 A JP2012530038 A JP 2012530038A JP 2012530038 A JP2012530038 A JP 2012530038A JP WO2012111102 A1 JPWO2012111102 A1 JP WO2012111102A1
Authority
JP
Japan
Prior art keywords
leakage
connection
unit
power supply
catalyst device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012530038A
Other languages
English (en)
Other versions
JP5288057B2 (ja
Inventor
浩司 勝田
浩司 勝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Application granted granted Critical
Publication of JP5288057B2 publication Critical patent/JP5288057B2/ja
Publication of JPWO2012111102A1 publication Critical patent/JPWO2012111102A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/16Control strategies specially adapted for achieving a particular effect for reducing engine exhaust emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/47Engine emissions
    • B60Y2300/474Catalyst warm up
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

ハイブリッド車両の排気浄化システムは、電源部から電力が供給され加熱される触媒装置(140)と、触媒装置の一方端を電源部の負極ノード(GL1)に接続する第1接続部(SW1)と、触媒装置の他方端を電源部の正極ノード(PL1)に接続する第2接続部(SW2)と、電源部からの漏電を検出する漏電検出部(80)と、第1接続部および第2接続部の各々の開閉を制御する制御部(150)とを含む。制御部は、第1接続部および第2接続部のいずれか一方を閉じて他方を開いた漏電確認状態において漏電検出部によって漏電が検出されなかった場合には、他方を閉じて触媒装置に通電し、漏電確認状態において漏電が検出された場合には、触媒装置への通電を行なわない。

Description

この発明は、ハイブリッド車両の排気浄化システムおよびその制御方法に関し、特に、電力が供給され加熱される触媒装置を含むハイブリッド車両の排気浄化システムおよびその制御方法に関する。
一般的に、内燃機関を搭載する車両には、排気ガスを浄化するために触媒装置が設けられている。この触媒装置は、温度がある程度上昇しないと効果を発揮しないので、内燃機関のそばに配置され温度がすぐに高くなるように考慮されている。
しかし、内燃機関を始動した直後のまだ触媒装置が暖まっていない間は、浄化作用が完全ではない。また、モータのみでの走行が可能なハイブリッド自動車は、内燃機関を必要に応じて運転させるが、内燃機関を始動させるときに排気によって触媒装置が暖まっているとは限らない。このため、内燃機関を始動させる前に電力を用いて触媒装置を暖めておくことが検討されている。このような触媒装置は電気加熱式触媒(Electrical Heated Catalyst、以下「EHC」ともいう)と呼ばれる。EHCは、触媒装置自体に通電することにより発熱させるものである。
特開2010−223159号公報(特許文献1)は、EHCを搭載した車両において、EHC通電時の漏電を防止しつつエミッションの悪化を抑制する技術を開示する。この技術では、プラグインハイブリッド車両において、ECUは、EHCへの通電要求時に先ず駆動電圧を50Vに抑えた低電圧駆動を実行し、EHCの抵抗値に基づいてEHCにおける凝縮水の結露に起因する漏電の発生有無を検出する。その結果、漏電が生じていると判別された場合には、EHCへの通電が禁止され、一方で、漏電が生じていないと判別された場合には、駆動電圧が通常駆動時の200Vに昇圧されることによって、EHCによる触媒暖機が実行される。
特開2010−223159号公報 特開2002−21541号公報 特開2003−278528号公報 特開平6−17697号公報
上記の技術では、高圧電源とEHCがEHC駆動装置を介して接続されている状態で、漏電等を検知するとEHCへの通電を遮断するものであるため、高圧電源の保護が十分でない可能性がある。EHCにおける漏電の検出については、高圧電源の保護に関しまだ改善の余地がある。
この発明の目的は、漏電発生時の高圧電源の保護が強化されたハイブリッド車両の排気浄化システムおよびその制御方法を提供することである。
この発明は、要約すると、電源部と、電源部から電力を受けるモータと、モータに併用される内燃機関とを含むハイブリッド車両の排気浄化システムであって、電源部から電力が供給され加熱される触媒装置と、触媒装置の一方端を電源部の負極ノードに接続する第1接続部と、触媒装置の他方端を電源部の正極ノードに接続する第2接続部と、電源部からの漏電を検出する漏電検出部と、第1接続部および第2接続部の各々の開閉を制御する制御部とを含む。制御部は、第1接続部および第2接続部のいずれか一方を閉じて他方を開いた漏電確認状態において漏電検出部によって漏電が検出されなかった場合には、他方を閉じて触媒装置に通電し、漏電確認状態において漏電が検出された場合には、触媒装置への通電を行なわない。
好ましくは、制御部は、漏電確認状態において第1接続部が閉じて第2接続部が開くように第1接続部および第2接続部の制御を行なう。
好ましくは、漏電検出部は、電源部からの漏電と触媒装置からの漏電との両方を検出する。
好ましくは、漏電検出部は、第1接続部と第2接続部を開いた状態で電源部からの漏電を検出し、その後漏電確認状態において第1接続部が閉じて第2接続部が開くように第1接続部および第2接続部の制御を行って触媒装置からの漏電を検出する。
この発明は、他の局面では、上記いずれかの排気浄化システムを含むハイブリッド車両である。
この発明はさらに他の局面では、蓄電装置を含む電源部と、電源部によって駆動されるモータと、モータに併用される内燃機関とを含むハイブリッド車両の排気浄化システムの制御方法である。排気浄化システムは、電源部から電力が供給され加熱される触媒装置と、触媒装置の一方端を電源部の負極ノードに接続する第1接続部と、触媒装置の他方端を電源部の正極ノードに接続する第2接続部と、電源部からの漏電を検出する漏電検出部と、第1接続部および第2接続部の各々の開閉を制御する制御部とを含む。制御方法は、第1接続部および第2接続部のいずれか一方を閉じて他方を開いた漏電確認状態に排気浄化システムを設定するステップと、漏電検出部によって漏電を検出するステップと、漏電を検出するステップにおいて、漏電が検出されなかった場合には、他方を閉じて触媒装置に通電し、漏電が検出された場合には、触媒装置への通電を行なわないように、第1接続部および第2接続部を制御するステップとを含む。
本発明によれば、漏電発生時の高圧電源の保護が強化されたハイブリッド車両の排気浄化システムおよびその制御方法を提供することである。
本発明の実施の形態の排気浄化システムが適用されるハイブリッド車の全体ブロック図である。 図1の排気管の伸長方向に沿ったEHC140の概略構成を示した断面図である。 EHCにおける漏電の発生と高圧電源の短絡について説明するための図である。 図3のリーク検出部80の構成を示す回路図である。 図3で説明した漏電検出のシーケンスを説明するためのフローチャートである。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
図1は、本発明の実施の形態の排気浄化システムが適用されるハイブリッド車の全体ブロック図である。
図1を参照して、ハイブリッド車両1は、エンジン10と、モータジェネレータMG1と、モータジェネレータMG2と、動力分割機構40と、減速機50と、駆動輪55とを含む。
エンジン10は、燃焼室に吸入された空気と燃料との混合気を燃焼させたときに生じる燃焼エネルギによって、クランクシャフトを回転させる駆動力を発生する内燃機関である。モータジェネレータMG1およびモータジェネレータMG2は、交流電動機であり、たとえば、三相交流同期電動機である。
ハイブリッド車両1は、エンジン10およびモータジェネレータMG2の少なくとも一方から出力される駆動力によって走行する。エンジン10が発生する駆動力は、動力分割機構40によって2経路に分割される。すなわち、一方は減速機50を介して駆動輪55へ駆動力が伝達される経路であり、もう一方はモータジェネレータMG1へ駆動力が伝達される経路である。
動力分割機構40は、サンギヤと、ピニオンギヤと、キャリアと、リングギヤで構成される遊星歯車を含む。ピニオンギヤは、サンギヤおよびリングギヤと係合する。キャリアは、ピニオンギヤを自転可能に支持するとともに、エンジン10のクランクシャフトに連結される。サンギヤは、モータジェネレータMG1の回転軸に連結される。リングギヤはモータジェネレータMG2の回転軸および減速機50に連結される。
そして、エンジン10、モータジェネレータMG1およびモータジェネレータMG2が、動力分割機構40を介して連結されることによって、エンジン10、モータジェネレータMG1およびモータジェネレータMG2の回転速度は、共線図において直線で結ばれる関係になる。
ハイブリッド車両1は、インバータ60と、電源部75をさらに含む。電源部75は、平滑コンデンサC1と、電圧コンバータ90と、システムメインリレー72と、蓄電装置70とを含む。
インバータ60は、モータジェネレータMG1およびモータジェネレータMG2の駆動を制御する。モータジェネレータMG1は、動力分割機構40によって分割されたエンジン10の動力を用いて発電する。モータジェネレータMG1によって発電された電力は、インバータ60により交流から直流に変換され、蓄電装置70に蓄えられる。
モータジェネレータMG2は、蓄電装置70に蓄えられた電力およびモータジェネレータMG1により発電された電力の少なくとも一方を用いて駆動力を発生する。そして、モータジェネレータMG2の駆動力は、減速機50を介して駆動輪55に伝達される。なお、図1では、駆動輪55は前輪として示されているが、前輪に代えて、または前輪とともに、モータジェネレータMG2によって後輪を駆動してもよい。
なお、車両の制動時等には、減速機50を介して駆動輪55によりモータジェネレータMG2が駆動され、モータジェネレータMG2が発電機として動作する。これにより、モータジェネレータMG2は、車両の運動エネルギを電力に変換する回生ブレーキとしても機能する。そして、モータジェネレータMG2により発電された電力は、蓄電装置70に蓄えられる。
蓄電装置70としては、たとえば、鉛蓄電池、ニッケル水素電池、リチウムイオン電池等の二次電池や、電気二重層コンデンサ等の大容量キャパシタなどを用いることができる。
インバータ60は、インバータ60−1と、インバータ60−2とを含む。インバータ60−1およびインバータ60−2は、電圧コンバータ90に対して互いに並列に接続される。
インバータ60−1は、電圧コンバータ90とモータジェネレータMG1との間に設けられる。インバータ60−1は、電子制御ユニット(Electronic Control Unit、以下「ECU」という)150からの制御信号S1に基づいてモータジェネレータMG1の駆動を制御する。
インバータ60−2は、電圧コンバータ90とモータジェネレータMG2との間に設けられる。インバータ60−2は、ECU150からの制御信号S2に基づいてモータジェネレータMG2の駆動を制御する。
電圧コンバータ90は、蓄電装置70とインバータ60との間で電圧変換を行なう。電圧コンバータ90は、蓄電装置70の電圧(より正確には、正極線PL0と負極線GL0との間の電圧)をECU150からの制御信号S3が示す目標電圧値となるように昇圧してインバータ60に出力する。これにより、正極線PL1と負極線GL0との電圧(以下、「高圧側の直流電圧VH」あるいは単に「電圧VH」ともいう)は、制御信号S3が示す目標電圧値に制御される。
平滑コンデンサC1は、正極線PL1および負極線GL1の間に接続される。なお、負極線GL1と負極線GL0とは、電圧コンバータ90の内部で接続されている。平滑コンデンサC1は、高圧側の直流電圧VHを平滑する。
また、ハイブリッド車両1は、電流センサ120、電圧センサ121、回転速度センサ122,123,124、温度センサ125をさらに含む。
電圧センサ121は、蓄電装置70の端子間の電圧VBを測定する。電流センサ120は、電圧センサ121とともに蓄電装置70の充電状態(SOC:State Of Charge)を監視するために、蓄電装置70に流れる電流IBを検知する。
回転速度センサ122,123,124は、それぞれエンジン10の回転速度Ne、モータジェネレータMG1の回転速度Nm1、モータジェネレータMG2の回転速度Nm2を検出する。温度センサ125は、EHC140の温度Tehcを検出する。これらの各センサは、検出結果をECU150に送信する。
ECU150は、図示しないCPU(Central Processing Unit)およびメモリを内蔵し、当該メモリに記憶されたマップおよびプログラムに基づいて、所定の演算処理を実行するように構成される。あるいは、ECU150の少なくとも一部は、電子回路等のハードウェアにより所定の数値・論理演算処理を実行するように構成されてもよい。
ECU150は、各センサなどの情報に基づいて上述した制御信号S0〜S4を生成し、その生成した制御信号S0〜S4を各機器に出力する。たとえば、ECU150は、各センサなどの情報に基づいてモータジェネレータMG1のトルク指令値TgcomおよびモータジェネレータMG2のトルク指令値Tmcomを設定し、モータジェネレータMG1のトルクTgをトルク指令値Tgcomに一致させる制御信号S1およびモータジェネレータMG2のトルクTmをトルク指令値Tmcomに一致させる制御信号S2を生成して、それぞれインバータ60−1、インバータ60−2に出力する。また、ECU150は、各センサなどの情報に基づいてエンジン10の燃料噴射量の指令値を設定し、エンジン10の実際の燃料噴射量をその指令値に一致させる制御信号S4を生成してエンジン10に出力する。
また、ECU150は、制御信号S5によって電気加熱式触媒(EHC)140の通電も制御する。エンジン10から排出される排気ガスは、排気通路130を通って大気に排出される。排気通路130の途中には、EHC140が設けられている。
EHC140は、排気ガスを浄化する触媒を電気によって加熱が可能に構成される。EHC140は、ジャンクションボックス100、電圧コンバータ90およびシステムメインリレー72を経由して蓄電装置70に接続され、供給された電力で触媒を加熱する。EHC140に設けられた触媒が加熱されるので浄化性能が向上される。なお、EHC140には、種々の公知のEHCを適用することができる。
システムメインリレー72は、制御信号S0に基づいてオン/オフを切り替えることができる。ジャンクションボックス100は、制御信号S5に基づいてEHC140に電力を供給するか否かを切り替えることができる。後に図3で説明するように、ジャンクションボックス100は、正極線PL1との接続と負極線GL1との接続をリレーSW1,SW2によって独立して制御可能なように構成されている。なお、EHC140への電源供給元を正極線PL1および負極線GL1に代えて正極線PL0および負極線GL0にしても良い。
図2は、図1の排気管の伸長方向に沿ったEHC140の概略構成を示した断面図である。
図2を参照して、EHC140は、ケース410、絶縁部材420、EHC担体430、温度センサ125A,125B、正電極450、正電極皮膜部460、負電極470及び負電極皮膜部480を含んで構成される。EHC140は、電気加熱式触媒装置の一例である。
ケース410は、たとえばステンレスなどの金属材料で構成されたEHC140の筐体であり、その上下流側の端部において、連結部材(図示せず)を介して図1の排気通路130と接続されている。
絶縁部材420は、ケース410の内周面を覆うように設置されており、断熱性と共に電気的絶縁性を有している。絶縁部材420としては、たとえば、アルミナなどの絶縁材料が用いられる。
EHC担体430は、排気方向と直交する断面がハニカム状をなす導電性の触媒担体である。なお、担体とは吸着や触媒活性を示す物質を固定する(担持する)土台となる物質のことをいう。EHC担体430には、図示しない酸化触媒が担持されており、EHC430を通過する排気を適宜浄化可能に構成されている。尚、EHC担体430に担持される触媒は、三元触媒であってもよい。
正電極450は、一方端がEHC担体430の排気上流側の端部近傍に固定された正電圧印加用の電極である。正電極450の他方端は、図1のリレーSW2に接続されている。尚、正電極450は、一部が電気的絶縁性を有する樹脂製の正電極皮膜部460に覆われており、ケース410と正電極450とが電気的絶縁状態に維持されている。
上流側温度センサ125Aは、EHC担体430より上流の排気管内に配置され、EHC担体430の近傍の温度を検出可能に構成されたセンサである。上流側温度センサ125Aは、図1のECU150と電気的に接続されており、検出された温度は、ECU150により一定又は不定の周期で参照される。
負電極470は、一方端がEHC担体430の排気下流側の端部近傍に固定された基準電位供給用の電極である。負電極470の他方端は、図1のリレーSW1に接続されている。尚、負電極470は、一部が電気的絶縁性を有する樹脂製の負電極皮膜部480に覆われており、ケース410と負電極470とが電気的絶縁状態に維持されている。
下流側温度センサ125Bは、EHC担体430より下流の排気管内に配置され、EHC担体430の近傍の温度を検出可能に構成されたセンサである。下流側温度センサ125Bは、ECU150と電気的に接続されており、検出された温度は、ECU150により一定又は不定の周期で参照される。
このような構成を有するEHC140では、負電極470の電位を基準として正電極450に正の電圧が印加された場合に、導電性のEHC担体430に電流が流れ、EHC担体430が発熱する。この発熱によりEHC担体430に担持された酸化触媒の昇温が促され、EHC140は速やかに触媒活性状態に移行する。
尚、このようなEHC140の構成は、一例に過ぎず、例えばEHC担体の構成及び各電極の配置及び制御態様などは公知の種々の態様であってもよい。
ここで、EHC140では、その熱容量を十分に担保する目的から、EHC担体430として、電気抵抗が比較的大きい素材(例えば、セラミックス)が使用されている。
また、正電極450と負電極470との間には、直流駆動電圧Vehcが供給される。EHC担体430には、この直流駆動電圧Vehcに応じた駆動電流Iehcが生じ、この駆動電流IehcとEHC担体430の電気抵抗Rehcにより生じる熱量に応じてEHC担体430が発熱する。
図3は、EHCにおける漏電の発生と高圧電源の短絡について説明するための図である。
図3を参照して、蓄電装置70の負極には接地ノード(ボディアース)との間に直列にコンデンサ83とリーク検出部80とが接続されている。
ジャンクションボックス100は、正極線PL1をEHC140の正電極450に接続するリレーSW2と、負極線GL1をEHC140の負電極470に接続するリレーSW1と、リレーSW1に直列接続されたフューズF1とを含む。
ここで、EHC140のポイントP1において漏電が発生し、ポイントP2においても漏電が発生し、ポイントP3においてボディアースに接続された状態になっているとする。この時に、リレーSW1とリレーSW2とを同時に接続してしまうと、正極線PL1と負極線GL1がEHC140の抵抗体を経由せずにケースによって短絡する。すると蓄電装置70に過大な電流が流れる可能性があるので蓄電装置70を保護する必要がある。またケースはボディアースに接続されているので、ボディアースにも蓄電装置70の高電圧が印加される恐れがある。
しかし、EHC140部分にリーク検出部80とは別に他のリーク検出部を設けるのでは、回路が増加し車両の製造コストが上昇する。
そこで、本実施の形態の排気浄化システムでは、リレーSW1を閉じた状態とする一方でリレーSW2を開いた状態として、リーク検出部80によるリーク検出を行なう。この状態でリーク検出を行なえば、正電極450に高電圧がかかっていないので、蓄電装置70から電流が流れることはない。すなわち、ポイントP1およびP2の2か所で漏電が発生していたとしても、リレーSW2が開いていることにより蓄電装置70の正極から負極に至る電流経路が形成されないので、蓄電装置70から電流が流れることはない。また、リーク検出部80によってEHC140に発生した漏電も検出できるので新たなリーク検出部を設ける必要がない。
図4は、図3のリーク検出部80の構成を示す回路図である。
図4を参照して、回路系200は図1に示す車両システムを1つの機能ブロックにより示したものである。また、図4に示す接地ノードは車両においてはボディアース(車体)に対応する。
リーク検出部80は、信号発生部である発振回路81と、検出抵抗82と、バンドパスフィルタ(BPF)84と、オフセット回路および増幅回路からなる回路ブロック85と、過電圧保護用ダイオード87と、抵抗86と、コンデンサ88と、制御回路110とを含む。
発振回路81は、ノードNAに所定周波数(所定周期Tp)で変化するパルス信号SIGを印加する。検出抵抗82は、ノードNAおよびノードN1の間に接続される。カップリングコンデンサ83は、漏電検出対象となる蓄電装置70とノードN1との間に接続される。バンドパスフィルタ84は、ノードN1に入力端子が接続され、ノードN2に出力端子が接続される。バンドパスフィルタ84の通過帯域周波数は、パルス信号SIGの周波数に合わせて設計される。
回路ブロック85は、ノードN2とノードN3との間に接続される。回路ブロック85は、バンドパスフィルタ84を通過したパルス信号のうち、絶縁抵抗検出時に設定されるしきい値電圧付近の電圧変化を増幅する。過電圧保護用ダイオード87は、定電圧ノードにカソードが接続され、ノードNBにアノードが接続されて、サージ電圧(高電圧,負電圧)を除去する。抵抗86はノードN3とノードNBとの間に接続される。コンデンサ88はノードNBと接地ノードとの間に接続される。抵抗86およびコンデンサ88は、回路ブロック85から出力される信号のノイズを除去するフィルタとして機能する。
制御回路110は、発振回路81を制御する。また制御回路110は、ノードNBの電圧を検出して、検出電圧に基づいて絶縁抵抗Riの低下を検出する。制御回路110は、発振指令部111と、A/D変換部112と、判定部113とを含む。
発振指令部111は、発振回路81に対してパルス信号SIGを発生するよう指示を与えるとともに、パルス信号SIGのデューティ比を変更するよう指示する。A/D変換部112は所定のサンプリング周期Tsにより検出したノードNBの電圧(検出電圧)をA/D変換する。サンプリング周期Tsはパルス信号SIGの周期Tpよりも十分短いのでノードNBの最大電圧(ピーク電圧Vp)および最小電圧を検出できる。判定部113は、A/D変換部112から取得したピーク電圧Vpの値と、しきい値とを比較する。これにより、制御回路110は、絶縁抵抗Riの低下有無を検出する。
次に、絶縁抵抗Riの低下を検出する動作について説明する。発振回路81によって発生されたパルス信号SIGは、検出抵抗82、カップリングコンデンサ83、絶縁抵抗Ri、およびバンドパスフィルタ84を含んで構成された直列回路に印加される。これにより、検出抵抗82およびカップリングコンデンサ83の接続点に相当するノードN1には、絶縁抵抗Riおよび検出抵抗82(抵抗値Rd)の分圧比:Ri/(Rd+Ri)とパルス信号SIGの振幅(電源電圧である電圧+B)との積に関連する値を波高値とするパルス電圧が発生する。なお電圧+Bは、たとえば補機バッテリの電圧としてもよいが、これに限定されるものではない。
ノードN1に発生したパルス電圧は、バンドパスフィルタ84によってパルス信号SIGの周波数以外の成分が減衰される。バンドパスフィルタ84を通過したパルス信号SIGのうち、しきい値電圧付近の電圧変化のみが回路ブロック85によって増幅される。回路ブロック85から出力される信号はノードNBに伝達される。ノードN3からノードNBに信号が伝達されるに際して、過電圧保護用ダイオード87によりサージ電圧が除去されるとともに、抵抗86およびコンデンサ88によってノイズが除去される。
絶縁抵抗Riの正常時には、Ri>>Rdである。Riが高くなるに従って、ピーク電圧Vpは電圧+Bにほぼ等しくなる。一方、絶縁抵抗Riの低下時には、分圧比:Ri/(Rd+Ri)が低下するので、ピーク電圧Vpが低下する。ピーク電圧Vpの低下を検出することにより、漏電の発生を検出することができる。
図5は、図3で説明した漏電検出のシーケンスを説明するためのフローチャートである。
図5を参照して、まず処理が開始されると、ステップST1において、図1のECU150は、運転者が車両の起動スイッチを操作することにより信号IGがOFF状態からON状態に変化したか否かを検出する。OFF状態からON状態への変化が検出されない間には、ステップST1の処理が繰り返し実行される。
ステップST1において信号IGがOFF状態からON状態に変化したことが検出された場合には、ステップST2に処理が進む。ステップST2では、ECU150は、図3のリレーSW1およびリレーSW2をともにOFF状態に制御する。
そしてステップST3に処理が進み、ECU150は、システムメインリレー(SMR)の接続シーケンスを開始する。この接続シーケンスは、コンデンサC0,C1のチャージ時にスパークが発生しないように、まず制限抵抗を介した接続を行ない、コンデンサC0,C1に蓄電装置70から充電が行なわれたあとに、制限抵抗を介さず接続されるようにシステムメインリレー72が制御される。
好ましくは、リレーSW1,SW2が共に開状態であるときに、この接続シーケンス中において、EHC140以外の部分の漏電検出をリーク検出部80で行なっておくと良い。たとえば、最初にGL1を制限抵抗を介して蓄電装置70の負極につなぎ、蓄電装置70の正極は開放状態となるようにシステムメインリレー72を制御し、この状態で漏電検出をしておけばよい。そして、漏電が検出されなかったときは蓄電装置70の正極が電圧コンバータ90に接続される。
ステップST4では、システムメインリレー72の接続処理が完了したか否かが判断される。ステップST4でまだコンデンサC0,C1の充電が不十分である場合には、ステップST4で時間待ちが行なわれる。ステップST4では、システムメインリレー72の接続処理が完了したと判断された場合には、ステップST5に処理が進む。
ステップST5では、図3のリレーSW1がOFF状態からON状態になるように制御が行なわれる。そして、ステップST6では、図4で説明した漏電検出のシーケンスが開始される。
そして、ステップST7において漏電検出動作の結果が漏電ありであったか否かが判断される。ステップST7において漏電なしと判断された場合にはステップST8に処理が進む。ステップST8では、リレーSW2もOFF状態からON状態になるように制御が行なわれる。そしてステップST9においてEHCに通電が可能となる。
一方、ステップST7において漏電ありと判断された場合にはステップST10に処理が進む。ステップST10では、リレーSW1をON状態からOFF状態になるように制御が行なわれる。そしてステップST11においてEHCへの通電が禁止される。
ステップST9またはステップST11の処理の次にはステップST12に処理が進み、制御はメインルーチンに戻される。メインルーチンでは、漏電が検出されていれば、警告ランプなどにより、運転者に異常が報知されたり、異常の履歴が記憶されたりする。
以上説明したシーケンスで漏電検出を行なうことで、EHC部分に特別な漏電検出部を設けなくても蓄電装置70のリーク検出部80をEHCの漏電検出に共用することができる。これにより、コストの上昇を避けつつ、車両の信頼性を高めることができる。また、正極線PL1をEHC140に接続する前にリーク検出部80によってEHC140の漏電を検出するので、正極線PL1と負極線GL1の短絡を避けることができ蓄電装置70の保護を図ることができる。
今回開示された実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 ハイブリッド車両、10 エンジン、40 動力分割機構、50 減速機、55 駆動輪、60 インバータ、70 蓄電装置、72 システムメインリレー、75 電源部、80 リーク検出部、81 発振回路、82 検出抵抗、83 カップリングコンデンサ、84 バンドパスフィルタ、85 回路ブロック、86 抵抗、87 過電圧保護用ダイオード、88,C0,C1 コンデンサ、90 電圧コンバータ、100 ジャンクションボックス、110 制御回路、111 発振指令部、112 A/D変換部、113 判定部、120 電流センサ、121 電圧センサ、122,123,124 回転速度センサ、125,125A,125B 温度センサ、130 排気通路、200 回路系、410 ケース、420 絶縁部材、430 EHC担体、450 正電極、460 正電極皮膜部、470 負電極、480 負電極皮膜部、C1 平滑コンデンサ、F1 フューズ、GL0,GL1 負極線、MG1,MG2 モータジェネレータ、PL0,PL1 正極線、SW1,SW2 リレー。

Claims (6)

  1. 電源部(75)と、前記電源部から電力を受けるモータ(MG2)と、前記モータに併用される内燃機関(10)とを含むハイブリッド車両の排気浄化システムであって、
    前記電源部から電力が供給され加熱される触媒装置(140)と、
    前記触媒装置の一方端を前記電源部の負極ノード(GL1)に接続する第1接続部(SW1)と、
    前記触媒装置の他方端を前記電源部の正極ノード(PL1)に接続する第2接続部(SW2)と、
    前記電源部からの漏電を検出する漏電検出部(80)と、
    前記第1接続部および前記第2接続部の各々の開閉を制御する制御部(150)とを備え、
    前記制御部は、前記第1接続部および前記第2接続部のいずれか一方を閉じて他方を開いた漏電確認状態において前記漏電検出部によって漏電が検出されなかった場合には、前記他方を閉じて前記触媒装置に通電し、前記漏電確認状態において漏電が検出された場合には、前記触媒装置への通電を行なわない、ハイブリッド車両の排気浄化システム。
  2. 前記制御部は、前記漏電確認状態において前記第1接続部が閉じて前記第2接続部が開くように前記第1接続部および前記第2接続部の制御を行なう、請求項1に記載のハイブリッド車両の排気浄化システム。
  3. 前記漏電検出部は、前記電源部からの漏電と前記触媒装置からの漏電との両方を検出する、請求項1に記載のハイブリッド車両の排気浄化システム。
  4. 前記漏電検出部は、前記第1接続部と前記第2接続部を開いた状態で前記電源部からの漏電を検出し、その後前記漏電確認状態において前記第1接続部が閉じて前記第2接続部が開くように前記第1接続部および前記第2接続部の制御を行って前記触媒装置からの漏電を検出する、請求項1に記載のハイブリッド車両の排気浄化システム。
  5. 請求項1〜4のいずれか1項に記載の排気浄化システムを備えるハイブリッド車両。
  6. 蓄電装置を含む電源部と、前記電源部によって駆動されるモータと、前記モータに併用される内燃機関とを含むハイブリッド車両の排気浄化システムの制御方法であって、
    前記排気浄化システムは、
    前記電源部から電力が供給され加熱される触媒装置と、
    前記触媒装置の一方端を前記電源部の負極ノードに接続する第1接続部と、
    前記触媒装置の他方端を前記電源部の正極ノードに接続する第2接続部と、
    前記電源部からの漏電を検出する漏電検出部と、
    前記第1接続部および前記第2接続部の各々の開閉を制御する制御部とを含み、
    前記制御方法は、
    前記第1接続部および前記第2接続部のいずれか一方を閉じて他方を開いた漏電確認状態に前記排気浄化システムを設定するステップと、
    前記漏電検出部によって漏電を検出するステップと、
    前記漏電を検出するステップにおいて、漏電が検出されなかった場合には、前記他方を閉じて前記触媒装置に通電し、漏電が検出された場合には、前記触媒装置への通電を行なわないように、前記第1接続部および前記第2接続部を制御するステップとを備える、ハイブリッド車両の排気浄化システムの制御方法。
JP2012530038A 2011-02-16 2011-02-16 ハイブリッド車両の排気浄化システムおよびその制御方法 Active JP5288057B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/053220 WO2012111102A1 (ja) 2011-02-16 2011-02-16 ハイブリッド車両の排気浄化システムおよびその制御方法

Publications (2)

Publication Number Publication Date
JP5288057B2 JP5288057B2 (ja) 2013-09-11
JPWO2012111102A1 true JPWO2012111102A1 (ja) 2014-07-03

Family

ID=46672066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012530038A Active JP5288057B2 (ja) 2011-02-16 2011-02-16 ハイブリッド車両の排気浄化システムおよびその制御方法

Country Status (5)

Country Link
US (1) US8875487B2 (ja)
JP (1) JP5288057B2 (ja)
CN (1) CN102782273B (ja)
DE (1) DE112011104896B4 (ja)
WO (1) WO2012111102A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8978370B2 (en) 2012-05-03 2015-03-17 GM Global Technology Operations LLC Engine off particulate filter (“PF”) regeneration using a single secondary energy storage device
JP5930059B2 (ja) * 2012-10-23 2016-06-08 トヨタ自動車株式会社 車両および車両用制御方法
JP5626309B2 (ja) * 2012-10-23 2014-11-19 トヨタ自動車株式会社 ハイブリッド車両
US9834093B2 (en) 2012-10-25 2017-12-05 Toyota Jidosha Kabushiki Kaisha Electrically-powered vehicle
JP2015105045A (ja) * 2013-11-29 2015-06-08 トヨタ自動車株式会社 電力変換器の制御装置
JP6130045B1 (ja) * 2015-09-25 2017-05-17 新電元工業株式会社 車両用スイッチ検出回路、および車両用スイッチ検出回路の制御方法
CN105699644B (zh) * 2016-03-24 2017-12-26 锦州医科大学附属第一医院 一种酶标板
JP2018013083A (ja) * 2016-07-21 2018-01-25 いすゞ自動車株式会社 排気加熱用の電熱ヒータシステム
US10161277B2 (en) * 2017-04-24 2018-12-25 GM Global Technology Operations LLC Capacitor-powered catalyst heater
JP6992462B2 (ja) * 2017-12-08 2022-01-13 トヨタ自動車株式会社 外部給電システム及びその漏電検知方法
JP6958484B2 (ja) 2018-05-29 2021-11-02 トヨタ自動車株式会社 車両用制御装置
DE102020101069B4 (de) 2020-01-17 2024-07-18 Volkswagen Aktiengesellschaft Abgasnachbehandlungssystem sowie Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
JP7234953B2 (ja) * 2020-01-22 2023-03-08 株式会社豊田自動織機 排気浄化装置
DE102020132997A1 (de) 2020-12-10 2022-06-15 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Vorrichtung zur Spannungsversorgung

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5390493A (en) * 1992-01-30 1995-02-21 Hitachi, Ltd. Apparatus for controlling the electric heating of catalyst
DE69327072T2 (de) * 1992-05-15 2000-07-20 Mitsubishi Motors Corp Verfahren zum Betrieb eines hybriden Fahrzeugs
JP3268828B2 (ja) * 1992-07-06 2002-03-25 マツダ株式会社 エンジンの排気浄化装置
JP2988200B2 (ja) * 1992-07-10 1999-12-06 トヨタ自動車株式会社 通電加熱式触媒における二次空気供給制御装置
JPH09158717A (ja) 1995-12-08 1997-06-17 Toyota Motor Corp 電気加熱式触媒の電力供給制御装置
DE29824874U1 (de) 1998-07-10 2003-04-30 Ellenberger & Poensgen Schutzschalteinrichtung
JP2001132491A (ja) * 1999-08-26 2001-05-15 Honda Motor Co Ltd ハイブリッド自動車の触媒暖機制御装置
JP2002021541A (ja) 2000-07-07 2002-01-23 Mitsubishi Heavy Ind Ltd 排ガス浄化装置
JP2003278528A (ja) * 2002-03-22 2003-10-02 Nissan Diesel Motor Co Ltd 内燃機関の電気ヒータ付排気処理装置
JP2004183501A (ja) * 2002-11-29 2004-07-02 Honda Motor Co Ltd 内燃機関のための電力供給制御装置
JP4570909B2 (ja) * 2004-06-04 2010-10-27 富士重工業株式会社 電気加熱触媒の故障診断装置
JP4254762B2 (ja) * 2005-08-25 2009-04-15 トヨタ自動車株式会社 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御方法
JP2007187454A (ja) 2006-01-11 2007-07-26 Toyota Motor Corp 絶縁抵抗低下検出器
JP4502024B2 (ja) * 2008-02-22 2010-07-14 トヨタ自動車株式会社 電気加熱式触媒の異常判定装置
JP4483976B2 (ja) * 2008-05-12 2010-06-16 トヨタ自動車株式会社 ハイブリッド車両およびハイブリッド車両の制御方法
JP4900410B2 (ja) * 2009-03-25 2012-03-21 トヨタ自動車株式会社 車両の制御装置

Also Published As

Publication number Publication date
CN102782273A (zh) 2012-11-14
WO2012111102A1 (ja) 2012-08-23
US20130008148A1 (en) 2013-01-10
DE112011104896T5 (de) 2013-11-07
JP5288057B2 (ja) 2013-09-11
DE112011104896B4 (de) 2015-10-22
CN102782273B (zh) 2014-09-10
US8875487B2 (en) 2014-11-04

Similar Documents

Publication Publication Date Title
JP5288057B2 (ja) ハイブリッド車両の排気浄化システムおよびその制御方法
JP5930059B2 (ja) 車両および車両用制御方法
JP5626368B2 (ja) 車両および触媒装置の温度制御方法
JP5257550B2 (ja) 車両および触媒装置に通電する方法
JP5093293B2 (ja) 車両の制御装置
JP5817741B2 (ja) 車両および車両の制御方法
JP5660104B2 (ja) 車両
JP2014083943A (ja) ハイブリッド車両
JP2009274479A (ja) ハイブリッド車両
JP2021110302A (ja) 内燃機関の排気浄化装置
JP5673835B2 (ja) 車両
JP2019131062A (ja) 車両の制御装置
JP5641145B2 (ja) 車両および車両の制御方法
JP2013119293A (ja) 車両の故障診断装置
JP5617286B2 (ja) 車両およびその制御方法
JP6593129B2 (ja) ハイブリッド車両及びその制御方法
WO2012081101A1 (ja) 車両および車両の制御方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R151 Written notification of patent or utility model registration

Ref document number: 5288057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151