JPWO2011099263A1 - クルイベロマイセス・マルシアヌス由来の高発現プロモーター - Google Patents

クルイベロマイセス・マルシアヌス由来の高発現プロモーター Download PDF

Info

Publication number
JPWO2011099263A1
JPWO2011099263A1 JP2011553749A JP2011553749A JPWO2011099263A1 JP WO2011099263 A1 JPWO2011099263 A1 JP WO2011099263A1 JP 2011553749 A JP2011553749 A JP 2011553749A JP 2011553749 A JP2011553749 A JP 2011553749A JP WO2011099263 A1 JPWO2011099263 A1 JP WO2011099263A1
Authority
JP
Japan
Prior art keywords
promoter
polynucleotide
kmgal1
yeast
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011553749A
Other languages
English (en)
Other versions
JP5804378B2 (ja
Inventor
赤田 倫治
倫治 赤田
尚司 星田
尚司 星田
政充 井手
政充 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaguchi University NUC
Original Assignee
Yamaguchi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaguchi University NUC filed Critical Yamaguchi University NUC
Priority to JP2011553749A priority Critical patent/JP5804378B2/ja
Publication of JPWO2011099263A1 publication Critical patent/JPWO2011099263A1/ja
Application granted granted Critical
Publication of JP5804378B2 publication Critical patent/JP5804378B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01006Galactokinase (2.7.1.6)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本発明は、クルイベロマイセス・マルシアヌス由来の新規な高発現プロモーターであるGAL1プロモーター、該高発現プロモーターを含む組換えポリヌクレオチド、該組換えポリヌクレオチドを含むベクター、該組換えポリヌクレオチド又は該ベクターを酵母に導入して得られる形質転換体、該形質転換体を用いた目的遺伝子の高発現方法、該形質転換体を用いた目的遺伝子産物の製造方法を提供するものである。本発明の高発現プロモーターを利用することを特徴とする。

Description

本発明は、クルイベロマイセス・マルシアヌス(Kluyveromyces marxianus)由来の新規な高発現プロモーター、該プロモーターを含む組換えポリヌクレオチド、該組換えポリヌクレオチドを含むベクター、該組換えポリヌクレオチド又は該ベクターを酵母に導入して得られる形質転換体、該形質転換体を用いた目的遺伝子の高発現方法、該形質転換体を用いた目的遺伝子産物の製造方法に関する。
近年の遺伝子組換え技術の進展とともに、様々な有用なタンパク質の生産を、大腸菌等の微生物を用いて行うことが可能となった。しかし、真核生物由来の異種タンパク質遺伝子を、大腸菌を宿主として発現させると、正常なプロセシングや糖鎖の付加などの翻訳後の正常な修飾が行われないという問題があることが知られている。そのため、真核生物である酵母が、宿主として比較的利用されている。宿主酵母としては、例えば、サッカロマイセス・セレビシエ、ピキア・パストリス、ピキア・メタノリカ、シゾサッカロマイセス・ポンベ、ハンゼヌラ・アノマーラ、クルイベロマイセス・ラクティスなどが知られている(例えば特許文献1参照)。しかし、宿主としての酵母における異種タンパク質の発現量には改善の余地があった。
異種タンパク質遺伝子を宿主にて発現させる際には、宿主内で機能するプロモーターの制御下にその異種タンパク質遺伝子を作動可能に配置した組換えポリヌクレオチドを宿主内に導入し、その形質転換体内においてその異種タンパク質を発現させる。プロモーターの転写活性は、異種タンパク質の発現効率を大きく左右することから、転写活性の高いプロモーターが一般的に用いられている。また、異種タンパク質遺伝子の発現は、所望のタイミングで誘導することが好ましい。形質転換体を利用した発酵生産では、まず形質転換体をなるべく多く増殖させた後、その異種タンパク質を発現させると、その異種タンパク質の生成効率が高まるからである。転写活性が高く、かつ、誘導可能なプロモーターとして、ガラクトース誘導性プロモーターがよく知られている。ガラクトース誘導性プロモーターとは、グルコース欠乏時においてガラクトースによって誘導されるプロモーターであり、サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)等においては、GAL1プロモーター、GAL2プロモーター、GAL3プロモーター、GAL5プロモーター、GAL7プロモーター、GAL10プロモーター等の、ガラクトース代謝遺伝子(GAL遺伝子)のプロモーター(GALプロモーター)がよく用いられている(例えば特許文献2参照)。
ところで、クルイベロマイセス・マルシアヌスは、耐熱性酵母である(例えば、非特許文献1及び2)。通常の酵母でエタノール発酵をする場合、発酵熱によって発酵液の温度が上昇していくため、エタノール発酵を持続させるには発酵液を冷却しなければならなかった。そのため、エタノール発酵を工業的に行うには、大規模な冷却設備と、その冷却に要する多大なエネルギーコストが不可欠となる。しかし、クルイベロマイセス・マルシアヌスは48℃もの高温でも増殖が可能であるため(非特許文献3及び4)、そのような冷却設備やエネルギーコストを必要とせずに、効率的なエタノール発酵が可能となる。このクルイベロマイセス・マルシアヌスのGALプロモーターの配列についてはこれまで知られていなかった。
特開2008−29239号公報 特開2007−89512号公報
Bioresource Technology (2007) 98, 3367-3374 Appl. Microbiol. Biotechnol. (2008) 79, 339-354 Applied and Environmental Microbiology (2008) 74, 7514-7521 Appl. Microbiol. Biotechnol. (2010) 85, 861-867
本発明は、クルイベロマイセス・マルシアヌス由来の新規な高発現プロモーターであるGAL1プロモーター、該高発現プロモーターを含む組換えポリヌクレオチド、該組換えポリヌクレオチドを含むベクター、該組換えポリヌクレオチド又は該ベクターを酵母に導入して得られる形質転換体、該形質転換体を用いた目的遺伝子の高発現方法、該形質転換体を用いた目的遺伝子産物の製造方法を提供することを目的とする。
本発明者らは、鋭意研究を行った結果、クルイベロマイセス・マルシアヌスからGAL1プロモーターを単離することに成功し、このプロモーターがクルイベロマイセス・マルシアヌスにおいて目的遺伝子を顕著に高発現させ得ること、さらには、サッカロマイセス・セレビシエにおいても目的遺伝子を高発現させ得ることを見い出し、本発明を完成するに至った。
すなわち、本発明は、(1)(a)配列番号1に示されるポリヌクレオチド:(b)上記の(a)のポリヌクレオチドに対して80%以上の同一性を有し、かつ、クルイベロマイセス・マルシアヌス及びそれ以外の少なくとも1種以上の酵母においてプロモーター活性を有するポリヌクレオチド:(c)配列番号2に示されるポリヌクレオチド:(d)上記の(c)のポリヌクレオチドに対して80%以上の同一性を有し、かつ、クルイベロマイセス・マルシアヌス及びそれ以外の少なくとも1種以上の酵母においてプロモーター活性を有するポリヌクレオチド:(e)配列番号3に示されるポリヌクレオチド:及び、(f)上記の(e)のポリヌクレオチドに対して80%以上の同一性を有し、かつ、クルイベロマイセス・マルシアヌス及びそれ以外の少なくとも1種以上の酵母においてプロモーター活性を有するポリヌクレオチド:のいずれかのポリヌクレオチドからなる高発現プロモーターに関する。
また、本発明は、(2)上記(1)に記載の高発現プロモーターと、その制御下に作動可能に配置された目的遺伝子とを含む組換えポリヌクレオチドに関する。
さらに、本発明は、(3)上記(2)に記載の組換えポリヌクレオチドを含むベクターに関する。
また、本発明は、(4)上記(2)に記載の組換えポリヌクレオチド又は上記(3)に記載のベクターを、酵母に導入して得られることを特徴とする形質転換体や、(5)酵母が、サッカロマイセス属酵母及びクルイベロマイセス属酵母からなる群から選択されるいずれかの酵母であることを特徴とする上記(4)に記載の形質転換体や、(6)酵母が、サッカロマイセス・セレビシエ及びクルイベロマイセス・マルシアヌスから選択されるいずれかの酵母であることを特徴とする上記(4)に記載の形質転換体に関する。
さらに、本発明は、(7)上記(4)〜(6)のいずれかに記載の形質転換体を培養する工程を含むことを特徴とする目的遺伝子の高発現方法に関する。
また、本発明は、(8)上記(4)〜(6)のいずれかに記載の形質転換体を培養する工程と、培養して得られた形質転換体から目的遺伝子産物を回収する工程とを含むことを特徴とする目的遺伝子産物の製造方法に関する。
本発明の高発現プロモーターは、クルイベロマイセス・マルシアヌスだけでなく、他の酵母においても、目的遺伝子を高発現させることができる。例えば、本発明の高発現プロモーターをサッカロマイセス・セレビシエで用いると、サッカロマイセス・セレビシエのGAL10プロモーターよりも目的遺伝子を高発現させることができる。したがって、本発明の高発現プロモーターを用いると、目的遺伝子産物を効率よく製造することも可能となる。
クルイベロマイセス・マルシアヌスにおけるGAL1プロモーター、GAL10プロモーター、GAL7プロモーターのプロモーター構造を示す図である。 クルイベロマイセス・マルシアヌスのGAL1プロモーター(KmGAL1プロモーター)のプロモーター構造を示す図である。 KmGAL1プロモーターの部位を特定するための発現解析試験の結果を示す図である。 クルイベロマイセス・マルシアヌス又はサッカロマイセス・セレビシエにおける、KmGAL1プロモーターの発現解析試験の結果を示す図である。
1.本発明のプロモーター
本発明の高発現プロモーターは、(A)配列番号1、2若しくは3に示されるポリヌクレオチドからなるか、又は、(B)これらのポリヌクレオチドの変異体であって、かつ、クルイベロマイセス・マルシアヌス及びそれ以外の少なくとも1種以上の酵母においてプロモーター活性を有するポリヌクレオチドからなることを特徴とする。配列番号1に示されるポリヌクレオチドは、クルイベロマイセス・マルシアヌス由来のGAL1プロモーターであり、配列番号2に示されるポリヌクレオチドは、クルイベロマイセス・マルシアヌス由来のGAL7プロモーターであり、配列番号3に示されるポリヌクレオチドは、クルイベロマイセス・マルシアヌス由来のGAL10プロモーターである。かかる本発明の高発現プロモーターは、クルイベロマイセス・マルシアヌスだけでなく、他の酵母においても、目的遺伝子を高発現させることができる。
上記(B)の、配列番号1、2又は3に示されるポリヌクレオチドの変異体であって、かつ、クルイベロマイセス・マルシアヌス及びそれ以外の少なくとも1種以上の酵母においてプロモーター活性を有するポリヌクレオチドからなるプロモーター(以下、特に「本発明の変異体プロモーター」とも表示する。)としては、(a)配列番号1、2又は3に示されるポリヌクレオチドに対して80%以上、好ましくは85%以上、より好ましくは90%以上、さらに好ましくは95%以上、最も好ましくは98%以上の同一性を有し、かつ、クルイベロマイセス・マルシアヌス及びそれ以外の少なくとも1種以上の酵母においてプロモーター活性を有するポリヌクレオチド:
(b)配列番号1、2又は3に示されるポリヌクレオチドにおいて、1若しくは2個以上のヌクレオチドが欠失、置換若しくは付加されたポリヌクレオチドからなり、かつ、クルイベロマイセス・マルシアヌス及びそれ以外の少なくとも1種以上の酵母においてプロモーター活性を有するポリヌクレオチド:
(c)配列番号1、2又は3に示されるポリヌクレオチドに相補的なポリヌクレオチドとストリンジェントな条件下でハイブリダイズし、かつ、クルイベロマイセス・マルシアヌス及びそれ以外の少なくとも1種以上の酵母においてプロモーター活性を有するポリヌクレオチド:
上記(b)における「1若しくは2個以上のヌクレオチドが欠失、置換若しくは付加されたポリヌクレオチド」とは、例えば1〜20個、好ましくは1〜15個、より好ましくは1〜10個、さらに好ましくは1〜5個の任意の数のヌクレオチドが欠失、置換若しくは付加されたポリヌクレオチドを意味する。
上記(c)における「ストリンジェントな条件下」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいい、具体的には、80%以上、好ましくは85%以上の同一性を有するDNA同士がハイブリダイズし、それより同一性が低いDNA同士がハイブリダイズしない条件あるいは通常のサザンハイブリダイゼーションの洗いの条件である65℃、1×SSC溶液(1倍濃度のSSC溶液の組成は、150mM塩化ナトリウム、15mMクエン酸ナトリウム)、0.1%SDS、又は0.1×SSC、0.1%SDSに相当する塩濃度でハイブリダイズする条件を挙げることができる。ハイブリダイゼーションは、モレキュラークローニング第2版等に記載されている方法に準じて行うことができる。上記(c)における「ストリンジェントな条件下でハイブリダイズするポリヌクレオチド」としては、プローブとして使用するポリヌクレオチドに相補的なポリヌクレオチドと一定以上の同一性を有するポリヌクレオチドが挙げることができ、例えば80%以上、好ましくは85%以上、より好ましくは90%以上、さらに好ましくは95%以上、最も好ましくは98%以上の同一性を有するポリヌクレオチドを好適に例示することができる。
なお、配列番号1に示されるポリヌクレオチドの758位〜774位、779位〜795位、804位〜820位、825位〜841位、860位〜876位;配列番号2に示されるポリヌクレオチドの718位〜734位、753位〜769位、774位〜790位、799位〜815位、820位〜836位;配列番号3に示されるポリヌクレオチドの939位〜955位、954位〜970位、988位〜1004位;は、それぞれ、転写因子であるGAL4の結合部位である。
上記(A)の配列番号1、2若しくは3に示されるポリヌクレオチドは、そのヌクレオチド配列が明らかとなったので、例えば、鋳型としてクルイベロマイセス・マルシアヌスのゲノムDNAを用い、該ヌクレオチド配列に基づいて合成したオリゴヌクレオチドをプライマーに用いるPCR反応によって、または該ヌクレオチド配列に基づいて合成したオリゴヌクレオチドをプローブとして用いるハイブリダイゼーションによっても得ることができる。なお、染色体DNAは、常法(例えば、特開2008−237024号公報)に開示された方法により取得できる。
オリゴヌクレオチドの合成は、例えば、市販されている種々のDNA合成機を用いて常法に従って合成できる。また、PCR反応は、アプライドバイオシステムズ社(Applied Biosystems)製のサーマルサイクラーGene AmpPCRSystem 2400を用い、TaqDNAポリメラーゼ(タカラバイオ社製)やKOD−Plus−(東洋紡績社製)などを使用して常法に従って行なうことができる。
また、前述の本発明の変異体プロモーターにおけるポリヌクレオチドの変異体は、化学合成、遺伝子工学的手法、突然変異誘発などの当業者に既知の任意の方法により作製することもできる。具体的には、配列番号1、2又は3に示されるポリヌクレオチドに対し、変異原となる薬剤と接触作用させる方法、紫外線を照射する方法、遺伝子工学的な手法等を用いて、これらポリヌクレオチドに変異を導入することにより、ポリヌクレオチドの変異体を取得することができる。遺伝子工学的手法の一つである部位特異的変異誘発法は特定の位置に特定の変異を導入できる手法であることから有用であり、モレキュラークローニング第2版、Current Protocols in Molecular Biology, Supplement 1〜38,John Wiley & Sons (1987-1997)等に記載の方法に準じて行うことができる。
本発明の高発現プロモーターは、クルイベロマイセス・マルシアヌス及びそれ以外の少なくとも1種以上の酵母においてプロモーター活性を有する。あるポリヌクレオチドがある酵母においてプロモーター活性を有するかどうかは、例えばそのポリヌクレオチドの下流にレポーター遺伝子を作動可能に連結した組換えポリヌクレオチドを作製する工程、その組換えポリヌクレオチドをその酵母に形質転換して形質転換酵母を得る工程、その形質転換酵母におけるそのレポーター遺伝子の発現の程度を測定する工程を含む周知のレポーターアッセイ等により容易に確認することができる。
上記の「クルイベロマイセス・マルシアヌス及びそれ以外の少なくとも1種以上の酵母」における「クルイベロマイセス・マルシアヌス以外の酵母」としては、クルイベロマイセス・マルシアヌス以外の種類の酵母である限り、特に制限されず、クルイベロマイセス・ラクティス等の、クルイベロマイセス・マルシアヌス以外のクルイベロマイセス属酵母;サッカロマイセス・セレビシエ等のサッカロマイセス属酵母;カンジダ・アルビカンス等のカンジダ属酵母;ジゴサッカロマイセス・ロキシー等のジゴサッカロマイセス属酵母;シゾサッカロマイセス・ポンベ等のシゾサッカロマイセス属酵母;ピキア・パストリス等のピキア属酵母;などを好適に例示することができ、中でも、クルイベロマイセス・ラクティス等の、クルイベロマイセス・マルシアヌス以外のクルイベロマイセス属酵母;サッカロマイセス・セレビシエ等のサッカロマイセス属酵母;をより好適に例示することができ、中でも、サッカロマイセス・セレビシエ等のサッカロマイセス属酵母をさらに好適に例示することができ、サッカロマイセス・セレビシエを特に好適に例示することができる。
本発明の高発現プロモーターや、後述の本発明の目的遺伝子の高発現方法おける「高発現」や、後述の本発明の目的遺伝子産物の製造方法における「高効率」には、(X)宿主がクルイベロマイセス・マルシアヌスの場合については、かかるプロモーターの下流に、分泌型ルシフェラーゼCLuc遺伝子を作動可能に連結した組換えポリヌクレオチドをクルイベロマイセス・マルシアヌスに導入して得られた形質転換体を、YPGal液体培地(1質量%酵母エキス、2質量%ポリペプトン、2質量%ガラクトース)にて28℃、48時間振盪培養したときの培養液中の分泌型ルシフェラーゼCLucの相対発現量(RLU/OD・μl)が、25000以上、好ましくは28000以上、より好ましくは32000以上、さらに好ましくは34000以上であることや、(Y)宿主がクルイベロマイセス・マルシアヌス以外の酵母(好適にはサッカロマイセス・セレビシエ)である場合については、かかるプロモーターの下流に、分泌型ルシフェラーゼCLuc遺伝子を作動可能に連結した組換えポリヌクレオチドをその酵母に導入して得られた形質転換体を、YPGal液体培地(1質量%酵母エキス、2質量%ポリペプトン、2質量%ガラクトース)にて28℃、48時間振盪培養したときの培養液中の分泌型ルシフェラーゼCLucの相対発現量(RLU/OD・μl)が、1500以上、好ましくは2000以上、より好ましくは2500以上、さらに好ましくは3000以上であることを好適に含み、さらには、上記(X)であり、かつ、上記(Y)であることをより好適に含む。
本発明の高発現プロモーターや、後述の本発明の目的遺伝子の高発現方法おける「高発現」や、後述の本発明の目的遺伝子産物の製造方法における「高効率」の他の例としては、かかるプロモーターの下流に、分泌型ルシフェラーゼCLuc遺伝子を作動可能に連結した組換えポリヌクレオチドをクルイベロマイセス・マルシアヌスに導入して得られた形質転換体を、YPGal液体培地(1質量%酵母エキス、2質量%ポリペプトン、2質量%ガラクトース)にて28℃、48時間振盪培養したときの培養液中の分泌型ルシフェラーゼCLucの相対発現量(RLU/OD・μl)が、サッカロマイセス・セレビシエのGAL10プロモーターの下流に、分泌型ルシフェラーゼCLuc遺伝子を作動可能に連結した組換えポリヌクレオチドをサッカロマイセス・セレビシエに導入して得られた形質転換体を、YPGal液体培地(1質量%酵母エキス、2質量%ポリペプトン、2質量%ガラクトース)にて28℃、48時間振盪培養したときの培養液中の分泌型ルシフェラーゼCLucの相対発現量(RLU/OD・μl)に対して、割合として、10倍以上、好ましくは20倍以上、さらに好ましくは30倍以上、さらにより好ましくは40倍以上、最も好ましくは50倍以上であることを好適に含む。
本発明の高発現プロモーターや、後述の本発明の目的遺伝子の高発現方法おける「高発現」や、後述の本発明の目的遺伝子産物の製造方法における「高効率」のさらなる他の例としては、かかるプロモーターの下流に、分泌型ルシフェラーゼCLuc遺伝子を作動可能に連結した組換えポリヌクレオチドをクルイベロマイセス・マルシアヌスに導入して得られた形質転換体を、YPGal液体培地(1質量%酵母エキス、2質量%ポリペプトン、2質量%ガラクトース)にて28℃、48時間振盪培養したときの培養液中の分泌型ルシフェラーゼCLucの相対発現量(RLU/OD・μl)が、該組換えポリヌクレオチドをサッカロマイセス・セレビシエに導入して得られた形質転換体を、YPGal液体培地(1質量%酵母エキス、2質量%ポリペプトン、2質量%ガラクトース)にて28℃、48時間振盪培養したときの培養液中の分泌型ルシフェラーゼCLucの相対発現量(RLU/OD・μl)に対して、割合として、2倍以上、好ましくは3倍以上、さらに好ましくは4倍以上、最も好ましくは5倍以上であることを好適に含む。
本発明におけるポリヌクレオチドとしては、相補的な二本鎖ポリヌクレオチドを好適に例示することができ、中でも相補的な二本鎖DNAを特に好適に例示することができる。
2.本発明の組換えポリヌクレオチド
本発明の組換えポリヌクレオチドは、本発明の高発現プロモーターと、その制御下に作動可能に配置された目的遺伝子とを含むことを特徴とする。本発明の組換えポリヌクレオチドは、本発明の高発現プロモーターの活性化を通じて、その目的遺伝子がコードする目的遺伝子産物(タンパク質やペプチド)をガラクトース誘導的に高発現させることができる。
本発明において、「本発明の高発現プロモーターの制御下に作動可能に配置された目的遺伝子」とは、本発明の高発現プロモーターに転写因子が結合することにより、その目的遺伝子の発現が誘導されるように、本発明の高発現プロモーターと、その目的遺伝子とが連結されていることを意味する。上記「目的遺伝子」としては、任意の遺伝子であればよいが、なんらかの有用なタンパク質をコードする有用タンパク質遺伝子を好適に例示することができる。有用タンパク質遺伝子としては、セルラーゼ遺伝子、アミラーゼ遺伝子等の糖化酵素遺伝子や、ウイルスワクチンタンパク質の遺伝子を好適に例示することができる。
3.本発明の組換えポリヌクレオチドを含むベクター
本発明の組換えポリヌクレオチドを含むベクターは、上記の本発明の組換えポリヌクレオチドを含むことを特徴とする。本発明のベクターは、宿主酵母において、本発明の組換えポリヌクレオチドを保持したり、目的遺伝子を発現させるために酵母を形質転換したりすることができる。本発明におけるベクターは、直鎖状であってもよいし、環状であってもよい。宿主酵母がクルイベロマイセス・マルシアヌスである場合は、直鎖状のベクターであっても染色体上において高頻度で組換えを生じさせることができ、その結果、形質転換することができる。また、環状のベクターの場合、さらに自己複製配列を含んでいれば、該ベクターは酵母細胞内にて自律複製し、酵母細胞内で保持され、その結果、形質転換することができる。
上記ベクターは、酵母細胞内で目的遺伝子を発現させることが可能であるものである限り特に制限されず、環状のプラスミドベクターとしては、例えばpKD1等を好適に例示することができる。
4.本発明の形質転換体
本発明の形質転換体は、本発明の組換えポリヌクレオチド、又は、本発明のベクターを、酵母に導入して得られることを特徴とする。本発明の形質転換体は、その細胞内で目的遺伝子をガラクトース誘導的に高発現することができ、本発明の形質転換体を培養することによって、目的遺伝子産物を効率的に生成させることができる。
本発明の形質転換体を作製する際に用いる酵母の種類としては、特に制限されず、クルイベロマイセス・マルシアヌス、クルイベロマイセス・ラクティス等のクルイベロマイセス属酵母;サッカロマイセス・セレビシエ等のサッカロマイセス属酵母;カンジダ・アルビカンス等のカンジダ属酵母;ジゴサッカロマイセス・ロキシー等のジゴサッカロマイセス属酵母;シゾサッカロマイセス・ポンベ等のシゾサッカロマイセス属酵母;ピキア・パストリス等のピキア属酵母;などを好適に例示することができ、中でも、クルイベロマイセス・マルシアヌス、クルイベロマイセス・ラクティス等のクルイベロマイセス属酵母;サッカロマイセス・セレビシエ等のサッカロマイセス属酵母;をより好適に例示することができ、中でも、目的遺伝子の発現量が特に高く、目的遺伝子産物の生成効率が特に高い点で、クルイベロマイセス・マルシアヌスを特に好適に例示することができる。また、クルイベロマイセス・マルシアヌスは、耐熱性を有しているため、発酵熱を冷却する設備やエネルギーコストを必要とせずに、効率的なエタノール発酵が可能となる点で好ましい。
本発明の組換えポリヌクレオチド、又は、本発明のベクターの酵母への導入方法としては、特に制限されず、ウイルスベクターを利用する方法、特異的受容体を利用する方法、細胞融合法等の生物学的方法;エレクトロポレーション法、マイクロインジェクション法、遺伝子銃法、超音波遺伝子導入法等の物理的方法;リポフェクション法、リン酸カルシウム共沈殿法、リポソーム法、DEAEデキストラン法等の化学的方法;などの公知の方法を例示することができ、中でも簡便であって汎用性が高い点でリポフェクション法を好適に例示することができる。また、本発明の組換えポリヌクレオチド、又は、本発明のベクターがその酵母へ導入されたかどうかは、目的遺伝子として、又は、目的遺伝子に加えて、マーカー遺伝子を本発明の組換えポリヌクレオチドや本発明のベクターにマーカー遺伝子を挿入しておき、形質転換体におけるそのマーカー遺伝子の発現を確認するなどして容易に確認することができる。
5.本発明の目的遺伝子の高発現方法
本発明の目的遺伝子の高発現方法は、本発明の形質転換体を培養する工程を含むことを特徴とする。「本発明の形質転換体を培養する方法」としては、その形質転換体が増殖し得る限り特に制限されないが、例えばその形質転換体が増殖可能な温度条件下(例えば25〜33℃、好ましくは28〜30℃)、YPD培地(1質量%酵母エキス、2質量%ポリペプトン、2質量%グルコース)にて、適当な時間(例えば1〜10日間、好ましくは1〜5日間、より好ましくは1〜3日間)、振盪培養する方法を好適に例示することができる。
6.本発明の目的遺伝子産物の製造方法
本発明の目的遺伝子産物の製造方法は、本発明の形質転換体を培養する工程と、培養して得られた形質転換体から目的遺伝子産物を回収する工程とを含むことを特徴とする。かかる製造方法によれば、目的遺伝子産物を高効率で製造することができる。「培養して得られた形質転換体から目的遺伝子産物を回収する」方法としては、目的遺伝子産物を回収し得る限り特に制限されず、クロマトグラフィーを利用した方法、タグを利用した方法などの公知の方法を例示することができる。
[クルイベロマイセス・マルシアヌスからのKmGAL1プロモーターの単離]
本発明者らは、クルイベロマイセス・マルシアヌス DMKU3-1042株のゲノム配列をGenome Sequencer FLX System(ロシュ・ダイアグノスティクス社)でドラフトゲノム配列を取得した。しかし、1回目のシーケンスでは、GALの部分配列しか得られなかった。そこで、さらに高性能なGenome Sequencer FLX Titanium(ロシュ・ダイアグノスティクス社)を用いることによって、ようやくドラフトゲノム配列を取得することができた。本発明者らは、クルイベロマイセス・マルシアヌスからガラクトース誘導性プロモーターを取得するために、サッカロマイセス・セレビシエ由来の公知のGAL1、GAL10、GAL7などの配列情報に基づいて、クルイベロマイセス・マルシアヌスのドラフトゲノム配列の検索を行った。その結果、クルイベロマイセス・マルシアヌスのドラフトゲノム配列中に、サッカロマイセス・セレビシエ由来のGALプロモーターと比較的高い同一性を有する配列を見い出し、その配列を単離した。単離したこの配列のプロモーター構造を図1に示す。図1に示されるように、GAL1プロモーターとは逆向きに、GAL10プロモーター、GAL7プロモーターが配置されており、GAL1プロモーターとGAL10プロモーターの間にGAL4結合部位が見い出された。なお、クルイベロマイセス・マルシアヌスにおけるこれらのGAL1プロモーター(KmGAL1プロモーター)、GAL10プロモーター(KmGAL10プロモーター)、GAL7プロモーター(KmGAL1プロモーター)の配置は、サッカロマイセス・セレビシエのこれらのプロモーターの既知の配置と同様であった。なお、今回単離した配列中のGAL1様プロモーターを用いた後述の実施例2や実施例3の実験により、今回単離したクルイベロマイセス・マルシアヌス由来のGALプロモーター群は、GALプロモーターであることが示された。
[KmGAL1プロモーターの部位の特定]
KmGAL1プロモーターの部位を特定するために、以下のような発現解析試験をおこなった。
まず、KmGAL1プロモーターを含むと考えられる1.4kbのDNA配列(図2のKmGAL1プロモーター構造の−1400〜0に相当する配列)を用意し、KmGAL1−1400と命名した。次に、KmGAL1−1400の5’末端を200base欠失させたDNA配列(図2のKmGAL1プロモーター構造の−1200〜0に相当する配列)を用意し、KmGAL1−1200と命名した。同様に、KmGAL1−1400の5’末端を400base欠失させたDNA配列(図2のKmGAL1プロモーター構造の−1000〜0に相当する配列)を用意し、KmGAL1−1000と命名した。同様に、KmGAL1−1400の5’末端を580base欠失させたDNA配列(図2のKmGAL1プロモーター構造の−820〜0に相当する配列)を用意し、KmGAL1−820と命名した。同様に、KmGAL1−1400の5’末端を625base欠失させたDNA配列(図2のKmGAL1プロモーター構造の−775〜0に相当する配列)を用意し、KmGAL1−775と命名した。同様に、KmGAL1−1400の5’末端を650base欠失させたDNA配列(図2のKmGAL1プロモーター構造の−750〜0に相当する配列)を用意し、KmGAL1−750と命名した。同様に、KmGAL1−1400の5’末端を800base欠失させたDNA配列(図2のKmGAL1プロモーター構造の−600〜0に相当する配列)を用意し、KmGAL1−600と命名した。同様に、KmGAL1−1400の5’末端を1000base欠失させたDNA配列(図2のKmGAL1プロモーター構造の−400〜0に相当する配列)を用意し、KmGAL1−400と命名した。同様に、KmGAL1−1400の5’末端を1200base欠失させたDNA配列(図2のKmGAL1プロモーター構造の−200〜0に相当する配列)を用意し、KmGAL1−200と命名した。
分泌型ルシフェラーゼCLuc遺伝子がGAL1プロモーターの下流に作動可能に連結してあるテンプレート、及び、前述のKmGAL1−1400等の9種類のDNA配列を利用してPCR合成した。これにより、前述のKmGAL1−1400等の9種類のDNA配列のそれぞれの下流に、分泌型ルシフェラーゼCLuc遺伝子が作動可能に連結された、KmGAL1−1400−CLuc等の9種類の組換えDNAを得た。得られた9種類の組換えDNAを、それぞれクルイベロマイセス・マルシアヌスに導入し、それぞれについて形質転換体を合計9種類得た。その9種類(1種類につき2クローンずつ)の形質転換体をYPD液体培地(1質量%酵母エキス、2質量%ポリペプトン、2質量%グルコース)にて28℃、48時間振盪培養した後、各種の形質転換体につき、培養液5μlをサンプル採取し、分泌型ルシフェラーゼCLucの相対発現量(RLU:Relative Luciferase Unit)を測定した。また、YPD液体培地に代えて、YPGal液体培地(1質量%酵母エキス、2質量%ポリペプトン、2質量%ガラクトース)を用いて同様の振盪培養を行い、分泌型ルシフェラーゼCLucの相対発現量を測定した。これらの結果を図3に示す。なお、KmGAL1−1400等のプロモーター名のところに2本ずつ記載された棒グラフのうち、左側はYPD液体培地(グルコース培地)を用いた場合における、2クローンの平均値を示し、右側はYPGal液体培地(ガラクトース培地)を用いた場合における、2クローンの平均値を示す。図3の結果から分かるように、KmGAL1−1400、KmGAL1−1200、KmGAL1−1000、KmGAL1−820、KmGAL1−775を用いた場合は、CLucの相対発現量、及び、培地中のガラクトースによる誘導率のいずれもきわめて高かったが、KmGAL1−750、KmGAL1−600、KmGAL1−400、KmGAL1−200を用いた場合は、KmGAL1−1400等を用いた場合と比較して、CLucの相対発現量がかなり低下した。この結果から、図2のKmGAL1プロモーター構造の−775〜750に相当する部分がプロモーター活性に特に重要であることが示され、KmGAL1プロモーターの部位が特定された。なお、本明細書中の「活性量」は「相対発現量」と同義である。
[KmGAL1プロモーターの発現解析]
KmGAL1プロモーターが、クルイベロマイセス・マルシアヌスにおいて目的遺伝子をどの程度発現させることができるのか、及び、クルイベロマイセス・マルシアヌス以外の酵母において目的遺伝子をどの程度発現させることができるのかを調べるために、以下のような発現解析試験をおこなった。
まずは、URA3−5’40−KmGAL10c2プライマー(配列番号4)及び15GKmGAL1+22cプライマー(配列番号5)と、クルイベロマイセス・マルシアヌス由来の染色体ゲノムを用いたPCRにより、KmGAL1プロモーター(KmGAL1p)の配列を得た。
次に、以下の4つの形質転換体を、公知の形質転換法により、作製した。
(1)KmGAL1pの下流に、分泌型ルシフェラーゼCLuc遺伝子を作動可能に連結したKmGAL1p−CLucをクルイベロマイセス・マルシアヌスに導入して得られた形質転換体(図4の右端のKmGAL1p)。
(2)サッカロマイセス・セレビシエ由来のGAL10プロモーターの下流に、分泌型ルシフェラーゼCLuc遺伝子を作動可能に連結したScGAL10p−CLucをクルイベロマイセス・マルシアヌスに導入して得られた形質転換体(図4の右から2番目のScGAL10p)。
(3)KmGAL1p−CLucをサッカロマイセス・セレビシエに導入して得られた形質転換体(図4の右から3番目のKmGAL1p)。
(4)ScGAL10p−CLucをサッカロマイセス・セレビシエに導入して得られた形質転換体(図4の左端のScGAL10p)。
これらの各形質転換体を、それぞれYPD液体培地(1質量%酵母エキス、2質量%ポリペプトン、2質量%グルコース)にて28℃、48時間振盪培養した後、各種の形質転換体につき、培養液5μlをサンプル採取し、分泌型ルシフェラーゼCLucの相対発現量(RLU/OD・μl)を測定した。また、YPD液体培地に代えて、YPGal液体培地(1質量%酵母エキス、2質量%ポリペプトン、2質量%ガラクトース)を用いて同様の振盪培養を行い、分泌型ルシフェラーゼCLucの相対発現量を測定した。これらの結果を図4に示す。なお、KmGAL1p等のプロモーター名のところに2本ずつ記載された棒グラフのうち、左側はYPD液体培地(グルコース培地)を用いた場合における、2クローンの平均値を示し、右側はYPGal液体培地(ガラクトース培地)を用いた場合における、2クローンの平均値を示す。
図4の結果から分かるように、KmGAL1プロモーターは、サッカロマイセス・セレビシエにおいてもガラクトース誘導的に発現すること、しかもKmGAL1プロモーターをサッカロマイセス・セレビシエにおいて用いた場合のCLucの相対発現量(RLU/OD・μl)(ガラクトース誘導下)が、ScGAL10プロモーターを用いた場合と比較して、割合として、約5倍にも上昇していた。一般的には、宿主の属する種とは異なる種に属する生物から単離したプロモーターが、その宿主においてプロモーターとして機能しないことの方が多い。しかも、宿主由来のプロモーターを超える発現量をその他の生物のプロモーターが発揮することは通常無い。したがって、クルイベロマイセス・マルシアヌス由来のGAL1プロモーターが、サッカロマイセス・セレビシエにおいて、サッカロマイセス・セレビシエ由来のGAL10プロモーターよりも5倍もの高い発現性を示したことは稀な現象であるといえる。
さらに、KmGAL1プロモーターをクルイベロマイセス・マルシアヌスにおいて用いた場合のCLucの相対発現量(RLU/OD・μl)(ガラクトース誘導下)は、ScGAL10プロモーターをサッカロマイセス・セレビシエにおいて用いた場合のCLuc相対発現量(ガラクトース誘導下)と比較して、割合として50倍以上にも上昇していた。このことから、KmGAL1プロモーターが有するこの高発現性は、顕著であるといえる。
本発明は、目的遺伝子の高発現や目的遺伝子産物の高生成の分野において特に有用に利用することができる。
【0005】
[0016]
[図1]クルイベロマイセス・マルシアヌスにおけるGAL1プロモーター、GAL10プロモーター、GAL7プロモーターのプロモーター構造を示す図である。
[図2]クルイベロマイセス・マルシアヌスのGAL1プロモーター(KmGAL1プロモーター)のプロモーター構造を示す図である。
[図3]KmGAL1プロモーターの部位を特定するための発現解析試験の結果を示す図である。
[図4]クルイベロマイセス・マルシアヌス又はサッカロマイセス・セレビシエにおける、KmGAL1プロモーターの発現解析試験の結果を示す図である。
発明を実施するための形態
[0017]
1.本発明のプロモーター
本発明の高発現プロモーターは、(A)配列番号1、2若しくは3に示されるポリヌクレオチドからなるか、又は、(B)これらのポリヌクレオチドの変異体であって、かつ、クルイベロマイセス・マルシアヌス及びそれ以外の少なくとも1種以上の酵母においてプロモーター活性を有するポリヌクレオチドからなることを特徴とする。配列番号1に示されるポリヌクレオチドは、クルイベロマイセス・マルシアヌス由来のGAL1プロモーターであり、配列番号2に示されるポリヌクレオチドは、クルイベロマイセス・マルシアヌス由来のGAL10プロモーターであり、配列番号3に示されるポリヌクレオチドは、クルイベロマイセス・マルシアヌス由来のGAL7プロモーターである。かかる本発明の高発現プロモーターは、クルイベロマイセス・マルシアヌスだけでなく、他の酵母においても、目的遺伝子を高発現させることができる。
[0018]
上記(B)の、配列番号1、2又は3に示されるポリヌクレオチドの変異体であって、かつ、クルイベロマイセス・マルシアヌス及びそれ以外の少なくとも1種以上の酵母においてプロモーター活性を有するポリヌクレオチドからなるプロモーター(以下、特に「本発明の変異体プロモーター」とも表
【0015】
KmGAL1プロモーターの部位を特定するために、以下のような発現解析試験をおこなった。
[0042]
まず、KmGAL1プロモーターを含むと考えられる1.4kbのDNA配列(図2のKmGAL1プロモーター構造の−1400〜−1に相当する配列)を用意し、KmGAL1−1400と命名した。次に、KmGAL1−1400の5’末端を200base欠失させたDNA配列(図2のKmGAL1プロモーター構造の−1200〜−1に相当する配列)を用意し、KmGAL1−1200と命名した。同様に、KmGAL1−1400の5’末端を400base欠失させたDNA配列(図2のKmGAL1プロモーター構造の−1000〜−1に相当する配列)を用意し、KmGAL1−1000と命名した。同様に、KmGAL1−1400の5’末端を580base欠失させたDNA配列(図2のKmGAL1プロモーター構造の−820〜−1に相当する配列)を用意し、KmGAL1−820と命名した。同様に、KmGAL1−1400の5’末端を625base欠失させたDNA配列(図2のKmGAL1プロモーター構造の−775〜−1に相当する配列)を用意し、KmGAL1−775と命名した。同様に、KmGAL1−1400の5’末端を650base欠失させたDNA配列(図2のKmGAL1プロモーター構造の−750〜−1に相当する配列)を用意し、KmGAL1−750と命名した。同様に、KmGAL1−1400の5’末端を800base欠失させたDNA配列(図2のKmGAL1プロモーター構造の−600〜−1に相当する配列)を用意し、KmGAL1−600と命名した。同様に、KmGAL1−1400の5’末端を1000base欠失させたDNA配列(図2のKmGAL1プロモーター構造の−400〜−1に相当する配列)を用意し、KmGAL1−400と命名した。同様に、KmGAL1−1400の5’末端を1200base欠失させたDNA配列(図2のKmGAL1プロモーター構造の−200〜−1に相当する配列)を用意し、KmGAL1−200と命名した。
[0043]
分泌型ルシフェラーゼCLuc遺伝子がGAL1プロモーターの下流に作

Claims (8)

  1. 以下の(a)〜(f)のいずれかのポリヌクレオチドからなる高発現プロモーター:
    (a)配列番号1に示されるポリヌクレオチド:
    (b)上記の(a)のポリヌクレオチドに対して80%以上の同一性を有し、かつ、クルイベロマイセス・マルシアヌス及びそれ以外の少なくとも1種以上の酵母においてプロモーター活性を有するポリヌクレオチド:
    (c)配列番号2に示されるポリヌクレオチド:
    (d)上記の(c)のポリヌクレオチドに対して80%以上の同一性を有し、かつ、クルイベロマイセス・マルシアヌス及びそれ以外の少なくとも1種以上の酵母においてプロモーター活性を有するポリヌクレオチド:
    (e)配列番号3に示されるポリヌクレオチド:
    (f)上記の(e)のポリヌクレオチドに対して80%以上の同一性を有し、かつ、クルイベロマイセス・マルシアヌス及びそれ以外の少なくとも1種以上の酵母においてプロモーター活性を有するポリヌクレオチド。
  2. 請求項1に記載の高発現プロモーターと、その制御下に作動可能に配置された目的遺伝子とを含む組換えポリヌクレオチド。
  3. 請求項2に記載の組換えポリヌクレオチドを含むベクター。
  4. 請求項2に記載の組換えポリヌクレオチド又は請求項3に記載のベクターを、酵母に導入して得られることを特徴とする形質転換体。
  5. 酵母が、サッカロマイセス属酵母及びクルイベロマイセス属酵母からなる群から選択されるいずれかの酵母であることを特徴とする請求項4に記載の形質転換体。
  6. 酵母が、サッカロマイセス・セレビシエ及びクルイベロマイセス・マルシアヌスから選択されるいずれかの酵母であることを特徴とする請求項4に記載の形質転換体。
  7. 請求項4〜6のいずれかに記載の形質転換体を培養する工程を含むことを特徴とする目的遺伝子の高発現方法。
  8. 請求項4〜6のいずれかに記載の形質転換体を培養する工程と、培養して得られた形質転換体から目的遺伝子産物を回収する工程とを含むことを特徴とする目的遺伝子産物の製造方法。
JP2011553749A 2010-02-09 2011-02-07 クルイベロマイセス・マルシアヌス由来の高発現プロモーター Expired - Fee Related JP5804378B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011553749A JP5804378B2 (ja) 2010-02-09 2011-02-07 クルイベロマイセス・マルシアヌス由来の高発現プロモーター

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010026682 2010-02-09
JP2010026682 2010-02-09
JP2011553749A JP5804378B2 (ja) 2010-02-09 2011-02-07 クルイベロマイセス・マルシアヌス由来の高発現プロモーター
PCT/JP2011/000663 WO2011099263A1 (ja) 2010-02-09 2011-02-07 クルイベロマイセス・マルシアヌス由来の高発現プロモーター

Publications (2)

Publication Number Publication Date
JPWO2011099263A1 true JPWO2011099263A1 (ja) 2013-06-13
JP5804378B2 JP5804378B2 (ja) 2015-11-04

Family

ID=44367551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011553749A Expired - Fee Related JP5804378B2 (ja) 2010-02-09 2011-02-07 クルイベロマイセス・マルシアヌス由来の高発現プロモーター

Country Status (6)

Country Link
US (1) US8846343B2 (ja)
EP (1) EP2546340B1 (ja)
JP (1) JP5804378B2 (ja)
CN (1) CN102782130B (ja)
DK (1) DK2546340T3 (ja)
WO (1) WO2011099263A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201113419D0 (en) * 2011-08-04 2011-09-21 Fujifilm Diosynth Biotechnologies Uk Ltd Yeast vector
JP5878396B2 (ja) * 2012-03-02 2016-03-08 トヨタ自動車株式会社 新規プロモーター及びその利用
US9822384B2 (en) 2014-07-14 2017-11-21 Librede Inc. Production of cannabinoids in yeast
US11293038B2 (en) 2014-07-14 2022-04-05 Librede Inc. Production of cannabinoids in yeast
CN108486105B (zh) * 2018-02-22 2021-10-26 复旦大学 一种马克斯克鲁维酵母启动子及其制备方法与应用
CN108410870B (zh) * 2018-02-22 2021-11-19 复旦大学 马克斯克鲁维酵母启动子、分泌信号肽及其制备与应用
CN117568349B (zh) * 2024-01-15 2024-04-30 上海昌进生物科技有限公司 真菌来源启动子元件p22及其应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0234871A3 (en) 1986-02-28 1988-10-12 Merck & Co. Inc. Regulatable expression of recombinant proteins in yeast
DE19943383B4 (de) * 1999-09-10 2006-03-16 Tad Pharma Gmbh Regulatorische Sequenzen und Expressionskassetten für Hefen
DE10101962B4 (de) * 2001-01-17 2006-07-27 Tad Pharma Gmbh DNA-Sequenz mit regulatorischen Bereichen zur Expression von Proteinen
US6596513B2 (en) * 2001-07-24 2003-07-22 University Of Victoria Innovation And Development Corporation Kluyveromyces lactis maltase/maltose permease bi-directional promoter and use thereof
EP1626979B1 (en) * 2003-05-02 2012-06-06 Cargill, Incorporated Genetically modified yeast species and fermentation processes using genetically modified yeast
JP4765520B2 (ja) 2005-09-29 2011-09-07 株式会社豊田中央研究所 ガラクトース誘導系を有する形質転換体及びその利用
JP2008029239A (ja) 2006-07-27 2008-02-14 Gekkeikan Sake Co Ltd N36結合ペプチドの製造方法
JP2008237024A (ja) 2007-03-23 2008-10-09 Toyota Central R&D Labs Inc ガラクトース誘導系を有する形質転換体及びその利用

Also Published As

Publication number Publication date
CN102782130B (zh) 2015-04-01
US8846343B2 (en) 2014-09-30
WO2011099263A1 (ja) 2011-08-18
US20130210107A1 (en) 2013-08-15
EP2546340A1 (en) 2013-01-16
EP2546340A4 (en) 2013-09-11
EP2546340B1 (en) 2016-04-20
DK2546340T3 (en) 2016-06-27
JP5804378B2 (ja) 2015-11-04
CN102782130A (zh) 2012-11-14

Similar Documents

Publication Publication Date Title
JP5804378B2 (ja) クルイベロマイセス・マルシアヌス由来の高発現プロモーター
US12024727B2 (en) Enzymes with RuvC domains
US20240117330A1 (en) Enzymes with ruvc domains
US6429006B1 (en) Yeast strains for the production of lactic acid transformed with a gene coding for lactic acid dehydrogenase
US20170088845A1 (en) Vectors and methods for fungal genome engineering by crispr-cas9
RU2711983C2 (ru) Микроорганизм, продуцирующий молочную кислоту, и способ продуцирования молочной кислоты с его использованием
CN103517916B (zh) 具有粘度改变表型的丝状真菌
US20220220460A1 (en) Enzymes with ruvc domains
CN114085784B (zh) 一种高表达细胞色素p450的重组酵母及其应用
WO2011099243A1 (ja) サッカロマイセス・セレビシエ由来の特定のプロモーターを、クルイベロマイセス・マルシアヌスにおいて用いる目的遺伝子の発現方法
JP6343754B2 (ja) 耐酸耐塩性付与方法と耐酸耐塩性酵母を用いた有用物質生産
US20240110167A1 (en) Enzymes with ruvc domains
JP6012371B2 (ja) 4−ヒドロキシ−2−ブタノンまたはブタノールの製造方法
US9404116B2 (en) Method of construction of recombinant organisms using multiple genes co-integration
CN112111415B (zh) 一种pyrG筛选标记循环利用的方法及应用
Yuzbashev et al. Repetitive genomic sequences as a substrate for homologous integration in the Rhizopus oryzae genome
JP4315629B2 (ja) 新規プロモーター
GB2617659A (en) Enzymes with RUVC domains
Berg Towards Optimizing Acetic Acid Utilization In Saccharomyces cerevisiae Through gRNA-Landing Pads
CN116286743A (zh) 一种中温核酸内切酶突变蛋白及其制备方法与应用
JP2009254264A (ja) Issatchenkiaorientalisに属する菌の形質転換系
KR20150039104A (ko) 유전체 상의 표지자 유전자의 발현을 이용한 dna 조각 삽입 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150820

R150 Certificate of patent or registration of utility model

Ref document number: 5804378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees