JPWO2011096453A1 - 照明光学装置、照明方法、並びに露光方法及び装置 - Google Patents

照明光学装置、照明方法、並びに露光方法及び装置 Download PDF

Info

Publication number
JPWO2011096453A1
JPWO2011096453A1 JP2011552808A JP2011552808A JPWO2011096453A1 JP WO2011096453 A1 JPWO2011096453 A1 JP WO2011096453A1 JP 2011552808 A JP2011552808 A JP 2011552808A JP 2011552808 A JP2011552808 A JP 2011552808A JP WO2011096453 A1 JPWO2011096453 A1 JP WO2011096453A1
Authority
JP
Japan
Prior art keywords
light
illumination
spatial light
spatial
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011552808A
Other languages
English (en)
Other versions
JP5842615B2 (ja
Inventor
藤井 透
藤井  透
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2011552808A priority Critical patent/JP5842615B2/ja
Publication of JPWO2011096453A1 publication Critical patent/JPWO2011096453A1/ja
Application granted granted Critical
Publication of JP5842615B2 publication Critical patent/JP5842615B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0933Systems for active beam shaping by rapid movement of an element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/70116Off-axis setting using a programmable means, e.g. liquid crystal display [LCD], digital micromirror device [DMD] or pupil facets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/702Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70208Multiple illumination paths, e.g. radiation distribution devices, microlens illumination systems, multiplexers or demultiplexers for single or multiple projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70566Polarisation control

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

光束を用いて被照射面を照明する照明光学装置は、その光束を互いに異なる偏光状態を有する複数の光束に分割する光分割器と、その複数の光束のうちの第1の光束が進行する第1の光路と、その複数の光束のうち第2の光束が進行する第2の光路とのうちの少なくとも一方に配置され、かつ二次元的に配列され、個別に駆動される複数の光学要素を有する空間光変調装置と、その空間変調装置を制御し、その第1の光束とその第2の光束との少なくとも一部を合成する制御装置と、を備える。装置構成をあまり複雑化又は大型化することなく、種々の偏光状態の分布の光束で被照射面を照明できる。

Description

本発明は、個別に制御可能な複数の光学要素を有する空間光変調装置を用いて被照射面を照明する照明技術、この照明技術を用いる露光技術、及びこの露光技術を用いるデバイス製造技術に関する。
例えば半導体素子等の電子デバイス(マイクロデバイス)を製造するためのリソグラフィー工程で使用されるステッパー又はスキャニングステッパー等の露光装置は、レチクル(マスク)を種々の照明条件で、かつ均一な照度分布で照明する照明光学装置を備えている。従来の照明光学装置として、照明条件に応じて、照明光学系の瞳面上での光量分布を円形領域、輪帯状の領域、又は複数の極の領域等で光量が大きくなる分布に設定するために、アレイ状に配列され、かつ傾斜角が可変の多数の微小なミラー要素を有する可動マルチミラー方式の空間光変調器と、複数のミラー要素からの反射光が集光されるフライアイレンズとを備えた照明光学装置が提案されている(例えば、特許文献1参照)。
さらに、照明条件としての瞳面における複数の二次光源又は所定形状の二次光源の偏光状態の分布を制御するために、互いに異なる偏光状態の光束が照射される2つの空間光変調器を備え、この2つの空間光変調器からの光束の瞳面における光量分布を互いに独立に制御するようにした照明光学装置も提案されている(例えば、特許文献2参照)。
特開2002−353105号公報 特開2009−105396号公報
従来の2つの空間光変調器を備えた照明光学装置によれば、二次光源の各部の偏光状態を2つの偏光状態のいずれか、又は2つの偏光状態の光束がインコヒーレントに混合された状態に設定可能である。しかしながら、最近では、瞳面における二次光源の各部の偏光状態を、例えば全体としてほぼ円周方向に設定するなど、より複雑な分布に設定することが求められる場合がある。このために、必要な偏光状態の数に応じて単に空間光変調器の数を増加させると、照明光学装置の構成が複雑化し、かつ大型化するという問題がある。
本発明は、このような事情に鑑み、装置構成をあまり複雑化又は大型化することなく、種々の偏光状態の光束で被照射面を照明することを目的とする。
本発明の第1の態様によれば、光束を用いて被照射面を照明する照明光学装置が提供される。この照明光学装置は、その光束を互いに異なる偏光状態の複数の光束に分割する光分割器と、その複数の光束のうちの第1の光束が進行する第1の光路と、その複数の光束のうち第2の光束が進行する第2の光路とのうちの少なくとも一方に配置され、かつ二次元的に配列され、個別に駆動される複数の光学要素を有する空間光変調装置と、その空間変調装置を制御し、その第1の光束とその第2の光束との少なくとも一部を合成し、合成された光束の偏光状態を、その光分割器で分割された複数の光束が有するそれぞれの偏光状態とは異なる偏光状態に調整する制御装置と、を備えるものである。
また、本発明の第2の態様によれば、所定のパターンを照明するための本発明の照明光学装置を備え、その所定のパターンを基板に露光する露光装置が提供される。
また、本発明の第3の態様によれば、光束を用いて被照射面を照明する照明方法が提供される。この照明方法は、二次元的に配列されて個別に駆動される複数の光学要素を有する空間光変調装置とその被照射面との間で、その光束の偏光状態の目標分布を設定し、その光束を互いに異なる偏光状態の複数の光束に分割し、その複数の光束のうちの第1及び第2の光束のうちの少なくとも一方をその空間光変調装置に供給し、その偏光状態の目標分布に応じて、その空間光変調装置を制御し、その第1の光束とその第2の光束との少なくとも一部を合成し、かつ合成された光束の偏光状態を、分割されたその複数の光束が有する偏光状態とは異なるように調整する、ものである。
また、本発明の第4の態様によれば、本発明の照明方法で、その被照射面のパターンを照明し、そのパターンを基板に露光する露光方法が提供される。
また、本発明の第5の態様によれば、本発明の露光装置又は露光方法を用いて、その所定のパターンをその基板に露光することと、露光されたその基板を処理することと、を含むデバイス製造方法が提供される。
本発明によれば、第1の光束及び第2の光束の少なくとも一部を合成し、合成した光束の偏光状態を、合成する前の第1の光束及び第2の光束の偏光状態とは異なる偏光状態としている。従って、装置構成をあまり複雑化又は大型化することなく、種々の偏光状態の光束で被照射面を照明できる。
実施形態の一例の露光装置の概略構成を示す図である。 (A)は図1中の空間光変調器13の一部を示す拡大斜視図、(B)は図2(A)の一つのミラー要素3Aの駆動部を示す拡大斜視図、(C)はミラー要素3AをZ方向に駆動した状態を示す図である。 (A)は4極照明時の2つの空間光変調器13A,13Bの複数のミラー要素の一部の傾斜角を示す図、(B)は4極照明の二次光源を示す図、(C)はほぼ円周方向に偏光した二次光源を形成するときの2つの空間光変調器13A,13Bからの一部の照明光の光路を示す図、(D)はほぼ円周方向に偏光した二次光源を示す図である。 (A)は図3(C)の空間光変調器13A,13B中の一部のミラー要素を拡大して示す図、(B)は図4(A)の入射面22Iに入射する光の偏光状態を示す図、(C)は2つの空間光変調器13A,13Bからの光束を合成した光の種々の可能な偏光状態を示す図である。 (A)は図3(C)の空間光変調器13A,13B中の他の一部のミラー要素を拡大して示す図、(B)は図5(A)の入射面22Iに入射する光の偏光状態を示す図、(C)は2つの空間光変調器13A,13B中のそれぞれ1対のミラー要素を拡大して示す図、(D)は斜め方向に偏光した二次光源を示す図である。 照明方法を含む露光方法の一例を示すフローチャートである。 (A)は実施形態の他の例の照明光学装置の要部を示す図、(B)は図7(A)のBB線に沿う矢視図、(C)は図7(A)の照明瞳面22Pの2次光源の偏光状態の分布を示す図である。 電子デバイスの製造工程の一例を示すフローチャートである。
本発明の実施形態の一例につき図1〜図6を参照して説明する。
図1は、本実施形態のスキャニングステッパーよりなる走査露光型の露光装置(投影露光装置)EXの概略構成を示す。図1において、露光装置EXは、露光用の照明光(露光光)ILでレチクルR(マスク)のパターン面であるレチクル面(被照射面)を照明する照明装置2を備えている。照明装置2は、照明光ILをパルス発光する光源5と、光源5からの照明光ILでレチクル面の照明領域26を照明する照明光学系ILSとを備えている。さらに、露光装置EXは、レチクルRを移動するレチクルステージRSTと、レチクルRのパターンの像をウエハW(基板)の表面に投影する投影光学系PLと、ウエハWを移動するウエハステージWSTと、装置全体の動作を統括的に制御するコンピュータよりなる主制御系30と、各種制御系等とを備えている。
以下、投影光学系PLの光軸に平行にZ軸を設定し、Z軸に垂直な平面(本実施形態ではほぼ水平面である)内において図1の紙面に平行な方向にY軸を、図1の紙面に垂直な方向にX軸をそれぞれ設定して説明する。本実施形態では、露光時のレチクルR及びウエハWの走査方向はY軸に平行な方向(Y方向)であり、照明領域26はX方向(非走査方向)に細長い矩形である。また、X軸、Y軸、及びZ軸に平行な軸の回りの回転方向(傾斜方向)をθx方向、θy方向、及びθz方向として説明する。
光源5としては、波長193nmで直線偏光のレーザ光を4〜6kHz程度の周波数でパルス発光するArFエキシマレーザ光源が使用されている。そのレーザ光は或る程度の時間的及び空間的なコヒーレンシィを有する。なお、光源5として、波長248nmのレーザ光を供給するKrFエキシマレーザ光源、又は固体レーザ光源(YAGレーザ、半導体レーザ等)から出力されるレーザ光の高調波を発生する高調波発生装置等も使用できる。光源5には電源部32が連結されている。主制御系30が、パルス発光のタイミング及び光量(パルスエネルギー)を指示する発光トリガーパルスTPを電源部32に供給する。電源部32は、その発光トリガーパルスTPに同期して光源5にパルス発光を行わせる。
光源5から射出されたほぼ平行光束で直線偏光のレーザ光よりなる照明光ILは、ビームエキスパンダ6に入射して、その断面形状が所定形状に拡大される。ビームエキスパンダ6から射出された照明光ILは、光軸AXIを有する照明光学系ILSにおいて、照明光ILの偏光方向を任意の角度だけ回転するための1/2波長板7と、主制御系30の制御のもとで1/2波長板7を回転する駆動部33とを有する偏光光学系を通過する。なお、偏光光学系中に、国際公開第2004/051717号パンフレットに開示されているように、照明光ILの偏光状態をランダム偏光(非偏光)とするデポラライザを設けてもよい。
1/2波長板7を通過した照明光ILは、ミラー9によって+Y方向に反射された後、光分割系8、第1のプリズム12A、第2のプリズム12B、後述する空間光変調装置、リレー光学系14を介してフライアイレンズ15(オプティカルインテグレータ)の入射面22Iに入射する。ここで、空間変調装置は、第1の空間光変調器13A、第2の空間光変調器13Bを備える。
ミラー9によって+Y方向に反射された照明光ILは、光軸AXIに沿って光分割系8に入射する。光分割系8は、照明光ILを反射光としてのS偏光の第1の照明光ILAと、透過光としてのP偏光の第2の照明光ILBとに分割する偏光ビームスプリッタ10と、照明光ILAを+Y方向に反射するミラー11Aと、照明光ILBを−Z方向にシフトさせてから+Y方向に反射する2枚のミラー11B,11Cとを有する。光分割系8から射出されるX方向に直線偏光した照明光ILAは、第1のプリズム12A、第1の空間光変調器13A、第1のプリズム12A、及び所定の焦点距離を持つリレー光学系14を介してフライアイレンズ15(オプティカルインテグレータ)の入射面22Iに入射する。一方、光分割系8から射出されるZ方向(レチクル面のY方向に対応する方向)に直線偏光した照明光ILBは、第2のプリズム12B、第2の空間光変調器13B、第2のプリズム12B、及びリレー光学系14を介してフライアイレンズ15の入射面22Iに入射する。照明光ILを透過する蛍石(CaF2)又は石英等の光学材料から形成されているプリズム12A,12Bは互いに同一構成で、可動マルチミラー方式の空間光変調器13A,13Bも互いに同一構成である。さらに、プリズム12A,12B及び空間光変調器13A,13Bは、それぞれ光軸AXIに関して対称に配置されている。以下では、代表的に主に第1のプリズム12A及び第1の空間光変調器13Aの構成につき説明する。
第1のプリズム12Aは、光軸AXIに平行な軸に垂直な入射面12Ad及び射出面12Aeと、入射面12Adに対してX軸に平行な軸を中心として時計周りにほぼ60°で交差する第1反射面12Aaと、第1反射面12AaとXZ平面に平行な面に対してほぼ対称な第2反射面12Abと、XY平面に平行で入射面12Ad(射出面12Ae)に対して直交する透過面12Acとを有している。
また、第1の空間光変調器13Aは、二次元のアレイ状に配列されたそれぞれθx方向及びθy方向の傾斜角、並びにZ位置が可変の微小ミラーよりなる多数のミラー要素3Aと、これらのミラー要素3Aを個別に駆動する駆動部4Aとを有する。空間光変調器13Aの多数のミラー要素3Aは、全体として透過面12Acにほぼ平行に、かつ近接して配置されている。一例として、各ミラー要素3Aの反射面は、可変範囲内の中央においては、透過面12Acにほぼ平行である。
第2の空間光変調器13Bも、二次元のアレイ状に配列されたそれぞれθx方向及びθy方向の傾斜角、並びにZ位置が可変の微小ミラーよりなる多数のミラー要素3Bと、これらのミラー要素3Bを個別に駆動する駆動部4Bとを有する。そして、空間光変調器13Bの多数のミラー要素3Bが、第2のプリズム12Bの透過面に近接して配置されている。照明装置2は、空間光変調器13A,13Bと、空間光変調器13A,13Bの駆動部4A,4Bの動作を制御する変調制御部31とを備えている。主制御系30が変調制御部31に照明条件(後述の照明瞳面22P上の光量分布及び偏光状態の分布)並びに照明光ILの発光タイミングの情報を供給する。変調制御部31は、照明光ILがパルス発光されている期間内に、多数のミラー要素3A,3Bの2軸の回りの傾斜角及びZ位置がその照明条件に応じた値に維持されるように駆動部4A,4Bを制御する。
この場合、第1の照明光ILAは光軸AXIに平行に第1のプリズム12Aの入射面12Adに入射する。入射した照明光ILAは、第1反射面12Aaで全反射された後、透過面12Acを透過して空間光変調器13Aの多数のミラー要素3Aに入射する。そして、多数のミラー要素3Aで反射されて波面分割された照明光ILAは、再び透過面12Acに入射した後、第2反射面12Abで全反射されて射出面12Aeから射出される。従って、第1反射面12Aaの入射面12Adに対する角度は、入射面12Adに垂直に入射した光束が第1反射面12Aaで全反射するとともに、第1反射面12Aaで全反射された光束が透過面12Acを透過する範囲であればよい。この際には、あるミラー要素3Aの反射面が透過面12Acにほぼ平行であれば、そのミラー要素3Aで反射された照明光ILAは、透過面12Acを透過して第2反射面12Abで全反射された後、射出面12Aeを経て光軸AXIにほぼ平行に射出される。従って、各ミラー要素3Aの2軸の回りの傾斜角を制御することによって、そのミラー要素3Aで反射されてプリズム12Aから射出される照明光ILAの光軸AXIに平行な軸に直交する2方向(θx方向及びθz方向)の角度を制御できる。さらに、各ミラー要素3AのZ位置(Z方向の位置)も個別に制御可能であり、このZ位置の制御によって各ミラー要素3Aで反射される照明光の光路長を制御できる。このように照明光ILAの光軸AXIに平行な軸に対する角度(光路の方向)及び光路長を制御することが、本実施形態の各ミラー要素3Aによる空間的な変調である。
同様に、第2のプリズム12Bに入射した第2の照明光ILBは、第2の空間光変調器13Bの多数のミラー要素3Bによって波面分割され、波面分割された各光束はミラー要素3Bによって個別に空間的な変調を受け、それぞれθx方向、θy方向の角度、及びZ位置が制御されて、プリズム12Bの射出面から射出される。なお、プリズム12A,12Bの反射面12Aa,12Ab等は全反射を用いているが、その反射面12Aa,12Ab等に反射膜を形成し、この反射膜で照明光ILA,ILBを反射してもよい。また、プリズム12A,12Bの代わりに、反射面12Aa,12Ab等に反射面が配置される1対ずつの平面ミラー等を使用してもよい。
そして、プリズム12A,12Bから射出された照明光ILA,ILBは、リレー光学系14を介して、必要に応じて少なくとも一部が合成されてフライアイレンズ15の入射面22Iに入射する。フライアイレンズ15は、多数の両凸のレンズエレメントをZ方向及びX方向にほぼ密着するように配置したものである。入射面22Iは、レチクル面と光学的にほぼ共役であり、フライアイレンズ15の各レンズエレメントの断面形状はレチクル面の照明領域26とほぼ相似の矩形である。
ここで、代表的に第1の空間光変調器13Aの構成例につき説明する。図2(A)は、空間光変調器13Aの一部を示す拡大斜視図である。図2(A)において、空間光変調器13Aは、X方向、Y方向に一定ピッチでほぼ密着するように配列された多数のミラー要素3Aと、駆動部4Aとを含んでいる。X方向、Y方向のミラー要素3Aの配列数は例えば数100である。
一例として、図2(B)に示すように、一つの2点鎖線で表されるミラー要素3Aの駆動機構(駆動部4A)は、支持部材41に対してミラー要素3Aを支持するバネ部材44と、支持部材41の表面に形成された4個の電極42A,42B,42C,42Dと、ミラー要素3Aの裏面に形成された電極(不図示)とを含んでいる。バネ部材44は、弾性変形する微小なヒンジ機構でもよい。ミラー要素3A及び駆動部4Aは、例えばいわゆるMEMS(Microelectromechanical Systems)技術によって製造することができる。
図2(B)において、電極42A,42Bに印加する電圧のバランスによってミラー要素3Aのθy方向の傾斜角を制御でき、電極42C,42Dに印加する電圧のバランスによってミラー要素3Aのθx方向の傾斜角を制御できる。さらに、4つの電極42A〜42Dの電圧を等しく増減させることで、図2(B)の駆動機構の側面図である図2(C)に示すように、ミラー要素3Aの反射面の法線方向(ほぼZ方向)の位置(Z位置)を制御できる。現状では、ミラー要素3Aは例えば10μm角〜数10μm角程度(例えば48μm角)の微小な平面ミラーであり、ミラー要素3Aのθx方向、θy方向の傾斜角は±数deg〜±10deg程度である。照明条件の細かな変更を可能とするためには、ミラー要素3は可能な限り小さいことが好ましい。
また、ミラー要素3AのZ位置の制御量δZの可能な範囲は、例えば数100nm程度である。本実施形態では、ミラー要素3Aで反射される照明光ILAの波長は193nmであり、ミラー要素3AのZ位置の制御量δZに対する照明光ILAの光路長の変化量はほぼ2×δZである。このため、照明光ILAの光路長を位相で360°変化させるためには、ミラー要素3AのZ位置はほぼ100nm程度変化させるだけでよい。従って、本実施形態の空間光変調器13A(空間光変調器13Bも同様)によれば、各ミラー要素3A(3B)のZ位置を制御することによって、各ミラー要素3A(3B)で反射される照明光ILA(ILB)の位相に換算した光路長を0°〜360°の範囲内で制御できる。また、空間光変調器13A,13Bには、温度を安定化するための、例えば所定温度に制御された冷媒を配管に流す方式の温度安定化機構(不図示)が設けられている。
なお、ミラー要素3Aの駆動機構としては、他の任意の機構を使用できる。さらに、ミラー要素3Aはほぼ正方形の平面ミラーであるが、その形状は矩形等の任意の形状であってもよい。ただし、光の利用効率の観点からは、隙間無く配列可能な形状が好ましい。また、隣接するミラー要素3Aの間隔は必要最小限とすることが好ましい。なお、空間光変調器13A,13Bとしては、例えば特表平10−503300号公報及びこれに対応する欧州特許公開第779530号明細書、特開2004−78136号公報及びこれに対応する米国特許第6,900,915号明細書、特表2006−524349号公報及びこれに対応する米国特許第7,095,546号明細書に開示される空間光変調器を用いることもできる。
図3(A)及び図3(C)は、それぞれ図1の光分割系8からフライアイレンズ15までの光学系を示す。図3(A)及び図3(C)において、空間光変調器13A,13Bの多数のミラー要素3A,3Bを代表的に複数のミラー要素3A1〜3A7,3B1〜3B7で表している。図3(A)において、本実施形態では、リレー光学系14のほぼ前側焦点面に空間光変調器13A,13Bの各ミラー要素3A1,3B1等の反射面が配置され、リレー光学系14の後側焦点面にフライアイレンズ15の入射面22Iが配置されている。この構成において、光軸AXIを含みZY平面に平行な面に沿ってリレー光学系14に入射する光線の光軸AXIに平行な軸に対するθx方向の傾斜角をθAとして、リレー光学系14の焦点距離をfとすると、フライアイレンズ15の入射面22Iにおいてその光線が集光される位置の光軸AXIからの高さhA(Z方向の位置)はほぼ次のように計算できる。
hA=f・tanθA …(1)
式(1)において、傾斜角θAは、各ミラー要素3A1等の反射面のθx方向の傾斜角(変調制御部31で設定される値)に応じて計算される値であり、その傾斜角はミラー要素3A1のZ位置には影響されない。同様に、ミラー要素3A1等のθy方向の傾斜角から入射面22Iにおける光線のX方向の位置が計算できる。また、空間光変調器13Bにおいても、各ミラー要素3B1等のθx方向、θy方向の傾斜角から、各ミラー要素3B1等で反射される光線の入射面22IにおけるX方向、Y方向の照射位置が計算できる。
この場合、フライアイレンズ15の各レンズエレメントの後側焦点面(射出面の近傍の面)がある照明光学系ILSの瞳面(以下、照明瞳面という)22Pには、各レンズエレメントによる光源(二次光源)が形成される。言い換えると、フライアイレンズ15の入射面22Iにおける照明光ILA,ILBの光量分布は、フライアイレンズ15の射出面側にある照明瞳面22Pにおける光量分布と実質的に同じである。従って、空間光変調器13A,13Bの全部のミラー要素3A1,3B1等の2軸の回りの傾斜角を個別に制御することによって、照明瞳面22Pにおける照明光ILA,ILBの光量分布(二次光源の形状)を任意の分布に制御可能である。実際には、主制御系30から変調制御部31に対して照明瞳面22P(ひいては入射面22I)において目標とする光量分布の情報が供給される。変調制御部31は、入射面22Iでその目標とする光量分布が得られるように、式(1)等から各ミラー要素3A1等の反射面のθx方向、θy方向の傾斜角の目標値を計算し、これらの傾斜角を空間光変調器13A,13Bの駆動部4A,4Bに設定する。
また、本実施形態において、空間光変調器13Aの一つ又は複数のミラー要素3Aからの光束と、空間光変調器13Bの一つ又は複数のミラー要素3Bからの光束とをフライアイレンズ15の入射面22Iの同じ点に照射して、空間光変調器13Aからの光束と空間光変調器13Bからの光束との光路長差(位相差)を制御することによって、その点における照明光の偏光状態、ひいてはその点に対応する照明瞳面22Pにおける照明光の偏光状態をほぼ任意の状態に制御できる(詳細後述)。
図3(A)の例では、フライアイレンズ15の入射面22IのZ方向に離れた2箇所の照明領域25A,25B及びX方向に離れた2箇所の照明領域25C,25Dにそれぞれ空間光変調器13A及び13Bからの反射光が照射されている。そして、照明瞳面22Pには、図3(B)に示すように、照明領域25A〜25Dに対応する位置に照明領域25A〜25Dとほぼ同じ強度分布を有する4極の二次光源24A,24B,24C,24Dが形成される。
例えば図1のレチクルRのパターン面(レチクル面)において、X方向及びY方向にそれぞれ解像限界に近いピッチで配列された2つのライン・アンド・スペースパターンを主に露光する場合には、照明瞳面22Pにおける二次光源は図3(B)の4極照明に設定される。同様に、空間光変調器13A,13Bによって、照明瞳面22P上の二次光源(光量分布)を、通常照明用の円形の二次光源、輪帯照明用の二次光源、X方向の2極の二次光源、Y方向の2極の二次光源等の任意の形状に設定可能である。さらに、空間光変調器13A,13Bによって、例えば図3(B)において、二次光源24A,24B(24C,24D)の間隔、及び/又は二次光源24A〜24Dの個々の大きさを任意の値に変更することも可能である。
次に、図1において、照明瞳面22Pに形成された二次光源からの照明光ILEは、第1リレーレンズ16、レチクルブラインド(視野絞り)17、第2リレーレンズ18、光路折り曲げ用のミラー19、及びコンデンサ光学系20を介して、レチクル面の照明領域26を均一な照度分布が得られるように重畳して照明する。ビームエキスパンダ7からコンデンサ光学系20までの光学部材を含んで照明光学系ILSが構成されている。照明光学系ILSの空間光変調器13A,13B及びフライアイレンズ15を含む各光学部材は、不図示のフレームに支持されている。
レチクルRの照明領域26内のパターンは、両側(又はウエハ側に片側)テレセントリックの投影光学系PLを介して、レジスト(感光材料)が塗布されたウエハWの一つのショット領域上の露光領域27に所定の投影倍率(例えば1/4,1/5等)で投影される。
また、レチクルRはレチクルステージRSTの上面に吸着保持され、レチクルステージRSTは、不図示のレチクルベースの上面(XY平面に平行な面)に、Y方向に一定速度で移動可能に、かつ少なくともX方向、Y方向、及びθz方向に移動可能に載置されている。レチクルステージRSTの2次元的な位置は不図示のレーザ干渉計によって計測され、この計測情報に基づいて主制御系30が、リニアモータ等の駆動系(不図示)を介してレチクルステージRSTの位置及び速度を制御する。
さらに、レチクルステージRSTのレチクルRにY方向に近接した位置に、偏光計測装置28が設けられている。レチクルステージRSTを駆動して、偏光計測装置28の受光部を照明領域26内に設定することによって、偏光計測装置28は、照明瞳面22Pと共役な受光面において、照明光ILEのストークスパラメータで表される偏光度によって偏光状態の分布を計測し、計測結果を主制御系30に供給する。偏光計測装置28としては、例えば特開2006−179660号公報に開示されている偏光計測装置を使用できる。なお、偏光計測装置28の受光部は、照明領域26の一部の光束を受光するだけでよい。
一方、ウエハWはウエハホルダ(不図示)を介してウエハステージWSTの上面に吸着保持され、ウエハステージWSTは、不図示のウエハベースの上面(XY平面に平行な面)でX方向、Y方向に移動可能であるとともに、Y方向に一定速度で移動可能である。ウエハステージWSTの2次元的な位置は不図示のレーザ干渉計によって計測され、この計測情報に基づいて主制御系30が、リニアモータ等の駆動系(不図示)を介してウエハステージWSTの位置及び速度を制御する。なお、レチクルR及びウエハWのアライメントを行うために、ウエハステージWSTには、レチクルRのアライメントマークの像の位置を計測する空間像計測系(不図示)が設置され、投影光学系PLの側面にウエハWのアライメントマークの位置を検出するウエハアライメント系(不図示)が備えられている。
露光装置EXによるウエハWの露光時に、主制御系30は、レチクルRのパターンに応じて照明条件(照明瞳面22P上の二次光源の形状及び偏光状態の分布)を選択し、選択した照明条件を変調制御部31に設定する。これに応じて変調制御部31は、空間光変調器13A,13Bの各ミラー要素3A,3Bの傾斜角を個別に制御して、照明瞳面22P上の二次光源の形状を設定し、必要に応じて空間光変調器13Bの所定のミラー要素3BのZ位置を制御して、偏光状態の分布を調整する。続いて、ウエハステージWSTのステップ移動によってウエハWが走査開始位置に移動する。その後、光源5のパルス発光を開始して、照明光ILEのもとで、レチクルRのパターンの一部の投影光学系PLによる像でウエハWのショット領域の一部を露光しつつ、レチクルステージRST及びウエハステージWSTを介してレチクルR及びウエハWをY方向に投影倍率を速度比として同期して移動することで、ウエハWの当該ショット領域が走査露光される。このようにウエハWのステップ移動と走査露光とを繰り返すステップ・アンド・スキャン動作によって、ウエハW上の全部のショット領域にレチクルRのパターンの像が露光される。
次に、図1の照明装置2によって設定される照明条件に応じて、照明瞳面22Pにおける偏光状態の分布を制御する方法の例につき説明する。まず、照明瞳面22Pの任意の形状の二次光源からの照明光ILEの偏光状態をX方向の直線偏光とする場合には、光分割系8の偏光ビームスプリッタ10に入射する照明光ILの偏光方向がX方向になるように、1/2波長板7の回転角を調整する。これによって、空間光変調器13Bに入射する照明光ILBの光量は0になるため、空間光変調器13Aのみで二次光源の形状を設定することで、その偏光方向はX方向となる。一方、照明瞳面22Pの任意の形状の二次光源からの照明光ILEの偏光状態をZ方向の直線偏光とする場合には、光分割系8の偏光ビームスプリッタ10に入射する照明光ILの偏光方向がZ方向になるように、1/2波長板7の回転角を調整する。これによって、空間光変調器13Aに入射する照明光ILAの光量は0になるため、空間光変調器13Bのみで二次光源の形状を設定することにより、その偏光方向はZ方向となる。
以下では、照明瞳面22Pの任意の形状の二次光源の偏光状態がX方向の直線偏光及びY方向の直線偏光を含むものとして、1/2波長板7の回転角を調整して、光分割系8の偏光ビームスプリッタ10に入射する照明光ILの偏光方向をX軸(又はZ軸)に対して45°で交差する方向とする。このとき、偏光ビームスプリッタ10で分割される偏光方向が互いに直交する2つの照明光ILA,ILBの光量が等しくなる。
そして、図3(B)の4極照明を設定するときに、照明瞳面22Pにおいて光軸AXIをZ方向に挟む二次光源24A,24Bにおける照明光の偏光状態をX方向の直線偏光に設定し、光軸AXIをX方向に挟む二次光源24C,24Dにおける照明光の偏光状態をZ方向の直線偏光に設定するものとする。このためには、図3(A)の空間光変調器13Aの複数のミラー要素3A1等からの照明光ILAによって、二次光源24A,24Bに対応する入射面22I上の照明領域25A,25Bを照明し、空間光変調器13Bの複数のミラー要素3B1等からの照明光ILBによって、二次光源24C,24Dに対応する入射面22I上の照明領域25C,25Dを照明すればよい。この場合のように、複数の二次光源の偏光状態がそれぞれX方向又はZ方向の直線偏光である場合には、各二次光源に対応する照明領域を空間光変調器13A又は13Bからの照明光で照明すればよい。
次に、照明装置2によって、照明瞳面22P上の照明光の光量分布を、図3(D)に示すように、例えば光軸AXIの回りに45°間隔で配置される8個のほぼ円形の二次光源24A〜24Hで光量が大きくなる分布に設定する場合を想定する。さらに、照明瞳面22Pにおける二次光源24A〜24Hの偏光状態の分布を、ほぼ光軸AXIの回りの円周方向を偏光方向とする直線偏光に設定するものとする。この際に、近似的に、光軸AXIをZ方向及びX方向に挟む二次光源24A,24B及び24C,24Dの偏光方向をそれぞれX方向及びZ方向に設定し、X軸に時計回りに45°及び−45°で交差する方向に光軸AXIを挟む二次光源24E,24F及び24G,24Hの偏光方向をそれぞれX軸に対して反時計回りに45°及び−45°で交差する方向DE及びDGに設定するものとする。
この場合、二次光源24A,24B及び24C,24Dに対応する照明領域には、それぞれ空間光変調器13A及び13Bのみから照明光ILA及びILBを照射すればよい。また、二次光源24E,24Fにおける偏光方向を方向DEに設定するために、二次光源24E,24Fに対応する入射面22I上の照明領域25E等には、空間光変調器13A,13Bの両方からの照明光ILA,ILBを同じ光量でコヒーレントに合成した光を照射する。
このように空間光変調器13A,13Bからの照明光をコヒーレントに合成するためには、まず、図3(A)に示すように、入射する照明光ILのうちの一部の光束(例えばIL1)が偏光ビームスプリッタ10によって分割された場合に、その光束IL1等を分割した一方の光束が入射する空間光変調器13Aのミラー要素をミラー要素3A7として、その光束IL1等を分割した他方の光束が入射する空間光変調器13Bのミラー要素をミラー要素3B7とする。即ち、対応するミラー要素3A7及び3B7にはコヒーレントな光が入射する。同様に、空間光変調器13Aの他のミラー要素3A1等及び空間光変調器13Bの他のミラー要素3B1等にもそれぞれ同じ光束から分岐されたコヒーレントな光が入射するものとする。
このとき、空間光変調器13Aのいずれかのミラー要素3A1〜3A7(例えば3A7)からの反射光、及び空間光変調器13Bの対応するいずれかのミラー要素3B1〜3B7(例えば3B7)からの反射光が入射面22Iの同一の点に照射されると、その点において、その2つの反射光(照明光ILA,ILB)がコヒーレントに合成される。そこで、一例として、図3(C)に示すように、空間光変調器13Aのミラー要素3A7からの反射光と、空間光変調器13Bのミラー要素3B7からの反射光とが、二次光源24Eに対応する照明領域25Eに入射するものとする。
図4(A)は、図3(C)の空間光変調器13A,13Bのミラー要素3A7,3B7を拡大して示す図である。図4(A)において、光束IL1を偏光ビームスプリッタ10で分割して得られる光束L1A及びL1Cがミラー要素3A7及び3B7で反射されて照明領域25E内の同じ点でコヒーレントに合成され、合成された光束L1Eがフライアイレンズ15から射出される。また、照明領域25Eにおける光束L1Aの電気ベクトルEVA及び光束L1Cの電気ベクトルEVBの方向は、図4(B)に示すようにそれぞれX方向及びZ方向である。
さらに、例えば空間光変調器13B側のミラー要素3B7のZ位置をδZ7だけ調整して、光束L1Cを点線で示す光束L1Dとすることによって、光束L1Dは光束L1Aと同じ位置に入射するとともに、光束L1A及びL1D間の位相差δθACを任意の値に設定できる。そして、位相差δθACが0°、90°、及び180°の場合には、光束L1A,L1Dをコヒーレントに合成して得られる光束L1Eは、それぞれ図4(C)のX軸に対して反時計回りに45°で交差する方向の電気ベクトルE1を持つ直線偏光、回転する電気ベクトルE4を持つ円偏光、及びX軸に対して時計回りに45°で交差する方向の電気ベクトルE7を持つ直線偏光となる。また、位相差δθACが0°〜90°の間、又は90°〜180°の間では、光束L1Eの電気ベクトルはそれぞれ図4(C)のE2,E3又はE5,E6となる。従って、空間光変調器13Bのミラー要素3B7のZ位置を制御して、光束L1A,L1C(L1D)間の位相差を調整することによって、フライアイレンズ15で合成されて射出される光束L1Eの偏光状態を図4(C)の各種の偏光状態に設定できる。
本実施形態では、位相差δθACを0°に設定することによって、光束L1A,L1Cを合成した光束L1Eの偏光状態は、電気ベクトルE1を持つ偏光光、即ち図3(D)の二次光源24Eの方向DEの直線偏光となる。同様に、二次光源24Fの偏光方向も方向DEに設定できる。
また、図5(A)に示すように、同じ光束IL3から偏光ビームスプリッタ10によって分割された光束L3A及びL3Cがそれぞれ空間光変調器13A及び13Bのミラー要素3A3及び3B3で反射され、反射された光束L3A,L3Cが入射面22Iの二次光源24Gに対応する照明領域25Gに入射しているものとする。このとき、光束L3A,L3Cをコヒーレントに合成してフライアイレンズ15から射出される光束L3Eの偏光状態は、空間光変調器13Bのミラー要素3B3のZ位置の制御量δZ3を調整することによって任意の状態に制御可能である。ミラー要素3B3のZ位置調整後の光束を点線の光束L3Dとする。この場合、図5(B)に示すように、光束L3Aの電気ベクトルEVA及び光束L3C(L3D)の電気ベクトルEVBはX方向及びZ方向であるため、光束L3A,L3C(L3D)間の位相差を図4(C)に示す180°に設定することによって、合成された光束L3Eの偏光方向を図3(D)の二次光源24Gの方向DGに設定できる。同様に、二次光源24Hにおける偏光方向も方向DGに設定できる。
このように、空間光変調器13Bの所定のミラー要素3B7,3B3等のZ位置を制御することによって、図3(D)の二次光源24E,24F及び24G,24Hの偏光方向をX軸に45°で交差する方向DE及びDGに設定できる。なお、空間光変調器13B側のミラー要素3BのZ位置を調整する代わりに、又はミラー要素3BのZ位置の調整と並行して、空間光変調器13A側のミラー要素3AのZ位置を調整してもよい。
次に、図5(D)に示すように、照明瞳面22Pにおける二次光源をX軸に対して時計回りにほぼ22.5°で交差する方向に光軸AXIを挟む2つの二次光源24I,24Jとして、二次光源24I,24Jを通過する照明光の偏光方向をZ軸に対して時計回りにほぼ22.5°で交差する方向DIに設定するものとする。この場合、図5(C)に示すように、光束IL1を偏光ビームスプリッタ10で分岐した光束L1A,L1Cを空間光変調器13A,13Bのミラー要素3A7,3B7を介して二次光源24Iに対応する入射面22Iの照明領域25I内の同じ点に照射する。さらに、光束IL1に近接した(空間コヒーレンシィの高い)光束IL2を偏光ビームスプリッタ10で分岐した光束L3A,L3Cのうち光束L3Cのみを空間光変調器13Bの別のミラー要素3B6を介して照明領域25I内の光束L1Cが照射される点に照射する。この際に、分岐された一方の光束L3Aは、空間光変調器13Aのミラー要素3A6を介して、例えば入射面22Iの外に照射される。
さらに、空間光変調器13Bのミラー要素3B7,3B6のZ位置を位置P1,P2に調整して、光束L1C,L3Cの電気ベクトルEVC1,EVC2(図5(D)参照)の位相を、光束L1Aの電気ベクトルEVAの位相と同じにする。これによって、空間光変調器13Aからの光束L1A及び空間光変調器13Bからの光束L1C,L3Cを照明領域25Iで合成して得られる光束L1Eの偏光状態は、ほぼ方向DIに平行な直線偏光となる。
この動作を一般化して、変調制御部31が、空間光変調器13Aのn1個(n1は1以上の整数)のミラー要素3A、及び空間光変調器13Bのn2個(n2は1以上の整数)のミラー要素3Bを制御し、そのn1個のミラー要素3Aからの反射光及びそのn2個のミラー要素3Bからの反射光を入射面22Iの同一の点に照射する場合を想定する。このとき、その同一の点における空間光変調器13A及び13Bからの反射光(照明光)の光量比はミラー要素の数の比であるn1:n2に制御される。
この場合、仮に空間光変調器13Aのn1個のミラー要素3Aからの反射光と、空間光変調器13Bのn2個のミラー要素3Bからの反射光との位相差が0であれば、合成された光束の照明瞳面22Pにおける偏光状態は、電気ベクトルのX成分とZ成分との比がn1:n2の直線偏光となる。一方、n1個のミラー要素3Aからの反射光と、n2個のミラー要素3Bからの反射光との位相差が180°であれば、合成された光束の照明瞳面22Pにおける偏光状態は、電気ベクトルのX成分とZ成分との比がn1:−n2の直線偏光となる。従って、合成される反射光を生成するミラー要素3Aの個数n1とミラー要素3Bの個数n2との比を制御することによって、照明瞳面22Pにおける照明光の偏光状態をほぼ任意の方向の直線偏光に設定できる。
次に、本実施形態の露光装置EXによる照明方法を含む露光方法の一例につき、図6のフローチャートを参照して説明する。この動作は主制御系30によって制御される。
まず、図6のステップ102において、主制御系30は、露光対象のレチクルRのパターンに応じて、例えば露光データファイルから照明瞳面22Pにおける光量分布の目標分布及び偏光状態の目標分布の情報を読み出し、その光量分布及び偏光状態の目標分布を変調制御部31に設定する。その偏光状態の目標分布には、X軸及びZ軸に平行な方向の直線偏光以外の偏光状態が含まれているものとする。これに応じて、変調制御部31は、その光量分布及び偏光状態の目標分布が得られるように、空間光変調器13A,13Bの各ミラー要素3A,3Bの2軸の回りの傾斜角を制御し、空間光変調器13Bの偏光状態を制御するために使用されるミラー要素3BのZ位置を制御する。次のステップ104において、レチクルステージRSTを駆動して、偏光計測装置28の受光部を照明領域26内に移動する。次のステップ106において、光源5の発光を開始させて、光分割系8で分割された第1の照明光ILA及び第2の照明光ILBをそれぞれ空間光変調器13A,13Bに供給する。次のステップ108において、空間光変調器13A,13Bの各ミラー要素3A,3Bからの反射光(照明光ILA,ILB)をフライアイレンズ15の入射面22Iに照射し、一部の反射光を入射面22Iで合成する。
次のステップ110において、偏光状態の目標分布に応じて、合成される反射光を供給する空間光変調器13Bのミラー要素3B(図3(B)の場合には例えばミラー要素3B7)のZ位置を制御する。この際に、Z位置を制御しない状態で、空間光変調器13A,13Bの対応するミラー要素3A,3Bからの反射光の位相差は0であるものとする。これによって、照明瞳面22Pにおける二次光源の偏光状態が目標分布に近い分布に設定される。
次のステップ112において、偏光計測装置28で照明瞳面22Pと共役な面、ひいては照明瞳面22Pにおける光量分布の偏光状態の分布を計測し、光源5の発光を停止させる。この計測結果は主制御系30に供給される。次のステップ114において、主制御系30は、偏光状態の分布の計測結果と偏光状態の目標分布とを比較し、照明瞳面22Pの各二次光源毎に、偏光状態の設定誤差を求める。この設定誤差は、例えば図4(C)の電気ベクトルE1〜E7等のX成分とY成分との大きさ及び位相差で表される。そこで、各二次光源毎の偏光状態の設定誤差の情報を変調制御部31に供給し、変調制御部31では、その設定誤差を補正するように、空間光変調器13Bの対応するミラー要素3BのZ位置を調整し、調整後のミラー要素3BのZ位置を変調制御部31の内部の記憶装置に記憶する。この結果、照明瞳面22Pにおける偏光状態の分布は目標分布に設定される。また、これ以降に、同じ照明条件が使用される場合には、変調制御部31の各ミラー要素3BのZ位置としては、記憶装置に記憶されている値が使用される。
次のステップ116において、レチクルステージRSTを駆動して、偏光計測装置28を退避させ、レチクルRを照明領域26の手前の走査開始位置に移動する。次のステップ118において、ウエハステージWSTによるウエハWのX方向、Y方向へのステップ移動と、照明光学系ILSからの照明光でレチクルRを照明し、レチクルRのパターンの像でウエハWの一つのショット領域を走査露光する動作とを繰り返すことで、ウエハWの各ショット領域が走査露光される。次のステップ120において、次のウエハを露光する場合には、ステップ118で次のウエハへの走査露光が繰り返される。このように本実施形態によれば、レチクルRに対応して設定された偏光状態の分布を含む照明条件のもとで、レチクルRのパターンの像がウエハWの各ショット領域に露光される。
本実施形態の効果等は以下の通りである。
(1)本実施形態の図1の露光装置EXに備えられた照明装置2(照明光学装置)は、光源5からの照明光IL(光束)を用いてレチクル面(被照射面)を照明する。そして、照明装置2は、照明光ILを互いに直交した偏光方向の2つの照明光ILA,ILBに分割する光分割系8と、照明光ILAの光路上に二次元的に配列され、個別に駆動される複数のミラー要素3Aを有する空間光変調器13Aと、照明光ILBの光路上に二次元的に配列され、個別に駆動される複数のミラー要素3Bを有する空間光変調器13Bとを有する。さらに、照明装置2は、照明瞳面22Pにおいて、照明光ILA,ILBとは異なる偏光状態の二次光源を生成する場合に、空間光変調器13A,13Bからの照明光ILA,ILBの少なくとも一部をフライアイレンズ15の入射面22I(合成面)で合成し、合成された光束の偏光状態を、空間光変調器13A,13Bに入射する照明光ILA,ILBの偏光状態とは異なる偏光状態とする変調制御部31(制御装置)を備えている。
また、照明装置2を用いる照明方法は、複数のミラー要素3A及び3Bを有する空間光変調器13A,13Bとレチクル面との間の照明瞳面22Pで、照明光ILEの偏光状態の目標分布を設定するステップ102と、照明光ILを互いに直交した偏光方向の照明光ILA,ILBに分割し、照明光ILA,ILBをそれぞれ空間光変調器13A,13Bに供給するステップ106と、その偏光状態の目標分布に応じて、空間光変調器13A,13Bからの光束の少なくとも一部を合成し、合成された光束の偏光状態を、空間光変調器13A,13Bに入射する照明光の偏光状態とは異なる偏光状態に制御するステップ108,110とを有する。
本実施形態によれば、2つの空間光変調器13A,13Bからの光束の少なくとも一部をコヒーレントに合成し、合成後の光束の偏光状態を空間光変調器13A,13Bに入射する照明光の偏光状態とは異なる偏光状態としている。従って、使用する空間光変調器13A,13Bの個数を大幅に超える数の様々な偏光状態を生成できる。このため、装置構成をあまり複雑化又は大型化することなく、種々の偏光状態の分布の光束でレチクル面を照明できる。
(2)また、フライアイレンズ15の入射面22I(合成面)において、空間光変調器13A,13Bからの光束のうちの合成される光束の光量比を制御することによって、合成後の光束の偏光方向をX方向、Z方向、又はX軸に45°で交差する方向以外の種々の方向に設定可能である。
(3)また、空間光変調器13A,13Bからの光束のうちの合成される光束の光路長差(位相差)を制御することによって、合成された光束の偏光状態を、直線偏光以外の円偏光等にも制御できる。この円偏光は、例えば非偏光の代わりに使用することも可能である。
また、空間光変調器13A,13Bは、照明光を反射する複数のミラー要素3A,3Bを持つ可動マルチミラー方式であるため、ミラー要素3A,3Bの反射面の法線方向の位置(Z位置)を制御するのみで、光路長差を制御できる。この際に、空間光変調器13A,13Bとフライアイレンズ15との間にリレー光学系14が設けられているため、ミラー要素3A,3BのZ位置を変化させても、フライアイレンズ15の入射面22Iにおける反射光の照射位置が変化しない。
なお、その合成される光束に関して、光量比と光路長差との両方を制御してもよい。
(4)また、空間光変調器13A,13Bのミラー要素3A,3Bはプリズム12A,12Bの透過面に近接して配置されているため、照明光学系ILSをコンパクトに配置できる。なお、例えば図5(A)に2点鎖線で示すように、2つのプリズム12A,12Bの代わりに、プリズム12A,12Bの交差する2つの反射面(内面反射面)を外面の反射面とする断面形状がほぼ菱形のミラー部材52を使用してもよい。
(5)また、本実施形態の露光装置EXは、レチクルRのパターン(所定のパターン)を照明するための照明装置2を備え、そのパターンを投影光学系PLを介してウエハWに露光している。
また、露光装置EXの露光方法は、本実施形態の照明方法で、レチクル面のパターンを照明し、そのパターンを投影光学系PLを介してウエハWに露光している。
この際に、照明装置2又はその照明方法によれば、簡単な構成で種々の偏光状態の照明光を生成できるため、そのパターンに適した偏光状態の照明光でそのパターンを照明できる。従って、そのパターンの像を高精度にウエハWに露光できる。
次に、本発明の実施形態の他の例につき図7(A)〜図7(C)を参照して説明する。本実施形態の照明装置は、図1の照明装置2に対してミラー9とリレー光学系14との間の光学系の構成が異なっている。また、本実施形態においては、第1及び第2のプリズム12A,12B及び第1及び第2の空間光変調器13A,13Bの配列方向に直交するように、第3及び第4のプリズム12C,12D及び第3及び第4の空間光変調器13C,13Dが設けられている。以下、図7(A)〜図7(C)において、図3(A)及び図3(D)に対応する部分には同一の符号を付してその詳細な説明を省略する。
図7(A)は、本実施形態の照明装置の光分割系8Aからフライアイレンズ15までの光学系を示す図、図7(B)は図7(A)のBB線に沿う矢視図、図7(C)は図7(A)の照明瞳面22Pにおける二次光源の形状及び偏光状態の分布の一例を示す図である。図7(A)において、図1の1/2波長板7及びミラー9を通過して来た直線偏光の照明光ILは、偏光ビームスプリッタ10によってS偏光の第1の照明光ILAとP偏光の他の照明光とに分割され、照明光ILAはミラー11A及びプリズム12Aを介して空間光変調器13Aの多数のミラー要素3Aに入射する。また、偏光ビームスプリッタ10を透過したP偏光の照明光は、反射光と透過光との光量比が1:2のビームスプリッタ10AによってP偏光の第2の照明光ILBと、他の照明光とに分割され、第2の照明光ILBは、ミラー11B及びプリズム12Bを介して空間光変調器13Bの多数のミラー要素3Bに入射する。
一方、ビームスプリッタ10Aを透過した照明光は、図7(B)に示すように、反射光と透過光との光量比が1:1のビームスプリッタ10Bによって+X方向に向かう第3の照明光ILCと+Y方向に向かう第4の照明光ILDとに分割される。第3の照明光ILCは、ミラー11Cで+Y方向に反射され、1/2波長板21A及びプリズム12Cを介して空間光変調器13Cの多数のミラー要素に入射する。また、第4の照明光ILDは、ミラー11D,11Eによって−X方向にシフトしてから+Y方向に向かい、1/2波長板21B及びプリズム12Dを介して空間光変調器13Dの多数のミラー要素に入射する。プリズム12A,12B及び空間光変調器13A,13BはZ方向に光軸AXIを挟むように配置され、プリズム12C,12D及び空間光変調器13C,13DはX方向に光軸AXIを挟むように配置されている。
本実施形態において、プリズム12A及び12Bに入射する照明光ILA,ILBの偏光方向はX方向及びZ方向である。また、プリズム12A及び12Bに入射する照明光ILC及びILDの偏光方向がそれぞれX軸に時計回りに±45°で交差するように、1/2波長板21A,21Bの回転角が設定されている。従って、照明光ILAの偏光方向のZ軸に対する角度を0°とすると、他の照明光ILB,ILC,ILDの偏光方向のZ軸に対する角度は90°、45°、135°となる。また、ビームスプリッタ10Aは、必要に応じてミラー11Fと交換可能である。
そして、空間光変調器13A〜13Dの多数のミラー要素で反射された照明光ILA〜ILDは、それぞれプリズム12A〜12Dの反射面及びリレー光学系14を介してフライアイレンズ15の入射面22Iに入射する。偏光ビームスプリッタ10、ビームスプリッタ10A,10B、及びミラー11A〜11Fより光分割系8Aが構成されている。本実施形態の照明装置は、光分割系8Aと、プリズム12A〜12Dと、空間光変調器13A〜13Dと、空間光変調器13A〜13Dの変調制御部(不図示)と、リレー光学系14と、フライアイレンズ15とを備え、照明光によって不図示のレチクル面を照明する。
この実施形態においても、照明瞳面22Pにおける二次光源の一部の偏光状態を空間光変調器13A〜13Dに入射する照明光ILA〜ILDの偏光状態と異なる偏光状態にする場合には、不図示の変調制御部によって、空間光変調器13A〜13Dの対応する所定のミラー要素からの反射光が、光量比及び光路長差の少なくとも一方が調整されて入射面22Iで合成される。
本実施形態において、照明瞳面22Pの偏光状態を一律にX方向、又はZ方向の直線偏光とするには、偏光ビームスプリッタ10に入射する照明光ILの偏光方向をX方向、又はZ方向として、偏光方向がZ方向であるときにはさらにビームスプリッタ10Aをミラー11Fと交換すればよい。これらの場合には、空間光変調器13A又は13Bのミラー要素からの反射光だけが入射面22Iに照射される。
さらに、図7(C)に示すように、本実施形態で、照明瞳面22Pにおいて、光軸AXIを等角度間隔で輪帯状に囲む16個の二次光源24A〜24P及び光軸AXI上の円形の二次光源24Qにおいて光量が大きく、二次光源24A〜24Pの偏光状態がほぼ円周方向を向く直線偏光であり、中央の二次光源24Qの偏光状態が実質的に非偏光である照明条件を設定する場合につき説明する。この照明条件を実現するためには、一例として、図7(A)の偏光ビームスプリッタ10に入射する照明光ILの偏光方向を、偏光ビームスプリッタ10におけるS偏光の反射光とP偏光の透過光との光量比が1:3になる方向に設定する。この結果、プリズム12A〜12Dに入射する照明光ILA〜ILDの光量は互いにほぼ等しくなる。
そして、空間光変調器13A,13B,13C,及び13Dからの反射光で、それぞれ二次光源(24A,24B),(24C,24D),(24G,24H)及び(24E,24F)に対応する入射面22Iの照明領域を照明する。さらに、Z軸に時計回りに±22.5°で交差する方向に配列された二次光源24I,24J及び24O,24Pに対応する照明領域は、それぞれ空間光変調器13A,13Cからの位相差が0の合成光及び空間光変調器13A,13Dからの位相差が0の合成光で照明する。また、X軸に時計回りに±22.5°で交差する方向に配列された二次光源24M,24N及び24K,24Lに対応する照明領域は、それぞれ空間光変調器13B,13Dからの位相差が0の合成光及び空間光変調器13B,13Cからの位相差が0の合成光で照明する。さらに、中央の二次光源24Qに対応する照明領域には、例えば空間光変調器13A〜13Dからの空間的コヒーレンシィが低い光束を重畳して照射する。これによって、簡単な制御で、図7(C)の二次光源及び偏光状態の分布を得ることができる。同様に、空間光変調器13A〜13Dからの光束を組み合わせることによって、照明瞳面22Pの種々の偏光状態の分布を容易に得ることができる。
次に、上記の実施形態では次のような変形が可能である。
(1)上記の実施形態では、オプティカルインテグレータとしてフライアイレンズ15が使用されているが、オプティカルインテグレータとしてマイクロレンズアレイ(マイクロフライアイレンズ)を使用してもよい。
(2)また、図1の実施形態において、空間光変調器13A,13Bのうちの一方の空間光変調器は、多数のミラー要素の2軸の回りの傾斜角を制御する機能のみを備え、ミラー要素のZ位置を制御する機能を持たなくともよい。
同様に、図7(A)の実施形態において、空間光変調器13A〜13Dのうちの少なくとも一つの空間光変調器は、多数のミラー要素の2軸の回りの傾斜角を制御する機能のみを備え、ミラー要素のZ位置を制御する機能を持たなくともよい。
(3)例えば図1又は図7(A)の波面分割型のインテグレータであるフライアイレンズ15に代えて、内面反射型のオプティカルインテグレータとしてのロッド型インテグレータを用いることもできる。
(4)さらに、図1の実施形態において、空間光変調器13Aの代わりに、予め多数の反射面が形成された反射光学部材を用いてもよい。この場合、反射光学部材に形成される多数のミラー面の傾斜角度は、前述したような照明条件(例えば、照明瞳面22Pにおいて、通常照明用の円形の二次光源、輪帯照明用の二次光源、X方向又はY方向の2極の二次光源等のいずれかを形成する)に対応できるように設定されている。また、照明条件(照明瞳面22Pにおける二次光源の形状)を変更する場合には、予め複数の二次光源の形状に応じて形成された多数のミラー面を有する反射光学部材を用意しておき、任意の反射光学部材に交換すればよい。
また、光分割系8と、反射光学部材との間に、上記照明条件を設定するための絞りを配置した場合、反射光学部材として平面ミラーを用いることも可能である。この絞りは、反射光学部材の近傍に配置してもよい。
また、上記の実施形態の露光装置EX又は露光方法を用いて半導体デバイス等の電子デバイス(マイクロデバイス)を製造する場合、この電子デバイスは、図8に示すように、デバイスの機能・性能設計を行うステップ221、この設計ステップに基づいたマスク(レチクル)を製作するステップ222、デバイスの基材である基板(ウエハ)を製造するステップ223、前述した実施形態の露光装置EX又は露光方法によりマスクのパターンを基板に露光する工程、露光した基板を現像する工程、現像した基板の加熱(キュア)及びエッチング工程などを含む基板処理ステップ224、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程などの加工プロセスを含む)225、並びに検査ステップ226等を経て製造される。
言い換えると、上記のデバイスの製造方法は、上記の実施形態の露光装置EX又は露光方法を用いて、マスクのパターンを介して基板(ウエハW)を露光する工程と、その露光された基板を処理する工程(即ち、基板のレジストを現像し、そのマスクのパターンに対応するマスク層をその基板の表面に形成する現像工程、及びそのマスク層を介してその基板の表面を加工(加熱及びエッチング等)する加工工程)と、を含んでいる。
このデバイス製造方法によれば、マスクにパターンに応じて照明光(露光光)の偏光状態を容易に最適化できるため、電子デバイスを高精度に製造できる。
なお、本発明は、例えば米国特許出願公開第2007/242247号明細書、又は欧州特許出願公開第1420298号明細書等に開示されている液浸型露光装置にも適用できる。さらに、本発明は、投影光学系を用いないプロキシミティ方式等の露光装置、及びこの露光装置の照明装置(照明光学装置)にも適用することができる。
また、本発明は、半導体デバイスの製造プロセスへの適用に限定されることなく、例えば、液晶表示素子、プラズマディスプレイ等の製造プロセスや、撮像素子(CMOS型、CCD等)、マイクロマシーン、MEMS(Microelectromechanical Systems:微小電気機械システム)、薄膜磁気ヘッド、及びDNAチップ等の各種デバイス(電子デバイス)の製造プロセスにも広く適用できる。
このように本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得る。
また、本願に記載した上記公報、各国際公開パンフレット、米国特許、又は米国特許出願公開明細書における開示を援用して本明細書の記載の一部とする。また、明細書、特許請求の範囲、図面、及び要約を含む2010年2月3日付け提出の日本国特許出願第2010−21853号の全ての開示内容は、そっくりそのまま引用して本願に組み込まれている。
EX…露光装置、ILS…照明光学系、R…レチクル、PL…投影光学系、W…ウエハ、2…照明装置、3A,3B…ミラー要素、4A,4B…駆動部、8…光分割系、12A,12B…プリズム、13A,13B…空間光変調器、14…リレー光学系、15…フライアイレンズ、30…主制御系、31…変調制御部

Claims (19)

  1. 光束を用いて被照射面を照明する照明光学装置において、
    前記光束を互いに異なる偏光状態を有する複数の光束に分割する光分割器と、
    前記複数の光束のうちの第1の光束が進行する第1の光路と、前記複数の光束のうち第2の光束が進行する第2の光路とのうちの少なくとも一方に配置され、かつ二次元的に配列され、個別に駆動される複数の光学要素を有する空間光変調装置と、
    前記空間変調装置を制御し、前記第1の光束と前記第2の光束との少なくとも一部を合成する制御装置と、
    を備えることを特徴とする照明光学装置。
  2. 前記空間光変調装置は、前記第1の光路上に二次元的に配列され、個別に駆動される複数の光学要素を有する空間光変調器と、前記第2の光路上に配列され、反射面を有する反射光学部材とを備え、
    前記制御装置は、前記空間光変調器からの光束と前記反射光学部材からの光束との少なくとも一部を合成することを特徴とする請求項1に記載の照明光学装置。
  3. 前記空間光変調装置は、前記第1の光路上に二次元的に配列され、個別に駆動される複数の光学要素を有する第1の空間光変調器と、前記第2の光路上に二次元的に配列され、個別に駆動される複数の光学要素を有する第2の空間光変調器とを備え、
    前記制御装置は、前記第1の空間光変調器からの光束と前記第2の空間光変調器からの光束との少なくとも一部を合成し、合成された光束の偏光状態を、前記第1及び第2の空間光変調器に入射する光束の偏光状態とは異なる偏光状態に調整することを特徴とする請求項1に記載の照明光学装置。
  4. 前記制御装置は、前記第1の空間光変調器からの光束と前記第2の空間光変調器からの光束との少なくとも一部を合成する合成面において、前記第1の空間光変調器からの光束及び前記第2の空間光変調器からの光束の光量比を制御することを特徴とする請求項3に記載の照明光学装置。
  5. 前記制御装置は、前記第1の空間光変調器のn1個(n1は1以上の整数)の前記光学要素及び前記第2の空間光変調器のn2個(n2は1以上の整数)の前記光学要素を制御し、前記光量比を前記光学要素の数の比であるn1:n2に制御することを特徴とする請求項4に記載の照明光学装置。
  6. 前記制御装置は、前記合成面に入射する前記第1及び第2の空間光変調器からの光束の少なくとも一部の光路長差を制御することを特徴とする請求項3から請求項5のいずれか一項に記載の照明光学装置。
  7. 前記第2の空間光変調器の前記複数の光学要素は、傾斜角及び高さが制御可能な反射要素を含み、
    前記制御装置は、前記光路長差を制御するために、前記第2の空間光変調器の前記反射要素の高さを制御することを特徴とする請求項6に記載の照明光学装置。
  8. 前記空間光変調装置は、前記複数の光束のうちの第3及び第4の光束の光路上にそれぞれ二次元的に配列される複数の光学要素を有する第3及び第4の空間光変調器をさらに備え、
    前記光分割器は、前記第1、第2、第3、及び第4の光束を偏光方向がほぼ0°、90°、45°、及び135°方向の直線偏光に設定し、
    前記制御装置は、前記第1、第2、第3、及び第4の空間光変調器からの光束の少なくとも一部を前記合成面において合成させることを特徴とする請求項3から請求項7のいずれか一項に記載の照明光学装置。
  9. 前記第1、第2、第3、及び第4の空間光変調器の前記複数の光学要素は、傾斜角が可変のミラー要素を含むことを特徴とする請求項8に記載の照明光学装置。
  10. 前記被照射面を照明する光束の偏光状態を計測するために、前記光束の光路に出し入れ可能に配置される偏光状態計測装置を備えることを特徴とする請求項1から請求項9のいずれか一項に記載の照明光学装置。
  11. 前記第1及び第2の空間光変調器からの光束を集光する集光光学系と、前記集光光学系と前記被照射面との間に配置されるフライアイレンズと、前記フライアイレンズからの光を前記被照射面に導くコンデンサ光学系とを備え、
    前記第1及び第2の空間光変調器からの光束の少なくとも一部が合成される面は、前記フライアイレンズの入射面であることを特徴とする請求項3から請求項10のいずれか一項に記載の照明光学装置。
  12. 所定のパターンを照明するための請求項1から請求項11のいずれか一項に記載の照明光学装置を備え、前記所定のパターンを基板に露光することを特徴とする露光装置。
  13. 光束を用いて被照射面を照明する照明方法において、
    二次元的に配列されて個別に駆動される複数の光学要素を有する空間光変調装置と前記被照射面との間で、前記光束の偏光状態の目標分布を設定し、
    前記光束を互いに異なる偏光状態の複数の光束に分割し、
    前記複数の光束のうちの第1及び第2の光束のうちの少なくとも一方を前記空間光変調装置に供給し、
    前記偏光状態の目標分布に応じて、前記空間光変調装置を制御し、前記第1の光束と前記第2の光束との少なくとも一部を合成し、かつ合成された光束の偏光状態を、分割された前記複数の光束が有する偏光状態とは異なるように調整する、ことを特徴とする照明方法。
  14. 前記偏光状態の目標分布は、前記空間光変調装置が有する第1及び第2の空間光変調器と前記被照射面との間で設定され、
    前記第1の光束及び前記第2の光束は、前記第1及び第2の空間光変調器にそれぞれ供給され、
    前記合成された光束の偏光状態は、前記第1の空間光変調器からの光束と前記第2の空間光変調器からの光束との少なくとも一部を合成することによって、前記第1及び第2の空間光変調器に入射する光束の偏光状態とは異なる偏光状態に調整されることを特徴とする請求項13に記載の照明方法。
  15. 前記第1及び第2の空間光変調器からの光束の少なくとも一部を合成するときに、前記第1及び第2の空間光変調器からの光束の光量比及び光路長差の少なくとも一方を制御することを特徴とする請求項14に記載の照明方法。
  16. 前記光束の偏光状態の目標分布は、前記第1及び第2の空間光変調器からの光束が集光光学系を介して照射されるフライアイレンズの入射面に設定されることを特徴とする請求項14又は請求項15に記載の照明方法。
  17. 請求項13から請求項16のいずれか一項に記載の照明方法で、前記被照射面のパターンを照明し、
    前記パターンを基板に露光することを特徴とする露光方法。
  18. 請求項12に記載の露光装置を用いて、前記所定のパターンを前記基板に露光することと、
    露光された前記基板を処理することと、
    を含むデバイス製造方法。
  19. 請求項17に記載の露光方法を用いて、前記所定のパターンを前記基板に露光することと、
    露光された前記基板を処理することと、
    を含むデバイス製造方法。
JP2011552808A 2010-02-03 2011-02-02 照明光学装置、照明方法、並びに露光方法及び装置 Active JP5842615B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011552808A JP5842615B2 (ja) 2010-02-03 2011-02-02 照明光学装置、照明方法、並びに露光方法及び装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010021853 2010-02-03
JP2010021853 2010-02-03
PCT/JP2011/052184 WO2011096453A1 (ja) 2010-02-03 2011-02-02 照明光学装置、照明方法、並びに露光方法及び装置
JP2011552808A JP5842615B2 (ja) 2010-02-03 2011-02-02 照明光学装置、照明方法、並びに露光方法及び装置

Publications (2)

Publication Number Publication Date
JPWO2011096453A1 true JPWO2011096453A1 (ja) 2013-06-10
JP5842615B2 JP5842615B2 (ja) 2016-01-13

Family

ID=44355447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011552808A Active JP5842615B2 (ja) 2010-02-03 2011-02-02 照明光学装置、照明方法、並びに露光方法及び装置

Country Status (5)

Country Link
US (2) US9310604B2 (ja)
JP (1) JP5842615B2 (ja)
KR (3) KR101970091B1 (ja)
TW (1) TWI514001B (ja)
WO (1) WO2011096453A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI587002B (zh) 2011-06-13 2017-06-11 尼康股份有限公司 照明方法
DE102013212613B4 (de) 2013-06-28 2015-07-23 Carl Zeiss Sms Gmbh Beleuchtungsoptik für ein Metrologiesystem sowie Metrologiesystem mit einer derartigen Beleuchtungsoptik
DE102014203347B4 (de) * 2014-02-25 2017-09-14 Carl Zeiss Smt Gmbh Beleuchtungsoptik für die Mikro-Lithografie sowie Projektionsbelichtungsanlage mit einer derartigen Beleuchtungsoptik
NL2015160A (en) * 2014-07-28 2016-07-07 Asml Netherlands Bv Illumination system, inspection apparatus including such an illumination system, inspection method and manufacturing method.
JP6466106B2 (ja) * 2014-09-02 2019-02-06 浜松ホトニクス株式会社 光変調装置および光学システム
WO2017011188A1 (en) * 2015-07-13 2017-01-19 Applied Materials, Inc. Quarter wave light splitting
NL2017222A (en) * 2015-08-21 2017-02-27 Asml Netherlands Bv Lithographic Method and Apparatus
KR102427155B1 (ko) * 2015-08-25 2022-07-29 삼성디스플레이 주식회사 레이저 결정화 장치
KR102483322B1 (ko) * 2015-09-30 2022-12-30 삼성디스플레이 주식회사 편광 모듈 및 이를 포함하는 레이저 조사 장치
JP6816099B2 (ja) 2016-02-26 2021-01-20 ギガフォトン株式会社 ビーム伝送システム、露光装置および露光装置の照明光学系
DE102017203655B4 (de) 2017-03-07 2019-08-22 Robert Bosch Gmbh Verfahren und Vorrichtung zur Formung von Strahlung für die Laserbearbeitung
DE102018105254B4 (de) * 2018-03-07 2020-06-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur Bearbeitung mittels interferierender Laserstrahlung

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2084941C1 (ru) 1996-05-06 1997-07-20 Йелстаун Корпорейшн Н.В. Адаптивный оптический модуль
JP2002353105A (ja) 2001-05-24 2002-12-06 Nikon Corp 照明光学装置,該照明光学装置を備えた露光装置,およびマイクロデバイスの製造方法
US6672722B2 (en) * 2001-06-19 2004-01-06 Intel Corporation Projection engine
TW529172B (en) 2001-07-24 2003-04-21 Asml Netherlands Bv Imaging apparatus
US6900915B2 (en) 2001-11-14 2005-05-31 Ricoh Company, Ltd. Light deflecting method and apparatus efficiently using a floating mirror
TWI235263B (en) * 2002-05-14 2005-07-01 Sony Corp Illuminating optical system, image display unit and method of illuminating space modulation element
EP2495613B1 (en) 2002-11-12 2013-07-31 ASML Netherlands B.V. Lithographic apparatus
TW200412617A (en) 2002-12-03 2004-07-16 Nikon Corp Optical illumination device, method for adjusting optical illumination device, exposure device and exposure method
US7095546B2 (en) 2003-04-24 2006-08-22 Metconnex Canada Inc. Micro-electro-mechanical-system two dimensional mirror with articulated suspension structures for high fill factor arrays
EP1668421A2 (en) * 2003-09-12 2006-06-14 Carl Zeiss SMT AG Illumination system for a microlithography projection exposure installation
US7064880B2 (en) * 2003-09-25 2006-06-20 Matsushita Electric Industrial Co., Ltd. Projector and projection method
JP4497968B2 (ja) * 2004-03-18 2010-07-07 キヤノン株式会社 照明装置、露光装置及びデバイス製造方法
CN108490741A (zh) 2004-06-09 2018-09-04 株式会社尼康 曝光装置及元件制造方法
JP4389791B2 (ja) * 2004-08-25 2009-12-24 セイコーエプソン株式会社 微細構造体の製造方法および露光装置
JP4750396B2 (ja) * 2004-09-27 2011-08-17 キヤノン株式会社 露光装置及びデバイス製造方法
JP2006179660A (ja) 2004-12-22 2006-07-06 Nikon Corp 偏光測定装置、偏光測定方法、露光装置、および露光方法
JP4572821B2 (ja) * 2005-11-30 2010-11-04 セイコーエプソン株式会社 グレイスケールマスク、マイクロレンズの製造方法
CN101512643B (zh) * 2006-09-07 2011-06-01 松下电器产业株式会社 信息记录装置以及信息再现装置
WO2008124129A2 (en) * 2007-04-09 2008-10-16 University Of Massachusetts Treating hiv with a m-csf effector kinase inhibitor like imatinib
US8451427B2 (en) * 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US20090091730A1 (en) * 2007-10-03 2009-04-09 Nikon Corporation Spatial light modulation unit, illumination apparatus, exposure apparatus, and device manufacturing method
EP2179329A1 (en) * 2007-10-16 2010-04-28 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
CN101681123B (zh) * 2007-10-16 2013-06-12 株式会社尼康 照明光学系统、曝光装置以及元件制造方法
US8379187B2 (en) * 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
KR20180072841A (ko) * 2007-11-06 2018-06-29 가부시키가이샤 니콘 조명 광학계, 노광 장치 및 노광 방법
JP5418230B2 (ja) * 2007-11-06 2014-02-19 株式会社ニコン 露光方法、及び露光装置
JP5326259B2 (ja) * 2007-11-08 2013-10-30 株式会社ニコン 照明光学装置、露光装置、およびデバイス製造方法
WO2009087805A1 (ja) * 2008-01-11 2009-07-16 Nikon Corporation 空間光変調器、照明光学系、露光装置、およびデバイス製造方法
KR20110000619A (ko) * 2008-04-11 2011-01-04 가부시키가이샤 니콘 공간 광 변조 유닛, 조명 광학계, 노광 장치, 및 디바이스 제조 방법
WO2009145048A1 (ja) * 2008-05-28 2009-12-03 株式会社ニコン 空間光変調器の検査装置および検査方法、照明光学系、照明光学系の調整方法、露光装置、およびデバイス製造方法
WO2009150871A1 (ja) * 2008-06-12 2009-12-17 株式会社ニコン 露光装置及びデバイス製造方法
JPWO2010024106A1 (ja) * 2008-08-28 2012-01-26 株式会社ニコン 照明光学系、露光装置、およびデバイス製造方法
JP5483996B2 (ja) * 2009-10-23 2014-05-07 キヤノン株式会社 補償光学装置、撮像装置、補償光学方法
JP5553635B2 (ja) * 2009-10-23 2014-07-16 キヤノン株式会社 補償光学装置、撮像装置および補償光学方法、撮像方法
KR20140069152A (ko) * 2011-09-16 2014-06-09 가부시키가이샤 니콘 조명 광학 장치, 광학계 유닛, 조명 방법, 및 노광 방법 및 장치

Also Published As

Publication number Publication date
KR20120121878A (ko) 2012-11-06
US20160209758A1 (en) 2016-07-21
JP5842615B2 (ja) 2016-01-13
WO2011096453A1 (ja) 2011-08-11
KR20170102064A (ko) 2017-09-06
US20120249989A1 (en) 2012-10-04
TW201300835A (zh) 2013-01-01
US10591824B2 (en) 2020-03-17
KR101774607B1 (ko) 2017-09-04
US9310604B2 (en) 2016-04-12
KR20190006098A (ko) 2019-01-16
TWI514001B (zh) 2015-12-21
KR101970091B1 (ko) 2019-08-13
KR102046286B1 (ko) 2019-11-18

Similar Documents

Publication Publication Date Title
JP5842615B2 (ja) 照明光学装置、照明方法、並びに露光方法及び装置
JP5673785B2 (ja) 露光方法及び装置、並びにデバイス製造方法
JP5582287B2 (ja) 照明光学装置及び露光装置
JP5630455B2 (ja) 光学ユニット、照明光学装置、露光装置、およびデバイス製造方法
WO2013039240A1 (ja) 照明光学装置、光学系ユニット、照明方法、並びに露光方法及び装置
JP2014239088A (ja) 照明光学系、照明方法、並びに露光方法及び装置
JP2012004561A (ja) 照明方法、照明光学装置、及び露光装置
JP2011114041A (ja) 光束分割装置、空間光変調ユニット、照明光学系、露光装置、およびデバイス製造方法
JP2006073798A (ja) 位置決め装置及び露光装置
JP6761574B2 (ja) 照明光学系、露光装置、およびデバイス製造方法
JP2005045050A (ja) 位置決め装置及び露光装置
JP2011103465A (ja) 照明光学装置、露光装置、及び制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151102

R150 Certificate of patent or registration of utility model

Ref document number: 5842615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250