JPWO2012053549A1 - Cu−In−Ga−Se太陽電池用ガラス基板およびそれを用いた太陽電池 - Google Patents

Cu−In−Ga−Se太陽電池用ガラス基板およびそれを用いた太陽電池 Download PDF

Info

Publication number
JPWO2012053549A1
JPWO2012053549A1 JP2012539747A JP2012539747A JPWO2012053549A1 JP WO2012053549 A1 JPWO2012053549 A1 JP WO2012053549A1 JP 2012539747 A JP2012539747 A JP 2012539747A JP 2012539747 A JP2012539747 A JP 2012539747A JP WO2012053549 A1 JPWO2012053549 A1 JP WO2012053549A1
Authority
JP
Japan
Prior art keywords
glass
glass substrate
less
solar cell
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012539747A
Other languages
English (en)
Inventor
優 塙
優 塙
裕 黒岩
裕 黒岩
中島 哲也
哲也 中島
玲大 臼井
玲大 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JPWO2012053549A1 publication Critical patent/JPWO2012053549A1/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Glass Compositions (AREA)
  • Photovoltaic Devices (AREA)
  • Inorganic Chemistry (AREA)

Abstract

本発明は、下記酸化物基準のモル百分率表示で、SiO2を55〜70%、Al2O3を6.5〜12.6%、B2O3を0〜1%、MgOを3〜10%、CaOを0〜4.8%、SrOを0〜2%、BaOを0〜2%、ZrO2を0〜2.5%、TiO2を0〜2.5%、Na2Oを5.3〜10.9%、K2Oを0〜10%含有し、MgO+CaO+SrO+BaOが7.7〜17%、Na2O+K2Oが10.4〜16%、MgO/Al2O3が0.9以下、(2Na2O+K2O+SrO+BaO)/(Al2O3+ZrO2)が2.2以下、(Na2O+K2O)/Al2O3×(Na2O/K2O)が0.9以上であり、ガラス転移点温度が650〜750℃、50〜350℃における平均熱膨張係数が75×10−7〜95×10-7/℃、粘度が104dPa・sとなる温度(T4)と失透温度(TL)との関係がT4−TL≧−30℃、密度が2.6g/cm3以下、脆さ指標値が7000m−1/2未満であるCu−In−Ga−Se太陽電池用ガラス基板を提供する。それにより、高い発電効率と高いガラス転移点温度、所定の平均熱膨張係数、高いガラス強度、低いガラス密度、板ガラス成形時の失透防止の特性をバランスよく満たすCIGS太陽電池用ガラス基板を提供できる。

Description

本発明は、ガラス基板の間に光電変換層が形成されている太陽電池用ガラス基板およびそれを用いた太陽電池に関する。より詳しくは、典型的にはガラス基板とカバーガラスとを有し、該ガラス基板とカバーガラスとの間に、11族、13族、16族元素を主成分とした光電変換層が形成されているCu−In−Ga−Se太陽電池用ガラス基板およびそれを用いた太陽電池に関するものである。
カルコパイライト結晶構造を持つ11−13族、11−16族化合物半導体や立方晶系あるいは六方晶系の12−16族化合物半導体は、可視から近赤外の波長範囲の光に対して大きな吸収係数を有している。そのために、高効率薄膜太陽電池の材料として期待されている。代表的な例としてCu(In,Ga)Se(以下、「CIGS」または「Cu−In−Ga−Se」と記述する。)やCdTeがあげられる。
CIGS薄膜太陽電池では、安価であることと平均熱膨張係数がCIGS化合物半導体のそれに近いこととから、ソーダライムガラスが基板として用いられ、太陽電池が得られている。
また、効率の良い太陽電池を得るため、高温の熱処理温度に耐えうるガラス材料の提案もされている(特許文献1および2参照)。
日本国特開平11−135819号公報 日本国特開2011−9287号公報
ガラス基板にはCIGS光電変換層(以下、「CIGS層」ともいう)が形成される。特許文献1および2に開示されているように、発電効率の良い太陽電池を作製するにはより高温での熱処理が好ましく、ガラス基板にはそれに耐えうることが要求される。特許文献1では比較的徐冷点の高いガラス組成物が提案されているが、特許文献1に記載された発明が高い発電効率を有するとは必ずしもいえない。
また、特許文献2の方法は、アルカリ制御層を設けることで、高歪点ガラスに含まれる低濃度のアルカリ元素を効率よくp型光吸収層に拡散することを目的としているが、アルカリ制御層を設ける工程が増えるためコストがかかり、またアルカリ制御層によりアルカリ元素の拡散が不十分になり、効率低下のおそれがある。
本発明者等は、ガラス基板のアルカリを所定範囲で増やすことによって発電効率を高くすることができることを発見したが、アルカリの増量はガラス転移点温度(Tg)の低下を招くという問題があった。
一方で、ガラス基板上のCIGS層の成膜中または成膜後の剥離を防止するためには、ガラス基板は、所定の平均熱膨張係数を有することが求められる。
さらに、CIGS太陽電池の製造および使用の観点から、ガラス基板の強度向上および軽量化、また板ガラス成形時に失透しないことが求められる。
このようにCIGS太陽電池に使用されるガラス基板において高い発電効率、高いガラス転移点温度、所定の平均熱膨張係数、高いガラス強度、低いガラス密度、板ガラス成形時の失透防止の特性をバランスよく有することは困難であった。
本発明は、高い発電効率、高いガラス転移点温度、所定の平均熱膨張係数、高いガラス強度、低いガラス密度、板ガラス成形時の失透防止の特性をバランスよく有するCu−In−Ga−Se太陽電池用ガラス基板を提供することを目的とする。
本発明は、以下のCu−In−Ga−Se太陽電池用ガラス基板及び太陽電池を提供する。
(1)下記酸化物基準のモル百分率表示で、
SiO2を55〜70%、
Al23を6.5〜12.6%、
23を0〜1%、
MgOを3〜10%、
CaOを0〜4.8%、
SrOを0〜2%、
BaOを0〜2%、
ZrO2を0〜2.5%、
TiOを0〜2.5%、
Na2Oを5.3〜10.9%、
2Oを0〜10%含有し、
MgO+CaO+SrO+BaOが7.7〜17%、
Na2O+K2Oが10.4〜16%、
MgO/Al23が0.9以下、
(2NaO+KO+SrO+BaO)/(Al+ZrO)が2.2以下、
(NaO+KO)/Al×(NaO/KO)が0.9以上であり、
ガラス転移点温度が650〜750℃、50〜350℃における平均熱膨張係数が75×10−7〜95×10−7/℃、粘度が10dPa・sとなる温度(T)と失透温度(T)との関係がT−T≧−30℃、密度が2.6g/cm以下、脆さ指標値が7000m−1/2未満であるCu−In−Ga−Se太陽電池用ガラス基板。
(2)下記酸化物基準のモル百分率表示で、
SiO2を58〜69%、
Al23を7〜12%、
23を0〜0.5%、
MgOを4〜9%、
CaOを0〜4.5%、
SrOを0〜1.5%、
BaOを0〜1.5%、
ZrO2を0〜1.5%、
TiOを0〜1.5%、
Na2Oを6.5〜10.5%、
2Oを2〜8%含有し、
MgO+CaO+SrO+BaOが9〜15%、
Na2O+K2Oが10.5〜15%、
MgO/Al23が0.2〜0.85、
(2NaO+KO+SrO+BaO)/(Al+ZrO)が1〜2.2、
(NaO+KO)/Al×(NaO/KO)が0.9〜10であり、
ガラス転移点温度が650〜700℃、50〜350℃における平均熱膨張係数が75×10−7〜90×10−7/℃、粘度が10dPa・sとなる温度(T)と失透温度(T)との関係がT−T≧−20℃、密度が2.58g/cm以下、脆さ指標値が6800m−1/2未満である(1)に記載のCu−In−Ga−Se太陽電池用ガラス基板。
(3)ガラス基板と、カバーガラスと、前記ガラス基板と前記カバーガラスとの間に配置されるCu−In−Ga−Seの光電変換層と、を有し、
前記ガラス基板と前記カバーガラスのうち少なくとも前記ガラス基板が、(1)または(2)に記載のCu−In−Ga−Se太陽電池用ガラス基板である太陽電池。
本発明のCu−In−Ga−Se太陽電池用ガラス基板は、高い発電効率、高いガラス転移点温度、所定の平均熱膨張係数、高いガラス強度、低いガラス密度、板ガラス成形時の失透防止の特性をバランスよく有することができる。本発明のCIGS太陽電池用ガラス基板を用いることで、発電効率の高い太陽電池を提供できる。
本願の開示は、2010年10月20日に出願された特願2010−235349号に記載の主題と関連しており、それらの開示内容は引用によりここに援用される。
図1は、本発明のCIGS太陽電池用ガラス基板を用いた太陽電池の実施形態の一例を模式的に表す断面図である。 図2は、実施例において評価用ガラス基板上に作製した太陽電池セル(a)とその断面図(b)を示す。 図3は、図2に示す太陽電池セルを8個並べた、評価用ガラス基板上の評価用CIGS太陽電池を示す。 図4は、(NaO+KO)/Al×(NaO/KO)と発電効率との関係を表すグラフを示す。
<本発明のCu−In−Ga−Se太陽電池用ガラス基板>
以下、本発明のCu−In−Ga−Se太陽電池用ガラス基板について説明する。
本発明のCu−In−Ga−Se太陽電池用ガラス基板は、下記酸化物基準のモル百分率表示で、
SiO2を55〜70%、
Al23を6.5〜12.6%、
23を0〜1%、
MgOを3〜10%、
CaOを0〜4.8%、
SrOを0〜2%、
BaOを0〜2%、
ZrO2を0〜2.5%、
TiOを0〜2.5%、
Na2Oを5.3〜10.9%、
2Oを0〜10%含有し、
MgO+CaO+SrO+BaOが7.7〜17%、
Na2O+K2Oが10.4〜16%、
MgO/Al23が0.9以下、
(2NaO+KO+SrO+BaO)/(Al+ZrO)が2.2以下、
(NaO+KO)/Al×(NaO/KO)が0.9以上であり、
ガラス転移点温度が650〜750℃、50〜350℃における平均熱膨張係数が75×10−7〜95×10−7/℃、粘度が10dPa・sとなる温度(T)と失透温度(T)との関係がT−T≧−30℃、密度が2.6g/cm以下、脆さ指標値が7000m−1/2未満である、Cu−In−Ga−Se太陽電池用ガラス基板である。
本発明のCIGS太陽電池用ガラス基板のガラス転移点温度(Tg)は650〜750℃である。本発明のCIGS太陽電池用ガラス基板のガラス転移点温度は、ソーダライムガラスのガラス転移点温度より高い。本発明のCIGS太陽電池用ガラス基板のガラス転移点温度(Tg)は、高温における光電変換層の形成を担保するため650℃以上であるのが好ましく、溶解時の粘性を上げ過ぎないようにするために750℃以下とするのが好ましい。より好ましくは700℃以下、さらに好ましくは680℃以下である。
本発明のCIGS太陽電池用ガラス基板の50〜350℃における平均熱膨張係数は75×10−7〜95×10−7/℃である。75×10−7/℃未満または95×10−7/℃超ではCIGS層との熱膨張差が大きくなりすぎ、剥がれ等の欠点が生じやすくなる。好ましくは90×10−7/℃以下、より好ましくは85×10−7/℃以下である。
本発明のCIGS太陽電池用ガラス基板は、粘度が10dPa・sとなる温度(T)と失透温度(T)との関係がT−T≧−30℃である。T−Tが−30℃未満では、板ガラス成形時に失透が生じやすく、ガラス板の成形が困難になるおそれがある。T−Tが好ましくは−20℃以上、より好ましくは−10℃以上、さらに好ましくは0℃以上、特に好ましくは10℃以上である。ここで、失透温度とは、ガラスを特定の温度で17時間保持するときに、ガラス表面および内部に結晶が生成しない最大温度を指す。
ガラス板の成形性を考慮すると、Tは1300℃以下が好ましく、1270℃以下がより好ましく、1250℃以下がさらに好ましい。
本発明のCIGS太陽電池用ガラス基板は、密度が2.6g/cm以下である。密度が2.6g/cmを超えると、製品質量が重くなり好ましくない。密度は好ましくは2.58g/cm以下、より好ましくは2.57g/cm以下である。また、ガラスの構成成分の自由度を確保するために、密度は2.4g/cm以上であることが好ましい。
本発明のCIGS太陽電池用ガラス基板は、脆さ指標値が7000m−1/2未満である。脆さ指標値が7000m−1/2以上であると、太陽電池の製造工程でガラス基板が割れやすくなり好ましくない。6900m−1/2以下であることが好ましく、より好ましくは6800m−1/2以下である。
本発明において、ガラス基板の脆さ指標値は、下式(1)により定義される「B」として得られるものである(J.Sehgal, et al.,J.Mat.Sci.Lett.,14,167(1995))。
c/a=0.0056B2/31/6 (1)
ここで、Pはビッカース圧子の押し込み荷重であり、a、cはそれぞれ、ビッカース圧痕の対角長および四隅から発生するクラックの長さ(圧子を含む対称な2つのクラックの全長)である。各種ガラス基板の表面に打ち込んだビッカース圧痕の寸法と式(1)を用いて、脆さ指標値Bを算出することとする。
本発明のCIGS太陽電池用ガラス基板において上記組成に限定する理由は以下のとおりである。
SiO2:ガラスの骨格を形成する成分で、55モル%(以下、単に「%」と記載する)未満ではガラス基板の耐熱性および化学的耐久性が低下し、50〜350℃における平均熱膨張係数が増大するおそれがある。好ましくは58%以上であり、より好ましくは60%以上であり、さらに好ましくは62%以上である。
しかし、70%超ではガラスの高温粘度が上昇し、溶解性が悪化する問題が生じるおそれがある。好ましくは69%以下であり、より好ましくは68%以下であり、さらに好ましくは67%以下である。
Al23:ガラス転移点温度を上げ、耐候性(ソラリゼーション)、耐熱性および化学的耐久性を向上し、ヤング率を上げる。その含有量が6.5%未満だとガラス転移点温度が低下するおそれがある。また50〜350℃における平均熱膨張係数が増大するおそれがある。好ましくは7%以上であり、より好ましくは9%以上である。
しかし、12.6%超では、ガラスの高温粘度が上昇し、溶解性が悪くなるおそれがある。また、失透温度が上昇し、成形性が悪くなるおそれがある。また発電効率が低下するおそれがある。好ましくは12.4%以下、より好ましくは12.2%以下、さらに好ましくは12%以下である。
は、溶解性を向上させる等のために1%まで含有してもよい。含有量が1%を超えるとガラス転移点温度が下がる、または50〜350℃における平均熱膨張係数が小さくなり、CIGS層を形成するプロセスにとって好ましくない。また失透温度が上昇して失透しやすくなり、板ガラス成形が難しくなる。好ましくは含有量が0.5%以下である。実質的に含有しないことがさらに好ましい。
なお、「実質的に含有しない」とは、原料等から混入する不可避的不純物以外には含有しないこと、すなわち、意図的に含有させないことを意味する。
MgO:ガラスの溶解時の粘性を下げ、溶解を促進する効果があるので含有させるが、3%未満だとガラスの高温粘度が上昇し溶解性が悪化するおそれがある。また発電効率が低下するおそれがある。より好ましくは4%以上であり、より好ましくは5%以上であり、さらに好ましくは6.5%以上である。
しかし、10%超では、50〜350℃における平均熱膨張係数が増大するおそれがある。また失透温度が上昇するおそれがある。好ましくは9%以下であり、より好ましくは8.5%以下である。
CaO:ガラスの溶解時の粘性を下げ、溶解を促進する効果があるので含有させることができる。好ましくは0.5%以上、より好ましくは1%以上である。しかし、4.8%超ではガラス基板の50〜350℃における平均熱膨張係数が増大するおそれがある。また、ナトリウムがガラス基板中で移動しにくくなり発電効率が低下するおそれがある。好ましくは4.5%以下であり、より好ましくは4%以下である。
SrO:ガラスの溶解時の粘性を下げ、溶解を促進する効果があるので含有させることができる。しかし、2%超含有すると発電効率が低下し、またガラス基板の50〜350℃における平均熱膨張係数が増大、密度が増大、後述する脆さ指標値が増加するおそれがある。1.5%以下が好ましく、1%以下であることがより好ましい。
BaO:ガラスの溶解時の粘性を下げ、溶解を促進する効果があるので含有させることができる。しかし、2%超含有すると発電効率が低下し、またガラス基板の50〜350℃における平均熱膨張係数が増大、密度が増大、後述する脆さ指標値が増加するおそれがある。1.5%以下が好ましく、1%以下であることがより好ましい。
ZrO2:ガラスの溶解時の粘性を下げ、溶解を促進する効果があるので含有させることができる。しかし、2.5%超含有すると発電効率が低下し、また失透温度が上昇して失透しやすくなり板ガラス成形が難しくなる。1.5%以下が好ましく、1%以下であることがより好ましい。
TiO:溶解性の向上等のために2.5%まで含有してもよい。含有量が2.5%を超えると失透温度が上昇して失透しやすくなり板ガラス成形が難しくなる。好ましくは1.5%以下であり、より好ましくは1%以下である。
MgO、CaO、SrOおよびBaOは、ガラスの溶解時の粘性を下げ、溶解を促進させる点から合量で7.7%以上含有する。しかし、合量で17%超では失透温度が上昇し、成形性が悪くなる恐れがある。8%以上が好ましく、9%以上がより好まく、10%以上がさらに好ましい。また、16%以下が好ましく、15%以下がより好ましく、14%以下がさらに好ましい。
Na2O:NaOはCIGSの太陽電池の発電効率向上に寄与するための成分であり、必須成分である。また、ガラス溶解温度での粘性を下げ、溶解しやすくする効果があるので5.3〜10.9%含有させる。Naはガラス基板上に構成されたCIGSの光電変換層中に拡散し、発電効率を高めるが、含有量が5.3%未満ではガラス基板上のCIGSの光電変換層へのNa拡散が不十分となり、発電効率も不十分となるおそれがある。含有量が6.5%以上であると好ましく、含有量が7.5%以上であるとより好ましい。
NaO含有量が10.9%を超えると50〜350℃における平均熱膨張係数が大きくなり、ガラス転移点温度が低下する傾向がある。または化学的耐久性が劣化する。含有量が10.5%以下であると好ましい。
2O:Na2Oと同様の効果があるため、0〜10%含有させる。しかし、10%超では発電効率が低下し、また、ガラス転移点温度が低下し、50〜350℃における平均熱膨張係数が大きくなるおそれがある。含有する場合は2%以上であるのが好ましく、3%以上であるのがより好ましい。また、8%以下が好ましく、6%以下であることがより好ましい。
Na2OおよびK2O:ガラス溶解温度での粘性を十分に下げるために、またCIGS太陽電池の発電効率向上のために、Na2OおよびK2Oの合量は10.4〜16%である。好ましくは10.5%以上であり、より好ましくは11%以上である。しかし、16%超ではガラス転移点温度が下がりすぎるおそれがある。15%以下が好ましく、14%以下であることがより好ましい。
Al23およびMgO:失透温度の上昇を抑制するために、MgO/Al23の比を0.9以下とする。0.9超では失透温度が上昇するおそれがある。好ましくは0.85以下、より好ましくは0.8以下である。また、0.2以上が好ましく、0.3以上がより好ましく、さらに好ましくは0.4以上、特に好ましくは0.5以上である。
Na2O、K2O、SrO、BaO、Al23およびZrO2:ガラス転移点温度を十分に高く保つため、さらに、耐候性を向上させるため、下記式(2)の値は2.2以下とする。本発明者等は、実験および試行錯誤の結果から、上記の各成分が本願の範囲を満たし、且つ、上記式で得られる値が2.2以下となる場合に、ガラス転移点温度を十分に高く保ちつつ、50〜350℃における平均熱膨張係数75×10−7〜95×10−7を満足させ、かつ脆さ指標値が7000m−1/2未満を満たすことを見出した。
2.2を超えると、ガラス転移点温度が低くなる、もしくは耐候性が悪化するおそれがある。また、数値が低くなりすぎると高温での粘性が高くなり、溶解や成形が困難となるため好ましくは1以上であり、より好ましくは1.5以上である。
なお、NaOに2の係数が付いているのはTgを低くする効果が他の成分より高いためである。
(2Na2O+K2O+SrO+BaO)/(Al23+ZrO2) (2)
Na2O、K2OおよびAl23:発電効率を高く保つために下記式(3)の値を0.9以上とする。本発明者等は、実験および試行錯誤の結果から、上記の各成分が本願の範囲を満たし、且つ、上記式が0.9以上となる場合に、発電効率を高く保つことができることを見出した。
{(Na2O+K2O)/Al23}×(Na2O/K2O) (3)
0.9未満であると、ガラス基板からCIGS層中へのナトリウムイオンの拡散が十分でなく、発電効率が低下するおそれがある。好ましくは0.95以上であり、より好ましくは1以上である。また、数値が2超になると効率への寄与はほぼ変わらず、高すぎると、ガラス転移点温度が低くなる、もしくは耐候性が悪化するおそれがある。そのため、好ましくは10以下であり、より好ましくは7以下であり、さらに好ましくは6以下である。
なお、上記式(3)について、下記に説明する。上記式(3)の第1項は、ガラス中のアルミニウムイオンが4配位から6配位になるとアルカリ拡散を阻害することから、ガラス中のアルカリ量に対し相対的にAl23量が少ないほうがよい。そのため、第1項としての「(Na2O+K2O)/Al23」の値が大きいほうがよい。
発電効率についてはKに比べてNaの方が効果があるため、第2項は値が大きいほうがよいと推察している。より好ましくは、第2項としての「Na2O/K2O」の値が1以上である。この理由としては、混合アルカリ効果のためK量に比べて相対的にNa量が多いほうがアルカリ拡散しやすくなるためである。
本発明のCu−In−Ga−Se太陽電池用ガラス基板は、下記酸化物基準のモル百分率表示で、
SiO2を58〜69%、
Al23を7〜12%、
を0〜0.5%、
MgOを4〜9%、
CaOを0〜4.5%、
SrOを0〜1.5%、
BaOを0〜1.5%、
ZrO2を0〜1.5%、
TiOを0〜1.5%、
Na2Oを6.5〜10.5%、
2Oを2〜8%含有し、
MgO+CaO+SrO+BaOが9〜15%、
Na2O+K2Oが10.5〜15%、
MgO/Al23が0.2〜0.85、
(2NaO+KO+SrO+BaO)/(Al+ZrO)が1〜2.2、
(NaO+KO)/Al×(NaO/KO)が0.9〜10であり、
ガラス転移点温度が650〜700℃、50〜350℃における平均熱膨張係数が75×10−7〜90×10−7/℃、粘度が10dPa・sとなる温度(T)と失透温度(T)との関係がT−T≧−20℃、密度が2.58g/cm以下、脆さ指標値が6800m−1/2未満である、Cu−In−Ga−Se太陽電池用ガラス基板が好ましい。
本発明のCIGS太陽電池用ガラス基板は本質的に上記母組成からなるが、本発明の目的を損なわない範囲でその他の成分を、それぞれ1%以下、合計で5%以下含有してもよい。たとえば、耐候性、溶解性、失透性、紫外線遮蔽、屈折率等の改善を目的に、ZnO、Li2O、WO3、Nb25、V25、Bi23、MoO3、TlO、P25等を含有してもよい場合がある。
また、ガラスの溶解性、清澄性を改善するため、ガラス基板中にSO3、F、Cl、SnO2をそれぞれ1%以下、合量で2%以下含有するように、これらの原料を母組成原料に添加してもよい。
また、ガラス基板の化学的耐久性向上のため、ガラス基板中にY23、La23を合量で2%以下含有させてもよい。
また、ガラス基板の色調を調整するため、ガラス基板中にFe23等の着色剤を含有してもよい。このような着色剤の含有量は、合量で1%以下が好ましい。
本発明のCIGS太陽電池用ガラス基板は、環境負荷を考慮すると、As23、Sb23を実質的に含有しないことが好ましい。また、安定してフロート成形することを考慮すると、ZnOを実質的に含有しないことが好ましい。しかし、本発明のCIGS太陽電池用ガラス基板は、フロート法による成形に限らず、フュージョン法による成形により製造してもよい。
<本発明のCIGS太陽電池用ガラス基板の製造方法>
本発明のCIGS太陽電池用ガラス基板の製造方法について説明する。
本発明のCIGS太陽電池用ガラス基板を製造する場合、従来の太陽電池用ガラス基板を製造する際と同様に、溶解・清澄工程および成形工程を実施する。なお、本発明のCIGS太陽電池用ガラス基板は、アルカリ金属酸化物(Na2O、K2O)を含有するアルカリガラス基板であるため、清澄剤としてSO3を効果的に用いることができ、成形方法としてフロート法およびフュージョン法(ダウンドロー法)に適している。
太陽電池用のガラス基板の製造工程において、ガラスを板状に成形する方法としては、太陽電池の大型化に伴い、大面積のガラス基板を容易に、安定して成形できるフロート法を用いることが好ましい。
本発明のCIGS太陽電池用ガラス基板の製造方法の好ましい態様について説明する。
初めに、原料を溶解して得た溶融ガラスを板状に成形する。例えば、得られるガラス基板が上記組成となるように原料を調製し、上記原料を溶解炉に連続的に投入し、1550〜1700℃に加熱して溶融ガラスを得る。そしてこの溶融ガラスを例えばフロート法を適用してリボン状のガラス板に成形する。
次に、リボン状のガラス板をフロート成形炉から引出した後に、冷却手段によって室温状態まで冷却し、切断後、CIGS太陽電池用ガラス基板を得る。
<本発明のCIGS太陽電池用ガラス基板の用途>
本発明のCIGS太陽電池用ガラス基板は、CIGS太陽電池のガラス基板、またカバーガラスとしても好適である。
本発明のCIGS太陽電池用ガラス基板をCIGS太陽電池のガラス基板に適用する場合、ガラス基板の厚さは3mm以下とするのが好ましく、より好ましくは2mm以下、さらに好ましくは1.5mm以下である。またガラス基板にCIGSの光電変換層を付与する方法は特に制限されない。
具体的な方法としては、光電変換層を蒸着により形成する蒸着法;Cu,GaおよびInを含むプリカーサ膜をスパッタリング法により形成した後、上記プリカーサ膜を高温下でセレン化水素を含む雰囲気にさらすことで光電変換層を形成するセレン化法;等が挙げられる。ただし、蒸着法の場合、基板温度が高くなるとセレンが再蒸発しやすくなるため、セレン化法が好ましい。本発明のCIGS太陽電池用ガラス基板を用いることで、光電変換層を形成する際の加熱温度を500〜700℃、好ましくは550〜700℃、より好ましくは580〜700℃、さらに好ましくは600〜700℃とすることができる。CIGS太陽電池メーカーでの成膜工程を考慮すると、製造ラインの寿命劣化を低減するため、680℃以下が好ましく、650℃以下がより好ましい。
本発明のCIGS太陽電池用ガラス基板をCIGS太陽電池のガラス基板のみに使用する場合、カバーガラス等は特に制限されない。カバーガラスの組成の他の例は、ソーダライムガラス等が挙げられる。
本発明のCIGS太陽電池用ガラス基板をCIGS太陽電池のカバーガラスとして使用する場合、カバーガラスの厚さは3mm以下とするのが好ましく、より好ましくは2mm以下、さらに好ましくは1.5mm以下である。また光電変換層を有するガラス基板にカバーガラスを組立てる方法は特に制限されない。本発明のCIGS太陽電池用ガラス基板を用いることで、加熱して組立てる場合、その加熱温度を500〜700℃、好ましくは600〜700℃とすることができる。
本発明のCIGS太陽電池用ガラス基板をCIGS太陽電池のガラス基板およびカバーガラスに併用すると、50〜350℃における平均熱膨張係数が同等であるため太陽電池組立時の熱変形等が発生せず好ましい。
<本発明におけるCIGS太陽電池>
次に、本発明における太陽電池について説明する。
本発明における太陽電池は、Cu−In−Ga−Seの光電変換層を有するガラス基板と上記ガラス基板上に配置されたカバーガラスとを有し、上記ガラス基板および上記カバーガラスのうちの一方または両方が本発明のCu−In−Ga−Se太陽電池用ガラス基板である。
以下添付の図面を使用して本発明における太陽電池を詳細に説明する。なお本発明は添付の図面に限定されない。
図1は本発明における太陽電池の実施形態の一例を模式的に表す断面図である。
図1において、本発明における太陽電池(CIGS太陽電池)1は、ガラス基板5、カバーガラス19、およびガラス基板5とカバーガラス19との間にCIGS層9を有する。ガラス基板5は、上記で説明した本発明のCIGS太陽電池用ガラス基板からなるのが好ましい。太陽電池1は、ガラス基板5上にプラス電極7であるMo膜の裏面電極層を有し、その上にCIGS層9である光電変換層を有する。CIGS層の組成はCu(In1-XGax)Se2が例示できる。xはInとGaの組成比を示すもので0<x<1である。
CIGS層9上には、バッファ層11としてのCdS(硫化カドミウム)層、ZnS(亜鉛硫化物)層、ZnO(酸化亜鉛)層、Zn(OH)(水酸化亜鉛)層、またはこれらの混晶層を有する。バッファ層11を介して、ZnO、ITO、またはAlをドープしたZnO(AZO)等の透明導電膜13を有し、さらにその上にマイナス電極15であるAl電極(アルミニウム電極)等の取出し電極を有する。これらの層の間の必要な場所には反射防止膜を設けてもよい。図1においては、透明導電膜13とマイナス電極15との間に反射防止膜17が設けられている。
またマイナス電極15上にカバーガラス19を設けてもよく、必要な場合はマイナス電極とカバーガラスとの間は、樹脂封止したり接着用の透明樹脂で接着される。カバーガラスは、本発明のCIGS太陽電池用ガラス基板を用いてもよい。
本発明において光電変換層の端部または太陽電池の端部は封止されていてもよい。封止するための材料としては、例えば本発明のCIGS太陽電池用ガラス基板と同じ材料、そのほかのガラス、樹脂が挙げられる。
なお添付の図面に示す太陽電池の各層の厚さは図面に限定されない。
本発明におけるCIGS太陽電池の発電効率は、11.8%以上であることが好ましい。11.8%以上であることで、太陽電池として十分有用な性能とすることができる。より好ましくは12%以上であり、さらに好ましくは12.2%以上である。
以下、実施例および製造例により本発明をさらに詳しく説明するが、本発明はこれら実施例および製造例に限定されない。
本発明のCIGS太陽電池用ガラス基板の実施例(例1〜30)および比較例(例31〜36)を示す。なお表1〜5中のかっこは、計算値である。
表1〜5で表示した組成になるように各成分の原料を調合し、該ガラス基板用成分の原料100質量部に対し、硫酸塩をSO換算で0.1質量部原料に添加し、白金坩堝を用いて1600℃の温度で3時間加熱し溶解した。溶解にあたっては、白金スターラーを挿入し1時間攪拌しガラスの均質化を行った。次いで溶融ガラスを流し出し、板状に成形後冷却し、ガラス板を得た。
こうして得られたガラス板の50〜350℃における平均熱膨張係数(単位:×10−7/℃)、ガラス転移点温度Tg(単位:℃)、粘度が10dPa・sとなる温度(T)(単位:℃)、失透温度(T)(単位:℃)、密度(単位:g/cm)、脆さ指標値(単位:m−1/2)を測定し、表1〜5に示した。以下に各物性の測定方法を示す。
なお、実施例では、ガラス板について測定しているが、各物性は、ガラス板とガラス基板とで同じ値である。得られたガラス板を加工、研磨を施することで、ガラス基板とすることができる。
(1)Tg:TgはTMAを用いて測定した値であり、JIS R3103−3(2001年度)により求めた。
(2)50〜350℃の平均熱膨張係数:示差熱膨張計(TMA)を用いて測定し、JIS R3102(1995年度)より求めた。
(3)粘度:回転粘度計を用いて測定し、粘度ηが10dPa・sとなるときの温度T(溶解性の基準温度)と、粘度ηが10dPa・sとなるときの温度T(成形性の基準温度)を測定した。
(4)失透温度(T):ガラス板から切り出したガラス塊5gを白金皿に置き、所定温度で17時間電気炉中で保持した。保持した後のガラス塊表面および内部に結晶が析出しない温度の最大値を失透温度とした。
(5)密度:泡を含まない約20gのガラス塊をアルキメデス法によって測定した。
(6)脆さ指標値:前述の各種ガラス板をガラス基板とし、そのガラス基板の表面に打ち込んだビッカース圧痕の寸法と上記式(1)を用いて、脆さ指標値Bを算出する。
(7)発電効率:得られたガラス板を太陽電池のガラス基板に用い、以下に示すように評価用太陽電池を作製し、これを用いて発電効率について評価を行った。結果を表1〜5に示す。
評価用太陽電池の作製について、図2、3およびその符号を用いて以下説明する。なお、評価用太陽電池の層構成は、図1の太陽電池のカバーガラス19および反射防止膜17を有さない以外は、図1に示す太陽電池の層構成とほぼ同様である。
得られたガラス板を大きさ3cm×3cm、厚さ1.1mmに加工しガラス基板を得た。ガラス基板5aの上に、スパッタ装置にて、プラス電極7aとしてMo膜を成膜した。成膜は室温にて実施し、厚み500nmのMo膜を得た。
プラス電極7a(モリブデン膜)上にスパッタ装置にて、CuGa合金ターゲットでCuGa合金層を成膜し、続いてInターゲットを使用してIn層を成膜することで、In−CuGaのプリカーサ膜を製膜した。成膜は室温にて実施した。蛍光X線によって測定したプリカーサ膜の組成が、Cu/(Ga+In)比が0.8、Ga/(Ga+In)比が0.25となるように各層の厚みを調整し、厚み650nmのプリカーサ膜を得た。
プリカーサ膜を、RTA(Rapid Thermal Annealing)装置を用いてアルゴンおよびセレン化水素混合雰囲気(セレン化水素はアルゴンに対し5体積%)にて加熱処理した。まず、第1段階として250℃で30分保持を行い、CuとInとGaとを、Seと反応させて、その後、第2段階としてさらに520℃で60分保持してCIGS結晶を成長させることでCIGS層9aを得た。得られたCIGS層9aの厚みは2μmであった。
CIGS層9a上に、CBD(Chemical Bath Deposition)法にて、バッファ層11aとしてCdS層を成膜した。具体的には、まず、ビーカー内で、濃度0.01Mの硫酸カドミウム、濃度1.0Mのチオウレア、濃度15Mのアンモニア、および純水を混合させた。次に、CIGS層を前記混合液に浸し、ビーカーごと予め水温を70℃にしておいた恒温バス槽に入れ、CdS層を50〜80nm成膜した。
さらにCdS層上にスパッタ装置にて、透明導電膜13aを以下の方法で成膜した。まず、ZnOターゲットを使用してZnO層を成膜し、次に、AZOターゲット(Alを1.5wt%含有するZnOターゲット)を使用してAZO層を成膜した。各層の成膜は室温にて実施し、厚み480nmの2層構成の透明導電膜13aを得た。
透明導電膜13aのAZO層上にEB蒸着法により、U字型のマイナス電極15aとして膜厚1μmのアルミ膜を成膜した(U字の電極長(縦8mm、横4mm)、電極幅0.5mm)。
最後に、メカニカルスクライブによって透明導電膜13a側からCIGS層9aまでを削り、図2に示すようなセル化を行った。図2(a)は1つの太陽電池セルを上面から見た図であり、図2(b)は図2(a)中のA−A’の断面図である。一つのセルは幅0.6cm、長さ1cmで、マイナス電極15aを除いた面積が0.5cmであり、図3に示すように、合計8個のセルが1枚のガラス基板5a上に得られた。
ソーラーシミュレータ(山下電装株式会社製YSS−T80A)に、評価用CIGS太陽電池(上記8個のセルを作製した評価用ガラス基板5a)を設置し、あらかじめInGa溶剤を塗布したプラス電極7aにプラス端子を(不図示)、マイナス電極15aのU字の下端にマイナス端子16aをそれぞれ電圧発生器に接続した。ソーラーシミュレータ内の温度は25℃一定に温度調節機にて制御した。疑似太陽光を照射し、60秒後に、電圧を−1Vから+1Vまで0.015V間隔で変化させ、8個のセルのそれぞれの電流値を測定した。
この照射時の電流と電圧特性から発電効率を式(4)により算出した。8個のセルのうち最も効率の良いセルの値を、各ガラス基板の発電効率の値として表1〜5に示す。試験に用いた光源の照度は0.1W/cmであった。
発電効率[%]=Voc[V]×Jsc[A/cm2]×FF[無次元]×100/試験に用いる光源の照度[W/cm2] 式(4)
発電効率は、開放電圧(Voc)と短絡電流密度(Jsc)と曲線因子(FF)の掛け算で求められる。
なお、開放電圧(Voc)は端子を開放した時の出力であり、短絡電流(Isc)は短絡した時の電流である。短絡電流密度(Jsc)はIscをマイナス電極を除いたセルの面積で割ったものである。
また最大の出力を与える点が最大出力点と呼ばれ、その点の電圧は最大電圧値(Vmax)、電流は最大電流値(Imax)と呼ばれる。最大電圧値(Vmax)と最大電流値(Imax)の掛け算の値を、開放電圧(Voc)と短絡電流(Isc)の掛け算の値で割った値が曲線因子(FF)として求められる。上記の値を使用し、発電効率を求めた。
ガラス基板中のSO残存量は100〜500ppmであった。
Figure 2012053549
Figure 2012053549
Figure 2012053549
Figure 2012053549
Figure 2012053549
なお、例1〜30の脆さ指標値は7000m−1/2未満である。
表1〜4より明らかなように、実施例(例1〜30)のガラス基板は、ガラス転移点温度Tgが650℃以上と高く、50〜350℃における平均熱膨張係数が75×10-7〜95×10-7/℃であり、脆さ指標値Bが7000m−1/2未満、密度が2.6g/cm以下、T−Tが−30℃以上である。また、発電効率も優れている。
なお、表1〜5中の括弧は計算値である。
脆さ指標値については、得られた実測値を元に、組成と実測値とで重回帰分析を行い、それにより得られた回帰式を用いて算出した。ただし、測定誤差を考慮して50刻みで算出した。
上記式(3)により得られた数値と発電効率とは、上記式(3)により得られた数値が2.2以下の領域では、比例関係が見られ、2.2超になると発電効率はほぼ一定となった。そのため、上記式(3)の数値が2.2以下の領域と2.2超の領域とで分けて、上記式(3)の数値と発電効率とをプロットした回帰式からそれぞれ求めた。
発電効率ηの計算値は、上記式(3)により得られた数値Pを用いて、Pが2.2以下の場合は、下記式(5)を用いて算出し、Pが2.2超の場合は、下記式(6)を用いて算出した。
η=3.47×P+8.77 (5)
η=−0.20×P+15.62 (6)
なお、図4に、(NaO+KO)/Al×(NaO/KO)と発電効率との関係を表すグラフを示す。図4から明らかなように、(NaO+KO)/Al×(NaO/KO)の値が0.9以上の場合に発電効率に優れることがわかる。このことから、(NaO+KO)/Al×(NaO/KO)の値が0.9以上の例は、発電効率がよいことが予測される。
したがって高い発電効率、高いガラス転移点温度、所定の平均熱膨張係数、高いガラス強度、低いガラス密度、板ガラス成形時の失透防止を両立させることができるため、CIGS光電変換層がMo膜付ガラス基板から剥離することがなく、さらに本発明における太陽電池を組立てる際(具体的にはCIGSの光電変換層を有するガラス基板とカバーガラスとを加熱してはりあわせる際)ガラス基板が変形しにくく、また強度があり、軽量で、失透がなく、発電効率により優れる。
一方、表5が示すように比較例(例31〜35)のガラス基板はT−Tが−30℃より低く失透しやすいため、フロートでの成形が難しい。
また、比較例(例36)はTgが低く、600℃以上での成膜時にガラス基板が変形しやすく、電池の製造に支障をきたすおそれがある。
本発明のCu−In−Ga−Se太陽電池用ガラス基板は、CIGSの太陽電池用のガラス基板、カバーガラスとして好適であるが、他の太陽電池用基板やカバーガラスに使用することもできる。
本発明のCu−In−Ga−Se太陽電池用ガラス基板は、高い発電効率、高いガラス転移点温度、所定の平均熱膨張係数、高いガラス強度、低いガラス密度、板ガラス成形時の失透防止の特性をバランスよく有することができ、本発明のCIGS太陽電池用ガラス基板を用いることで発電効率の高い太陽電池を提供できる。
1 太陽電池
5、5a ガラス基板
7、7a プラス電極
9、9a CIGS層
11、11a バッファ層
13、13a 透明導電膜
15、15a マイナス電極
16a マイナス端子
17 反射防止膜
19 カバーガラス

Claims (3)

  1. 下記酸化物基準のモル百分率表示で、
    SiO2を55〜70%、
    Al23を6.5〜12.6%、
    23を0〜1%、
    MgOを3〜10%、
    CaOを0〜4.8%、
    SrOを0〜2%、
    BaOを0〜2%、
    ZrO2を0〜2.5%、
    TiOを0〜2.5%、
    Na2Oを5.3〜10.9%、
    2Oを0〜10%含有し、
    MgO+CaO+SrO+BaOが7.7〜17%、
    Na2O+K2Oが10.4〜16%、
    MgO/Al23が0.9以下、
    (2NaO+KO+SrO+BaO)/(Al+ZrO)が2.2以下、
    (NaO+KO)/Al×(NaO/KO)が0.9以上であり、
    ガラス転移点温度が650〜750℃、50〜350℃における平均熱膨張係数が75×10−7〜95×10−7/℃、粘度が10dPa・sとなる温度(T)と失透温度(T)との関係がT−T≧−30℃、密度が2.6g/cm以下、脆さ指標値が7000m−1/2未満であるCu−In−Ga−Se太陽電池用ガラス基板。
  2. 下記酸化物基準のモル百分率表示で、
    SiO2を58〜69%、
    Al23を7〜12%、
    23を0〜0.5%、
    MgOを4〜9%、
    CaOを0〜4.5%、
    SrOを0〜1.5%、
    BaOを0〜1.5%、
    ZrO2を0〜1.5%、
    TiOを0〜1.5%、
    Na2Oを6.5〜10.5%、
    2Oを2〜8%含有し、
    MgO+CaO+SrO+BaOが9〜15%、
    Na2O+K2Oが10.5〜15%、
    MgO/Al23が0.2〜0.85、
    (2NaO+KO+SrO+BaO)/(Al+ZrO)が1〜2.2、
    (NaO+KO)/Al×(NaO/KO)が0.9〜10であり、
    ガラス転移点温度が650〜700℃、50〜350℃における平均熱膨張係数が75×10−7〜90×10−7/℃、粘度が10dPa・sとなる温度(T)と失透温度(T)との関係がT−T≧−20℃、密度が2.58g/cm以下、脆さ指標値が6800m−1/2未満である請求項1に記載のCu−In−Ga−Se太陽電池用ガラス基板。
  3. ガラス基板と、カバーガラスと、前記ガラス基板と前記カバーガラスとの間に配置されるCu−In−Ga−Seの光電変換層と、を有し、
    前記ガラス基板と前記カバーガラスのうち少なくとも前記ガラス基板が、請求項1または2に記載のCu−In−Ga−Se太陽電池用ガラス基板である太陽電池。
JP2012539747A 2010-10-20 2011-10-19 Cu−In−Ga−Se太陽電池用ガラス基板およびそれを用いた太陽電池 Withdrawn JPWO2012053549A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010235349 2010-10-20
JP2010235349 2010-10-20
PCT/JP2011/074049 WO2012053549A1 (ja) 2010-10-20 2011-10-19 Cu-In-Ga-Se太陽電池用ガラス基板およびそれを用いた太陽電池

Publications (1)

Publication Number Publication Date
JPWO2012053549A1 true JPWO2012053549A1 (ja) 2014-02-24

Family

ID=45975260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012539747A Withdrawn JPWO2012053549A1 (ja) 2010-10-20 2011-10-19 Cu−In−Ga−Se太陽電池用ガラス基板およびそれを用いた太陽電池

Country Status (5)

Country Link
US (1) US20130233386A1 (ja)
JP (1) JPWO2012053549A1 (ja)
KR (1) KR20130129923A (ja)
TW (1) TW201217294A (ja)
WO (1) WO2012053549A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2848594A4 (en) * 2012-05-11 2016-01-27 Asahi Glass Co Ltd FRONT GLASS PLATE FOR LAMINATED BODY, AND LAMINATED BODY
JP2014024717A (ja) * 2012-07-27 2014-02-06 Asahi Glass Co Ltd Cu−In−Ga−Se太陽電池用ガラス板およびそれを用いた太陽電池とその製造方法
JP2014067903A (ja) * 2012-09-26 2014-04-17 Asahi Glass Co Ltd 太陽電池用ガラス基板、太陽電池、および太陽電池の製造方法
EP2995595B1 (en) * 2013-05-09 2020-11-25 AGC Inc. Translucent substrate, organic led element and method of manufacturing translucent substrate
EP2881998A3 (de) * 2013-11-12 2015-07-15 Anton Naebauer PV-Modul mit besonders hoher Resistenz gegenüber Degradation durch parasitäre elektrische Ströme
US20150287843A1 (en) * 2014-04-03 2015-10-08 Tsmc Solar Ltd. Solar cell with dielectric layer
JP6428344B2 (ja) * 2015-02-13 2018-11-28 Agc株式会社 ガラス基板
GB201505091D0 (en) 2015-03-26 2015-05-06 Pilkington Group Ltd Glass
DE102015116097B4 (de) 2015-09-23 2017-09-21 Schott Ag Chemisch beständiges Glas und dessen Verwendung
JP7056558B2 (ja) * 2016-05-25 2022-04-19 Agc株式会社 データ記憶媒体基板用ガラス、データ記憶媒体用ガラス基板および磁気ディスク
WO2018192512A1 (en) * 2017-04-19 2018-10-25 (Cnbm) Bengbu Design & Research Institute For Glass Industry Co., Ltd Method for producing layer structure for thin-film solar cells
WO2019108989A1 (en) 2017-11-30 2019-06-06 Corning Incorporated Colored glasses with improved tempering capabilities

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005263628A (ja) * 1996-03-14 2005-09-29 Asahi Glass Co Ltd 基板用ガラス組成物
US5908794A (en) * 1996-03-15 1999-06-01 Asahi Glass Company Ltd. Glass composition for a substrate
DE19616633C1 (de) * 1996-04-26 1997-05-07 Schott Glaswerke Chemisch vorspannbare Aluminosilicatgläser und deren Verwendung
JP2010100440A (ja) * 2007-02-08 2010-05-06 Nippon Sheet Glass Co Ltd ソーダ石灰系ガラス組成物
KR101231520B1 (ko) * 2007-10-25 2013-02-07 아사히 가라스 가부시키가이샤 기판용 유리 조성물 및 그 제조 방법
JP5614607B2 (ja) * 2008-08-04 2014-10-29 日本電気硝子株式会社 強化ガラスおよびその製造方法
DE102009050987B3 (de) * 2009-05-12 2010-10-07 Schott Ag Dünnschichtsolarzelle und Verfahren zur Herstellung einer Dünnschichtsolarzelle
DE102009050988B3 (de) * 2009-05-12 2010-11-04 Schott Ag Dünnschichtsolarzelle

Also Published As

Publication number Publication date
KR20130129923A (ko) 2013-11-29
US20130233386A1 (en) 2013-09-12
WO2012053549A1 (ja) 2012-04-26
TW201217294A (en) 2012-05-01

Similar Documents

Publication Publication Date Title
WO2012053549A1 (ja) Cu-In-Ga-Se太陽電池用ガラス基板およびそれを用いた太陽電池
WO2011049146A1 (ja) Cu-In-Ga-Se太陽電池用ガラス板およびこれを用いた太陽電池
JP6004048B2 (ja) Cu−In−Ga−Se太陽電池用ガラス基板及びそれを用いた太陽電池
WO2012102346A1 (ja) Cu-In-Ga-Se太陽電池用ガラス基板およびそれを用いた太陽電池
JP6048490B2 (ja) Cu−In−Ga−Se太陽電池用ガラス基板およびそれを用いた太陽電池
JP6003904B2 (ja) Cu−In−Ga−Se太陽電池用ガラス基板及びそれを用いた太陽電池
JP6210136B2 (ja) ガラス基板
JPWO2013047246A1 (ja) CdTe太陽電池用ガラス基板およびそれを用いた太陽電池
JP6128128B2 (ja) 太陽電池用ガラス基板およびそれを用いた太陽電池
JP2016102058A (ja) 太陽電池用ガラス基板及びそれを用いた太陽電池
WO2015076208A1 (ja) ガラス板
JP6249033B2 (ja) ガラス板
WO2014024850A1 (ja) Cu-In-Ga-Se太陽電池用ガラス基板およびそれを用いた太陽電池
JP2016171158A (ja) Cu−In−Ga−Se太陽電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20150903