JPWO2011068157A1 - Resin composition for forming adhesive layer of multilayer flexible printed wiring board, resin varnish, copper foil with resin, method for producing copper foil with resin for multilayer flexible printed wiring board production - Google Patents

Resin composition for forming adhesive layer of multilayer flexible printed wiring board, resin varnish, copper foil with resin, method for producing copper foil with resin for multilayer flexible printed wiring board production Download PDF

Info

Publication number
JPWO2011068157A1
JPWO2011068157A1 JP2011544285A JP2011544285A JPWO2011068157A1 JP WO2011068157 A1 JPWO2011068157 A1 JP WO2011068157A1 JP 2011544285 A JP2011544285 A JP 2011544285A JP 2011544285 A JP2011544285 A JP 2011544285A JP WO2011068157 A1 JPWO2011068157 A1 JP WO2011068157A1
Authority
JP
Japan
Prior art keywords
resin
component
printed wiring
wiring board
flexible printed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011544285A
Other languages
Japanese (ja)
Other versions
JP5750049B2 (en
Inventor
武志 白井
武志 白井
敏文 松島
敏文 松島
佐藤 哲朗
哲朗 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2011544285A priority Critical patent/JP5750049B2/en
Publication of JPWO2011068157A1 publication Critical patent/JPWO2011068157A1/en
Application granted granted Critical
Publication of JP5750049B2 publication Critical patent/JP5750049B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4246Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof polymers with carboxylic terminal groups
    • C08G59/4261Macromolecular compounds obtained by reactions involving only unsaturated carbon-to-carbon bindings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/44Amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J179/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09J161/00 - C09J177/00
    • C09J179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09J179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/28Metal sheet
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
    • H05K3/4655Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern by using a laminate characterized by the insulating layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/14Macromolecular compounds according to C08L59/00 - C08L87/00; Derivatives thereof
    • C08L2666/22Macromolecular compounds not provided for in C08L2666/16 - C08L2666/20
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/304Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being heat-activatable, i.e. not tacky at temperatures inferior to 30°C
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2463/00Presence of epoxy resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2479/00Presence of polyamine or polyimide
    • C09J2479/08Presence of polyamine or polyimide polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/012Flame-retardant; Preventing of inflammation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0358Resin coated copper [RCC]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

いわゆるBステージ割れを防ぎ、フレキシブルプリント配線板の製造過程等における粉落ちを防ぐとともに、耐折性及び耐熱性、樹脂流れ等の性能が、バランス良く得られる樹脂組成物を提供することを目的とする。上記課題を解決するため、内層フレキシブルプリント配線板を多層化するための接着層を形成するために用いる樹脂組成物において、A成分:軟化点が50℃以上である固形状の高耐熱性エポキシ樹脂、B成分:ビフェニル型フェノール樹脂、フェノールアラルキル型フェノール樹脂の1種又は2種以上からなるエポキシ樹脂硬化剤、C成分:沸点が50℃〜200℃の範囲にある溶剤に可溶なゴム変性ポリアミドイミド樹脂、D成分:有機リン含有難燃剤、E成分:ビフェニル型エポキシ樹脂を含むことを特徴とした樹脂組成物等を採用した。An object of the present invention is to provide a resin composition that prevents so-called B-stage cracking, prevents powder falling off during the production process of a flexible printed wiring board, etc., and provides a good balance of performance such as folding resistance and heat resistance and resin flow To do. In order to solve the above-mentioned problems, in the resin composition used for forming an adhesive layer for multilayering the inner-layer flexible printed wiring board, component A: a solid high heat-resistant epoxy resin having a softening point of 50 ° C. or higher B component: biphenyl type phenol resin, epoxy resin curing agent composed of one or more of phenol aralkyl type phenol resin, C component: rubber-modified polyamide soluble in a solvent having a boiling point in the range of 50 ° C to 200 ° C An imide resin, D component: an organic phosphorus-containing flame retardant, E component: a resin composition characterized by containing a biphenyl type epoxy resin, and the like were employed.

Description

本件発明は、多層フレキシブルプリント配線板の接着層形成用の樹脂組成物、当該樹脂ワニスで樹脂層を形成した樹脂付銅箔、当該樹脂付銅箔の製造方法及び多層フレキシブルプリント配線板に関する。   The present invention relates to a resin composition for forming an adhesive layer of a multilayer flexible printed wiring board, a resin-coated copper foil having a resin layer formed of the resin varnish, a method for producing the resin-coated copper foil, and a multilayer flexible printed wiring board.

電子機器類の電子信号の供給に用いるプリント配線板として、折り曲げ性を備えるフレキシブルプリント配線板が用いられている。特許文献1に開示されたフレキシブル配線板は、ベースフィルムに接着剤層I、回路パターンが形成された導体層、接着剤層II及びカバーレイフィルムが順に積層された構造を有し、このフレキシブル配線板において、高温で使用しても十分な屈曲寿命を得ることを目的とした接着剤組成物を採用している。   A flexible printed wiring board having bendability is used as a printed wiring board used for supplying electronic signals of electronic devices. The flexible wiring board disclosed in Patent Document 1 has a structure in which an adhesive layer I, a conductor layer on which a circuit pattern is formed, an adhesive layer II, and a coverlay film are sequentially laminated on a base film. In the plate, an adhesive composition intended to obtain a sufficient bending life even when used at a high temperature is employed.

このように、フレキシブルプリント配線板は、折り曲げ性を備える製品特性から、耐屈曲性が重要である。加えて、フレキシブルプリント配線板の製造では、リフロー工程等において、熱が負荷されるため、高温で使用しても耐折性が劣化しないことが求められる。そのため、フレキシブルプリント配線板に用いる接着剤においても、耐折性、耐熱性が望まれる。   As described above, the flexible printed wiring board is important for the bending resistance because of the product characteristics having the bendability. In addition, in the production of a flexible printed wiring board, heat is applied in a reflow process or the like, and therefore, folding resistance is required not to deteriorate even when used at a high temperature. Therefore, folding resistance and heat resistance are also desired for adhesives used for flexible printed wiring boards.

また、電子機器類の小型化、高機能化の要求は高まる一方であり、フレキシブルプリント配線板においても、基板サイズの小型化を図るために、微細化、多層化が検討されている。そして、フレキシブルプリント配線板を多層化するためには、フレキシブルプリント配線板用の接着剤においても、従来品以上の特性が要求される。例えば、フレキシブルプリント配線板を多層化するため、接着剤層を薄くしながら、耐熱性、耐折性を実現することが望まれる。また、フレキシブルプリント配線板を多層化する際、層間接続の精度を高める必要がある。   In addition, demands for downsizing and high functionality of electronic devices are increasing, and miniaturization and multilayering are also being studied for flexible printed wiring boards in order to reduce the board size. And in order to multilayer a flexible printed wiring board, the characteristic more than a conventional product is requested | required also in the adhesive agent for flexible printed wiring boards. For example, in order to make a flexible printed wiring board multilayer, it is desired to realize heat resistance and folding resistance while thinning the adhesive layer. Further, when the flexible printed wiring board is multi-layered, it is necessary to improve the accuracy of interlayer connection.

このようなフレキシブルプリント配線板の高密度実装化に対し、特許文献2には、難燃性、耐屈曲性、環境対応のための非ハロゲン化を目的とした樹脂組成物が開示されている。   For such high-density mounting of flexible printed wiring boards, Patent Document 2 discloses a resin composition for the purpose of non-halogenation for flame resistance, flex resistance, and environmental friendliness.

特開2006−70176号公報JP 2006-70176 A 特開2005−248134号公報JP 2005-248134 A

特許文献1及び特許文献2に開示の樹脂組成物は、いずれも、耐熱性、弾性率、難燃性等を向上させるための無機充填剤(無機フィラー)を含むものである。そのため、多層フレキシブルプリント配線板の接着剤として用いる場合、屈曲性や接着剤層の薄層化に限界がある。また、多層フレキシブルプリント配線板において、層間接続を図るためのビアホールを形成する際に、無機充填剤を含むと、レーザー加工性が低下し、ビアホールの形成精度が低下する。さらに、Bステージの接着剤層に打ち抜き加工を行うことにより、接着剤層の粉落ちや割れが生じ易い。その結果、接着剤層の粉が導体層に付着して、接続信頼性が低下する。また、接着剤層に割れが生じると絶縁性能が低下する。   Each of the resin compositions disclosed in Patent Document 1 and Patent Document 2 includes an inorganic filler (inorganic filler) for improving heat resistance, elastic modulus, flame retardancy, and the like. Therefore, when used as an adhesive for multilayer flexible printed wiring boards, there is a limit to the flexibility and the thinning of the adhesive layer. In addition, when forming a via hole for interlayer connection in a multilayer flexible printed wiring board, if an inorganic filler is included, the laser workability is lowered and the formation accuracy of the via hole is lowered. Furthermore, by punching the adhesive layer of the B stage, the adhesive layer is likely to fall off or crack. As a result, the adhesive layer powder adheres to the conductor layer, and the connection reliability is lowered. Moreover, when a crack arises in an adhesive bond layer, insulation performance will fall.

さらに、特許文献1に開示の接着剤組成物を検証した結果、ラミネート加工やプレス加工等による成型時に、内層回路の転写、最外層のうねり、ボイドが生じやすい。内層回路の転写が生じると、最外層のうねりが生じ、レジストの塗布時や、回路形成工程時に支障を来す。さらに、ボイドが生じると、リフロー工程等の熱処理により、ブリスタが生じ易くなる点が課題となる。   Furthermore, as a result of verifying the adhesive composition disclosed in Patent Document 1, transfer of the inner layer circuit, undulation of the outermost layer, and voids are likely to occur during molding by laminating or pressing. When the transfer of the inner layer circuit occurs, the outermost layer swells, which causes troubles during resist application and circuit formation process. Furthermore, when voids are generated, the problem is that blisters are easily generated by heat treatment such as a reflow process.

そこで、本件発明は、いわゆるBステージ割れを防ぎ、フレキシブルプリント配線板の製造過程等における粉落ちを防ぐとともに、耐折性及び耐熱性、樹脂流れといった性能についても、バランス良く好適な範囲とすることが可能な多層フレキシブルプリント配線板の接着層形成用の樹脂組成物、樹脂ワニス、樹脂付銅箔、その樹脂付銅箔の製造方法及び多層フレキシブルプリント配線板を提供することを目的とする。   Therefore, the present invention prevents so-called B-stage cracking, prevents powder falling off during the production process of the flexible printed wiring board, etc., and also has a well-balanced and suitable range for performance such as folding resistance, heat resistance, and resin flow. An object of the present invention is to provide a resin composition for forming an adhesive layer of a multilayer flexible printed wiring board, a resin varnish, a resin-coated copper foil, a method for producing the resin-coated copper foil, and a multilayer flexible printed wiring board.

本発明者等は、鋭意研究を行った結果、以下の樹脂組成物を採用することで上記課題を達成するに到った。   As a result of intensive studies, the present inventors have achieved the above-mentioned problem by employing the following resin composition.

本件発明に係る多層フレキシブルプリント配線板の接着層形成用の樹脂組成物は、内層フレキシブルプリント配線板を多層化するための接着層を形成するために用いる樹脂組成物において、以下のA成分〜E成分の各成分を含むことを特徴とする。
A成分: 軟化点が50℃以上である固形状の高耐熱性エポキシ樹脂(但し、ビフェニル型エポキシ樹脂を除く。)。
B成分: ビフェニル型フェノール樹脂、フェノールアラルキル型フェノール樹脂の1種又は2種以上からなるエポキシ樹脂硬化剤。
C成分: 沸点が50℃〜200℃の範囲にある溶剤に可溶なゴム変性ポリアミドイミド樹脂。
D成分: 有機リン含有難燃剤。
E成分: ビフェニル型エポキシ樹脂。
The resin composition for forming an adhesive layer of a multilayer flexible printed wiring board according to the present invention is a resin composition used for forming an adhesive layer for multilayering an inner flexible printed wiring board. Each component of the component is included.
A component: Solid high heat-resistant epoxy resin having a softening point of 50 ° C. or higher (excluding biphenyl type epoxy resin).
Component B: An epoxy resin curing agent comprising one or more of a biphenyl type phenol resin and a phenol aralkyl type phenol resin.
Component C: A rubber-modified polyamideimide resin soluble in a solvent having a boiling point in the range of 50 ° C to 200 ° C.
D component: An organic phosphorus-containing flame retardant.
E component: Biphenyl type epoxy resin.

本件発明に係る樹脂ワニスは、上述の樹脂組成物に溶剤を加えて、樹脂固形分量が30重量%〜70重量%の範囲に調製した樹脂ワニスであって、半硬化樹脂層とした際に、MIL規格におけるMIL−P−13949Gに準拠して、樹脂厚さ55μmで測定したときのレジンフローが0%〜10%の範囲であることを特徴とする。   The resin varnish according to the present invention is a resin varnish prepared by adding a solvent to the resin composition described above and having a resin solid content in the range of 30 wt% to 70 wt%. According to MIL-P-13949G in the MIL standard, the resin flow when measured at a resin thickness of 55 μm is in the range of 0% to 10%.

本件発明に係る樹脂付銅箔は、銅箔の表面に樹脂層を備えた樹脂付銅箔において、当該樹脂層は、上述の多層フレキシブルプリント配線板の接着層形成用の樹脂組成物を用いて形成したことを特徴とする。   The resin-coated copper foil according to the present invention is a resin-coated copper foil provided with a resin layer on the surface of the copper foil, and the resin layer is formed using the above-described resin composition for forming an adhesive layer of a multilayer flexible printed wiring board. It is formed.

本件発明に係る多層フレキシブルプリント配線板製造用の樹脂付銅箔の製造方法は、上述の多層フレキシブルプリント配線板製造用の樹脂付銅箔の製造方法であって、以下の工程a、工程bの手順で樹脂層の形成に用いる樹脂ワニスを調製し、当該樹脂ワニスを銅箔の表面に塗布し、乾燥させることで10μm〜80μmの厚さの半硬化樹脂層として樹脂付銅箔とすることを特徴とする。
工程a: 樹脂組成物重量を100重量部としたとき、A成分が3重量部〜30重量部、B成分が13重量部〜35重量部、C成分が10重量部〜50重量部、D成分が3重量部〜16重量部、E成分が5重量部〜35重量部の範囲で各成分を含有する樹脂組成物とする。
工程b: 前記樹脂組成物を、有機溶剤を用いて溶解し、樹脂固形分量が30重量%〜70重量%の樹脂ワニスとする。
A method for producing a resin-coated copper foil for producing a multilayer flexible printed wiring board according to the present invention is a method for producing a resin-coated copper foil for producing the above-mentioned multilayer flexible printed wiring board, comprising the following steps a and b: The resin varnish used for forming the resin layer is prepared in the procedure, and the resin varnish is applied to the surface of the copper foil and dried to form a copper foil with resin as a semi-cured resin layer having a thickness of 10 μm to 80 μm. Features.
Step a: When the weight of the resin composition is 100 parts by weight, the A component is 3 to 30 parts by weight, the B component is 13 to 35 parts by weight, the C component is 10 to 50 parts by weight, and the D component Is a resin composition containing each component in the range of 3 to 16 parts by weight and E component in the range of 5 to 35 parts by weight.
Process b: The said resin composition is melt | dissolved using an organic solvent, and it is set as the resin varnish whose resin solid content amount is 30 weight%-70 weight%.

本件発明に係る多層フレキシブルプリント配線板は、多層フレキシブルプリント配線板の接着層形成用の樹脂組成物を用いて得られることを特徴とする。   The multilayer flexible printed wiring board according to the present invention is obtained using a resin composition for forming an adhesive layer of a multilayer flexible printed wiring board.

本件発明に係る樹脂組成物は、熱劣化による耐折性の低下を防ぐことができ、且つ、Bステージでの割れを改善することができる。また、本件発明に係る樹脂組成物を用いて得られた樹脂付銅箔は、フレキシブルプリント配線板の構成材として用いた場合に、無機充填剤を必要としないので、屈曲性に優れるとともに、レーザー加工や打ち抜き加工を精度良く行うことができ、且つ、粉落ちや割れの発生を防ぐことができる。さらに、本件発明に係る樹脂付銅箔は、無機充填剤を含まないため、多層フレキシブルプリント配線板のビアホール形成に好適であり、層間接続の信頼性を高めることができる。   The resin composition according to the present invention can prevent a decrease in folding resistance due to thermal degradation, and can improve cracking at the B stage. In addition, the resin-coated copper foil obtained using the resin composition according to the present invention does not require an inorganic filler when used as a constituent material of a flexible printed wiring board, and thus has excellent flexibility and a laser. Processing and punching can be performed with high accuracy, and occurrence of powder falling and cracking can be prevented. Furthermore, since the resin-coated copper foil according to the present invention does not contain an inorganic filler, it is suitable for forming a via hole in a multilayer flexible printed wiring board and can improve the reliability of interlayer connection.

以下、本発明の好ましい実施の形態を説明する。   Hereinafter, preferred embodiments of the present invention will be described.

樹脂組成物: 本件発明に係る樹脂組成物は、内層フレキシブルプリント配線板を多層化するための接着層を形成するために用いる。そして、以下のA成分〜E成分の各成分を含むことを特徴とする。 Resin composition: The resin composition according to the present invention is used to form an adhesive layer for multilayering an inner flexible printed wiring board. And each component of the following A component-E component is included, It is characterized by the above-mentioned.

A成分: 軟化点が50℃以上である固形状の高耐熱性エポキシ樹脂(但し、ビフェニル型エポキシ樹脂を除く。)。
B成分: ビフェニル型フェノール樹脂、フェノールアラルキル型フェノール樹脂の1種又は2種以上からなるエポキシ樹脂硬化剤。
C成分: 沸点が50℃〜200℃の範囲にある溶剤に可溶なゴム変性ポリアミドイミド樹脂。
D成分: 有機リン含有難燃剤。
E成分: ビフェニル型エポキシ樹脂。
A component: Solid high heat-resistant epoxy resin having a softening point of 50 ° C. or higher (excluding biphenyl type epoxy resin).
Component B: An epoxy resin curing agent comprising one or more of a biphenyl type phenol resin and a phenol aralkyl type phenol resin.
Component C: A rubber-modified polyamideimide resin soluble in a solvent having a boiling point in the range of 50 ° C to 200 ° C.
D component: An organic phosphorus-containing flame retardant.
E component: Biphenyl type epoxy resin.

A成分は、軟化点が50℃以上である固形状の高耐熱性エポキシ樹脂である。A成分は、所謂ガラス転移温度Tgが高いエポキシ樹脂である。エポキシ樹脂のうち、軟化点が50℃以上である固形状の高耐熱性エポキシ樹脂を採用した理由は、ガラス転移温度Tgが高く、少量添加することで、高耐熱効果が得られるからである。   The component A is a solid high heat resistant epoxy resin having a softening point of 50 ° C. or higher. The component A is an epoxy resin having a high so-called glass transition temperature Tg. The reason why a solid high heat resistant epoxy resin having a softening point of 50 ° C. or higher among the epoxy resins is used is that the glass transition temperature Tg is high, and a high heat resistance effect can be obtained by adding a small amount.

ここで言う「軟化点が50℃以上である固形状の高耐熱性エポキシ樹脂」は、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂のいずれか1種又は2種以上であることが好ましい。   The “solid high heat resistant epoxy resin having a softening point of 50 ° C. or higher” mentioned here is one or more of cresol novolac type epoxy resin, phenol novolac type epoxy resin, and naphthalene type epoxy resin. It is preferable.

なお、A成分には、上述の軟化点が50℃以上である固形状の高耐熱性エポキシ樹脂の他に、更に、ノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂のいずれか1種又は2種以上からなる高耐熱性エポキシ樹脂を含むものとしても良い。このように、A成分として、更に、室温で液状のノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂のいずれか1種又は2種以上からなる高耐熱性エポキシ樹脂を含むものとすれば、ガラス転移温度Tgの更なる向上及びBステージ割れを改善する効果を高めることができる。   In addition to the solid high heat-resistant epoxy resin having a softening point of 50 ° C. or higher, the component A further includes a novolac type epoxy resin, a cresol novolac type epoxy resin, a phenol novolak type epoxy resin, and a naphthalene type. It is good also as what contains the highly heat-resistant epoxy resin which consists of any 1 type or 2 types or more of an epoxy resin. As described above, as the component A, a high heat-resistant epoxy composed of one or more of a novolak type epoxy resin, a cresol novolak type epoxy resin, a phenol novolak type epoxy resin, and a naphthalene type epoxy resin that is liquid at room temperature. If the resin is contained, the effect of further improving the glass transition temperature Tg and improving the B stage cracking can be enhanced.

そして、A成分は、樹脂組成物を100重量部としたとき、3重量部〜30重量部の範囲で用いることが好ましい。A成分が3重量部未満の場合には、樹脂組成物の高Tg化が図りにくい。一方、A成分が30重量部を超える場合には、硬化後の樹脂層が脆くなり、フレキシビリティが完全に損なわれるためフレキシブルプリント配線板用途として好ましくない。より好ましくは、A成分は、10重量部〜25重量部の範囲で用いることで、樹脂組成物の高Tg化と硬化後の樹脂層の良好なフレキシビリティとを安定して両立できる。   The component A is preferably used in the range of 3 to 30 parts by weight when the resin composition is 100 parts by weight. When the component A is less than 3 parts by weight, it is difficult to increase the Tg of the resin composition. On the other hand, when the component A exceeds 30 parts by weight, the cured resin layer becomes brittle and the flexibility is completely impaired, which is not preferable for use as a flexible printed wiring board. More preferably, the component A is used in the range of 10 to 25 parts by weight, so that both high Tg of the resin composition and good flexibility of the resin layer after curing can be stably achieved.

B成分は、ビフェニル型フェノール樹脂、フェノールアラルキル型フェノール樹脂の1種又は2種以上からなるエポキシ樹脂硬化剤である。エポキシ樹脂硬化剤の添加量は、硬化させる樹脂に対する反応当量から自ずと導き出されるものであり、特段の量的な限定を要するものではない。しかしながら、本件発明に係る樹脂組成物の場合、B成分は、樹脂組成物を100重量部としたとき、13重量部〜35重量部の範囲で用いることが好ましい。このB成分が13重量部未満の場合には、本件発明の樹脂組成を考慮すると、十分な硬化状態を得ることが出来なくなり、硬化後の樹脂層のフレキシビリティを得ることが出来なくなる。一方、B成分が35重量部を超える場合には、硬化後の樹脂層の耐吸湿特性が劣化する傾向にあり、好ましくない。   Component B is an epoxy resin curing agent composed of one or more of a biphenyl type phenol resin and a phenol aralkyl type phenol resin. The addition amount of the epoxy resin curing agent is naturally derived from the reaction equivalent to the resin to be cured, and does not require any particular quantitative limitation. However, in the case of the resin composition according to the present invention, the component B is preferably used in the range of 13 parts by weight to 35 parts by weight when the resin composition is 100 parts by weight. When this B component is less than 13 parts by weight, considering the resin composition of the present invention, it becomes impossible to obtain a sufficiently cured state, and it becomes impossible to obtain the flexibility of the cured resin layer. On the other hand, when the component B exceeds 35 parts by weight, the moisture absorption resistance of the cured resin layer tends to deteriorate, which is not preferable.

ビフェニル型フェノール樹脂の具体例を化1に示す。   A specific example of the biphenyl type phenol resin is shown in Chemical Formula 1.

Figure 2011068157
Figure 2011068157

また、フェノールアラルキル型フェノール樹脂の具体例を化2に示す。   A specific example of the phenol aralkyl type phenol resin is shown in Chemical Formula 2.

Figure 2011068157
Figure 2011068157

C成分は、沸点が50℃〜200℃の範囲にある溶剤に可溶なゴム変性ポリアミドイミド樹脂である。当該C成分を配合することにより、フレキシブル性能を向上させるとともに、樹脂流れを抑制する効果が得られる。このゴム変性ポリアミドイミド樹脂は、ポリアミドイミド樹脂とゴム性樹脂とを反応させて得られるものであり、ポリアミドイミド樹脂そのものの柔軟性を向上させる目的で行う。即ち、ポリアミドイミド樹脂とゴム性樹脂とを反応させ、ポリアミドイミド樹脂の酸成分(シクロヘキサンジカルボン酸等)の一部をゴム成分に置換するのである。ゴム成分としては、天然ゴム及び合成ゴムを含む概念として記載しており、後者の合成ゴムにはスチレン−ブタジエンゴム、ブタジエンゴム、ブチルゴム、エチレン−プロピレンゴム、アクリロニトリルブタジエンゴム等がある。更に、耐熱性を確保する観点からは、ニトリルゴム、クロロプレンゴム、シリコンゴム、ウレタンゴム等の耐熱性を備えた合成ゴムを選択使用することも有用である。これらのゴム性樹脂に関しては、ポリアミドイミド樹脂と反応して共重合体を製造するため、両末端に種々の官能基を備えるものであることが望ましい。特に、カルボキシル基を有するCTBN(カルボキシ基末端ブタジエンニトリルゴム)を用いることが有用である。なお、上記ゴム成分は、1種のみを共重合させても、2種以上を共重合させても構わない。更に、ゴム成分を用いる場合には、そのゴム成分の数平均分子量が1000以上のものを用いることが、フレキシビリティの安定化の観点から好ましい。   Component C is a rubber-modified polyamideimide resin that is soluble in a solvent having a boiling point in the range of 50 ° C to 200 ° C. By mix | blending the said C component, while improving a flexible performance, the effect which suppresses a resin flow is acquired. This rubber-modified polyamideimide resin is obtained by reacting a polyamideimide resin and a rubber resin, and is performed for the purpose of improving the flexibility of the polyamideimide resin itself. That is, the polyamideimide resin and the rubber resin are reacted to replace a part of the acid component (cyclohexanedicarboxylic acid or the like) of the polyamideimide resin with the rubber component. The rubber component is described as a concept including natural rubber and synthetic rubber. Examples of the latter synthetic rubber include styrene-butadiene rubber, butadiene rubber, butyl rubber, ethylene-propylene rubber, and acrylonitrile butadiene rubber. Furthermore, from the viewpoint of ensuring heat resistance, it is also useful to selectively use a synthetic rubber having heat resistance such as nitrile rubber, chloroprene rubber, silicon rubber, urethane rubber and the like. Since these rubber-like resins react with the polyamide-imide resin to produce a copolymer, it is desirable to have various functional groups at both ends. In particular, it is useful to use CTBN (carboxy group-terminated butadiene nitrile rubber) having a carboxyl group. In addition, the said rubber component may copolymerize only 1 type or may copolymerize 2 or more types. Further, when a rubber component is used, it is preferable to use a rubber component having a number average molecular weight of 1000 or more from the viewpoint of stabilization of flexibility.

ゴム変性ポリアミドイミド樹脂を重合させる際に、ポリアミドイミド樹脂とゴム性樹脂との溶解に使用する溶剤には、ジメチルホルムアミド、ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルスルホキシド、ニトロメタン、ニトロエタン、テトラヒドロフラン、シクロヘキサノン、メチルエチルケトン、アセトニトリル、γ−ブチロラクトン等を、1種又は2種以上を混合して用いることが好ましい。そして、重合反応を起こさせるには、80℃〜200℃の範囲の重合温度を採用することが好ましい。これらの重合に沸点が200℃を超える溶剤を用いた場合には、その後、用途に応じて沸点が50℃〜200℃の範囲にある溶剤に溶媒置換することが好ましい。   When polymerizing the rubber-modified polyamideimide resin, the solvents used for dissolving the polyamideimide resin and the rubbery resin include dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, nitromethane, nitroethane, and tetrahydrofuran. , Cyclohexanone, methyl ethyl ketone, acetonitrile, γ-butyrolactone, and the like are preferably used alone or in combination. And in order to raise | generate a polymerization reaction, it is preferable to employ | adopt the polymerization temperature of the range of 80 to 200 degreeC. When a solvent having a boiling point of more than 200 ° C. is used for these polymerizations, it is preferable that the solvent be replaced with a solvent having a boiling point in the range of 50 ° C. to 200 ° C., depending on the application.

ここで、沸点が50℃〜200℃の範囲にある溶剤としては、メチルエチルケトン、ジメチルアセトアミド、ジメチルホルムアミド等の群から選ばれる1種の単独溶剤又は2種以上の混合溶剤が挙げられる。沸点が50℃未満の場合には、加熱による溶剤の気散が著しくなり、樹脂ワニスの状態から半硬化樹脂とする場合に、良好な半硬化状態が得られにくくなる。一方、沸点が200℃を超える場合には、樹脂ワニスの状態から半硬化樹脂とする場合に、溶剤が乾きにくいため、良好な半硬化樹脂層が得られ難くなる。   Here, examples of the solvent having a boiling point in the range of 50 ° C. to 200 ° C. include one single solvent or two or more mixed solvents selected from the group of methyl ethyl ketone, dimethylacetamide, dimethylformamide and the like. When the boiling point is lower than 50 ° C., the solvent is greatly diffused by heating, and it is difficult to obtain a good semi-cured state when the resin varnish is changed to a semi-cured resin. On the other hand, when the boiling point exceeds 200 ° C., when the semi-cured resin is used from the state of the resin varnish, it is difficult to obtain a good semi-cured resin layer because the solvent is difficult to dry.

本件発明に係る樹脂組成物で用いるゴム変性ポリアミドイミド樹脂の中で、ゴム変性ポリアミドイミド樹脂の重量を100重量%としたとき、ゴム成分の共重合量は0.8重量%以上であることが好ましい。当該共重合量が0.8重量%未満の場合には、ゴム変性ポリアミドイミド樹脂としても、本件発明に言う樹脂組成物を用いて形成した樹脂層を硬化させたときのフレキシビリティが欠如し、銅箔との密着性も低下するため好ましくない。なお、より好ましくは、当該ゴム成分の共重合量は3重量%以上、更に好ましくは5重量%以上がより好ましい。経験的に共重合量が40重量%を超えても特段の問題はない。しかし、当該硬化後の樹脂層のフレキシビリティの向上効果は飽和するために資源の無駄となり好ましくない。   Among the rubber-modified polyamideimide resins used in the resin composition according to the present invention, when the weight of the rubber-modified polyamideimide resin is 100% by weight, the copolymerization amount of the rubber component may be 0.8% by weight or more. preferable. When the copolymerization amount is less than 0.8% by weight, the rubber-modified polyamide-imide resin lacks flexibility when the resin layer formed using the resin composition according to the present invention is cured, Since the adhesiveness with copper foil also falls, it is not preferable. More preferably, the copolymerization amount of the rubber component is 3% by weight or more, more preferably 5% by weight or more. Empirically, there is no particular problem even if the copolymerization amount exceeds 40% by weight. However, since the effect of improving the flexibility of the cured resin layer is saturated, resources are wasted, which is not preferable.

以上に述べてきたゴム変性ポリアミドイミド樹脂には、溶剤に可溶であるという性質が求められる。溶剤に可溶でなければ、樹脂ワニスとしての調製が困難だからである。そして、このゴム変性ポリアミドイミド樹脂は、樹脂組成物の重量を100重量部としたとき、10重量部〜50重量部の配合割合で用いる。ゴム変性ポリアミドイミド樹脂が10重量部未満の場合には、樹脂流れの抑制効果が発揮されにくい。また、硬化後の樹脂層が脆くなり、フレキシビリティが向上させ難くなる。その結果、樹脂層のマイクロクラックが生じやすくなるといった影響が生じる。一方、50重量部を超えてゴム変性ポリアミドイミド樹脂を添加した場合、内層回路への埋め込み性が低下し、結果としてボイドが生じやすくなるため、好ましくない。   The rubber-modified polyamide-imide resin described above is required to be soluble in a solvent. This is because preparation as a resin varnish is difficult unless it is soluble in a solvent. The rubber-modified polyamide-imide resin is used in a blending ratio of 10 to 50 parts by weight when the weight of the resin composition is 100 parts by weight. When the rubber-modified polyamideimide resin is less than 10 parts by weight, the resin flow suppressing effect is hardly exhibited. In addition, the cured resin layer becomes brittle and it is difficult to improve flexibility. As a result, there is an effect that microcracks of the resin layer are likely to occur. On the other hand, when the rubber-modified polyamide-imide resin is added in an amount exceeding 50 parts by weight, the embedding property in the inner layer circuit is lowered, and as a result, voids are easily generated, which is not preferable.

D成分は、有機リン含有難燃剤であり、難燃性を向上させるために用いる。有機リン含有難燃剤としては、リン酸エステル及び/又はホスファゼン化合物からなるリン含有難燃剤が挙げられる。このD成分は、樹脂組成物を100重量部としたとき、3重量部〜16重量部の範囲で用いることが好ましい。D成分の含有量を3重量部未満とすると、難燃性の効果が得られない。一方、D成分の含有量が16重量部を超えるようにしても、難燃性の向上が望めない。なお、D成分のより好ましい含有量は、5重量部〜14重量部である。   Component D is an organic phosphorus-containing flame retardant and is used to improve flame retardancy. Examples of organic phosphorus-containing flame retardants include phosphorus-containing flame retardants composed of phosphate esters and / or phosphazene compounds. The component D is preferably used in the range of 3 to 16 parts by weight when the resin composition is 100 parts by weight. When the content of the D component is less than 3 parts by weight, the flame retardancy effect cannot be obtained. On the other hand, even if the content of the D component exceeds 16 parts by weight, improvement in flame retardancy cannot be expected. In addition, more preferable content of D component is 5 weight part-14 weight part.

なお、本件発明に係る樹脂組成物は、樹脂組成物重量を100重量%としたとき、リンの総含有量が0.5重量%〜5重量%の範囲となるように添加すると、難燃性が確保されるため好ましい。   In addition, when the resin composition according to the present invention is added so that the total content of phosphorus is in the range of 0.5 wt% to 5 wt% when the weight of the resin composition is 100 wt%, it is flame retardant. Is preferable.

E成分は、ビフェニル型エポキシ樹脂である。ビフェニル型エポキシ樹脂は、所謂ガラス転移温度Tgの向上と屈曲性の向上に寄与する。ビフェニル型エポキシ樹脂は、ビフェニルアラルキル型エポキシ樹脂が挙げられる。このE成分は、樹脂組成物を100重量部としたとき、5重量部〜35重量部の範囲で用いることが好ましい。E成分の含有量を5重量部未満とすると、ガラス転移温度Tg及び屈曲性を高くする効果が得られない。一方、E成分の含有量が35重量部を超えるようにしても、高Tg化が望めない上に、屈曲性の向上が望めない。なお、E成分のより好ましい含有量は、7重量部〜25重量部である。   The E component is a biphenyl type epoxy resin. The biphenyl type epoxy resin contributes to improvement of so-called glass transition temperature Tg and flexibility. Examples of the biphenyl type epoxy resin include a biphenyl aralkyl type epoxy resin. The component E is preferably used in the range of 5 to 35 parts by weight when the resin composition is 100 parts by weight. When the content of the E component is less than 5 parts by weight, the effect of increasing the glass transition temperature Tg and the flexibility cannot be obtained. On the other hand, even if the content of the E component exceeds 35 parts by weight, it is not possible to expect a high Tg and an improvement in flexibility. In addition, more preferable content of E component is 7 weight part-25 weight part.

上記A成分〜E成分の他に、更に、F成分として、リン含有難燃性エポキシ樹脂を含む樹脂組成物とすると、難燃性を更に向上させることができる。リン含有難燃性エポキシ樹脂とは、エポキシ骨格の中にリンを含んだエポキシ樹脂の総称であり、所謂ハロゲンフリー系の難燃性エポキシ樹脂である。そして、本件出願に係る樹脂組成物のリン原子含有量を、樹脂組成物重量を100重量%としたとき、F成分由来のリン原子を0.1重量%〜5重量%の範囲とできるリン含有難燃性エポキシ樹脂であれば、いずれの使用も可能である。しかしながら、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド誘導体である、分子内に2以上のエポキシ基を備えるリン含有難燃性エポキシ樹脂を用いることが、半硬化状態での樹脂品質の安定性に優れ、同時に難燃性効果が高いため好ましい。参考のために、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイドの構造式を化3に示す。   In addition to the A component to the E component, if the resin composition includes a phosphorus-containing flame-retardant epoxy resin as the F component, the flame retardancy can be further improved. The phosphorus-containing flame-retardant epoxy resin is a general term for epoxy resins containing phosphorus in an epoxy skeleton, and is a so-called halogen-free flame-retardant epoxy resin. And phosphorus content which can make phosphorus atom derived from F component into the range of 0.1 weight%-5 weight% when the resin composition weight is 100 weight% about the phosphorus atom content of the resin composition concerning this application Any flame retardant epoxy resin can be used. However, using a phosphorus-containing flame retardant epoxy resin having two or more epoxy groups in the molecule, which is a 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative, is a semi-cured state. It is preferable because it has excellent resin quality stability at the same time and has a high flame retardant effect. For reference, the structural formula of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide is shown in Chemical Formula 3.

Figure 2011068157
Figure 2011068157

この9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド誘導体である、分子内に2以上のエポキシ基を備えるリン含有難燃性エポキシ樹脂は、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイドにナフトキノンやハイドロキノンを反応させて、以下の化4又は化5に示す化合物とした後に、そのOH基の部分にエポキシ樹脂を反応させてリン含有難燃性エポキシ樹脂としたものが好ましい。   This 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative, a phosphorus-containing flame-retardant epoxy resin having two or more epoxy groups in the molecule, is 9,10-dihydro-9. -Oxa-10-phosphaphenanthrene-10-oxide is reacted with naphthoquinone or hydroquinone to form a compound shown in the following chemical formula 4 or chemical formula 5, and then the epoxy resin is reacted with the OH group portion to make it difficult to contain phosphorus. What was made into the flammable epoxy resin is preferable.

Figure 2011068157
Figure 2011068157

Figure 2011068157
Figure 2011068157

そして、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド誘導体である、分子内に2以上のエポキシ基を備えるリン含有難燃性エポキシ樹脂を具体的に例示すると、化6,化7または化8に示す構造式を備える化合物の使用が好ましい。   A specific example of a phosphorus-containing flame-retardant epoxy resin having two or more epoxy groups in the molecule, which is a 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative, The use of a compound having the structural formula shown in Chemical Formula 6, Chemical Formula 7 or Chemical Formula 8 is preferred.

Figure 2011068157
Figure 2011068157

Figure 2011068157
Figure 2011068157

Figure 2011068157
Figure 2011068157

ここでリン含有難燃性エポキシ樹脂を用いる場合の樹脂組成物は、F成分としてのリン含有難燃性エポキシ樹脂の1種類を単独で用いても、2種類以上のリン含有難燃性エポキシ樹脂を混合して用いても構わない。但し、F成分としてのリン含有難燃性エポキシ樹脂の総量を考慮して、樹脂組成物重量を100重量%としたとき、F成分由来のリン原子を0.1重量%〜5重量%の範囲となるように添加することが好ましい。リン含有難燃性エポキシ樹脂は、その種類によりエポキシ骨格内に含有するリン原子量が異なる。そこで、上述のようにリン原子の含有量を規定して、F成分の添加量に代えることが可能である。但し、F成分は、通常、樹脂組成物を100重量部としたとき、5重量部〜50重量部の範囲で用いられる。F成分が5重量部未満の場合には、他の樹脂成分の配合割合を考慮すると、F成分由来のリン原子を0.1重量%以上とすることが困難になり、難燃性の向上効果を得ることが出来ない。一方、F成分が50重量部を超えるようにしても、難燃性向上効果も飽和すると同時に、硬化後の樹脂層が脆くなるため好ましくない。   Here, when the phosphorus-containing flame-retardant epoxy resin is used, the resin composition may be one of the phosphorus-containing flame-retardant epoxy resins as the F component, or two or more phosphorus-containing flame-retardant epoxy resins. May be used in combination. However, considering the total amount of the phosphorus-containing flame-retardant epoxy resin as the F component, when the resin composition weight is 100% by weight, the phosphorus atom derived from the F component is in the range of 0.1% to 5% by weight. It is preferable to add so that it becomes. The phosphorus-containing flame-retardant epoxy resin has different amounts of phosphorus atoms contained in the epoxy skeleton depending on the type. Therefore, it is possible to define the content of phosphorus atoms as described above and replace it with the addition amount of the F component. However, the component F is usually used in the range of 5 to 50 parts by weight when the resin composition is 100 parts by weight. In the case where the F component is less than 5 parts by weight, it becomes difficult to make the phosphorus atom derived from the F component 0.1% by weight or more in consideration of the blending ratio of the other resin components. Can not get. On the other hand, even if the F component exceeds 50 parts by weight, the effect of improving flame retardancy is saturated, and at the same time, the cured resin layer becomes brittle.

上述の硬化樹脂層の「高Tg化」と「フレキシビリティ」とは、一般的に反比例する特性である。このときリン含有難燃性エポキシ樹脂は、硬化後の樹脂層のフレキシビリティの向上に寄与するもの、高Tg化に寄与するものが存在する。従って、1種類のリン含有難燃性エポキシ樹脂を用いるよりは、「高Tg化に寄与するリン含有難燃性エポキシ樹脂」と「フレキシビリティの向上に寄与するリン含有難燃性エポキシ樹脂」とをバランス良く配合して用いることで、フレキシブルプリント配線板用途で好適な樹脂組成物とすることが可能である。   “High Tg” and “flexibility” of the cured resin layer described above are generally inversely proportional characteristics. At this time, there are phosphorus-containing flame-retardant epoxy resins that contribute to improving the flexibility of the cured resin layer and those that contribute to high Tg. Therefore, rather than using one type of phosphorus-containing flame-retardant epoxy resin, “phosphorus-containing flame-retardant epoxy resin that contributes to higher Tg” and “phosphorus-containing flame-retardant epoxy resin that contributes to improved flexibility” By mixing and using in a well-balanced manner, it is possible to obtain a resin composition suitable for flexible printed wiring board applications.

本件発明に係る樹脂組成物は、更に、G成分として、エポキシ当量が200以下で、室温で液状のビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂の群から選ばれる1種又は2種以上からなるエポキシ樹脂を含むものとしても良い。ここで、ビスフェノール系エポキシ樹脂を選択使用しているのは、C成分(ゴム変性ポリアミドイミド樹脂)との相性が良く、半硬化樹脂層に適度なフレキシビリティの付与が容易だからである。そして、エポキシ当量が200を超えると、樹脂が室温で半固形となり、半硬化状態でのフレキシビリティが減少するので好ましくない。更に、上述のビスフェノール系エポキシ樹脂であれば、1種を単独で用いても、2種以上を混合で用いても構わない。しかも、2種以上を混合して用いる場合には、その混合比に関しても特段の限定はない。   The resin composition according to the present invention is further selected from the group consisting of bisphenol A type epoxy resin, bisphenol F type epoxy resin, and bisphenol AD type epoxy resin having an epoxy equivalent of 200 or less and being liquid at room temperature as the G component. Or it is good also as what contains the epoxy resin which consists of 2 or more types. Here, the reason why the bisphenol-based epoxy resin is selectively used is that the compatibility with the component C (rubber-modified polyamideimide resin) is good, and it is easy to impart appropriate flexibility to the semi-cured resin layer. If the epoxy equivalent exceeds 200, the resin becomes semi-solid at room temperature, and the flexibility in the semi-cured state decreases, which is not preferable. Furthermore, if it is the above-mentioned bisphenol-type epoxy resin, 1 type may be used independently or 2 or more types may be used in mixture. In addition, when two or more kinds are mixed and used, there is no particular limitation with respect to the mixing ratio.

このG成分のエポキシ樹脂は、樹脂組成物を100重量部としたとき、2重量部〜15重量部の配合割合で用いることが、熱硬化性を十分に発揮し、半硬化状態において、カールと呼ばれる反り現象の発生を低減させることが可能となり、また、半硬化状態での樹脂層のフレキシビリティの更なる向上を図ることができるため好ましい。当該エポキシ樹脂が15重量部を超えると、他の樹脂成分とのバランスから難燃性が低下したり、硬化後の樹脂層が硬くなる傾向がある。しかも、C成分(ゴム変性ポリアミドイミド樹脂)の添加量を考慮すると、硬化後の樹脂層として十分な靭性が得られなくなる。   This G component epoxy resin, when the resin composition is 100 parts by weight, exhibits a sufficient thermosetting property when used in a blending ratio of 2 to 15 parts by weight. It is preferable because the occurrence of a so-called warp phenomenon can be reduced, and the flexibility of the resin layer in a semi-cured state can be further improved. When the said epoxy resin exceeds 15 weight part, there exists a tendency for a flame retardance to fall from the balance with another resin component, or for the resin layer after hardening to become hard. Moreover, considering the amount of component C (rubber-modified polyamideimide resin) added, sufficient toughness for the cured resin layer cannot be obtained.

本件発明に係る樹脂組成物は、更に、H成分として、熱可塑性樹脂及び/又は合成ゴムからなる低弾性物質を含むものとしても良い。H成分を含む樹脂組成物とすることにより、樹脂組成物の半硬化状態における割れを防ぎ、且つ硬化後のフレキシビリティを向上させることができる。このH成分としての低弾性物質は、例えば、アクリロニトリルブタジエンゴム、アクリルゴム(アクリル酸エステル共重合体)、ポリブタジエンゴム、イソプレン、水素添加型ポリブタジエン、ポリビニルブチラール、ポリエーテルサルフォン、フェノキシ、高分子エポキシ、芳香族ポリアミドが挙げられる。これらの中から1種を単独で用いても、2種以上を混合で用いても構わない。特に、アクリロニトリルブタジエンゴムを用いることが好ましい。アクリロニトリルブタジエンゴムの中でも、カルボキシル変性体であると、エポキシ樹脂と架橋構造を取り、硬化後の樹脂層のフレキシビリティを向上させることができる。カルボキシル変性体としては、カルボキシ基末端ニトリルブタジエンゴム(CTBN)、カルボキシ基末端ブタジエンゴム(CTB)、カルボキシ変性ニトリルブタジエンゴム(C‐NBR)を用いることが好ましい。   The resin composition according to the present invention may further include a low-elasticity substance made of a thermoplastic resin and / or a synthetic rubber as the H component. By setting it as the resin composition containing H component, the crack in the semi-hardened state of a resin composition can be prevented, and the flexibility after hardening can be improved. Examples of the low-elasticity material as the H component include acrylonitrile butadiene rubber, acrylic rubber (acrylic ester copolymer), polybutadiene rubber, isoprene, hydrogenated polybutadiene, polyvinyl butyral, polyethersulfone, phenoxy, and polymer epoxy. And aromatic polyamides. One of these may be used alone, or two or more may be used in combination. In particular, acrylonitrile butadiene rubber is preferably used. Among the acrylonitrile butadiene rubbers, a carboxyl-modified product can take a crosslinked structure with an epoxy resin and improve the flexibility of the cured resin layer. As the carboxyl-modified product, it is preferable to use carboxy group-terminated nitrile butadiene rubber (CTBN), carboxy group-terminated butadiene rubber (CTB), or carboxy-modified nitrile butadiene rubber (C-NBR).

H成分は、樹脂組成物を100重量部としたとき、25重量部以下の配合割合で用いることが好ましい。25重量部を超える量のH成分を加えると、ガラス転移温度Tgの低下、半田耐熱性能の低下、ピール強度の低下、熱膨張係数の増大といった問題が発生するため好ましくない。   The H component is preferably used at a blending ratio of 25 parts by weight or less when the resin composition is 100 parts by weight. If an H component in an amount exceeding 25 parts by weight is added, problems such as a decrease in glass transition temperature Tg, a decrease in solder heat resistance, a decrease in peel strength, and an increase in thermal expansion coefficient are undesirable.

本件発明に係る樹脂組成物は、上述のA成分〜E成分を組み合わせることにより、難燃性の向上及びガラス転移温度Tgが高くなり、また、耐折性の熱劣化を防ぐことができる。そして、従来の接着剤用樹脂組成物のような無機充填剤を加えることなく、十分な屈曲性を得ることができる。さらに、半硬化状態での割れや打ち抜き加工時の粉落ちを防ぐことができる。   The resin composition according to the present invention can improve the flame retardancy and the glass transition temperature Tg by combining the above-described components A to E, and can prevent the heat resistance of the folding resistance. And sufficient flexibility can be obtained, without adding an inorganic filler like the conventional resin composition for adhesive agents. Furthermore, it is possible to prevent cracking in a semi-cured state and powder falling off during punching.

本件発明に係る樹脂ワニス: 本件発明に係る樹脂ワニスは、上述の樹脂組成物に溶剤を加えて、樹脂固形分量が30重量%〜70重量%の範囲に調製したものである。そして、この樹脂ワニスにより形成する半硬化樹脂層は、MIL規格におけるMIL−P−13949Gに準拠して樹脂厚さを55μmとして測定したときのレジンフローが0%〜10%の範囲にあることを特徴とする。ここで言う溶剤には、上述の沸点が50℃〜200℃の範囲にある溶剤であるメチルエチルケトン、ジメチルアセトアミド、ジメチルホルムアミド等の群から選ばれる1種の単独溶剤又は2種以上の混合溶剤を用いることが好ましい。上述のように良好な半硬化樹脂層を得るためである。そして、ここに示した樹脂固形分量の範囲が、銅箔の表面に塗布したときに、最も膜厚を精度の良いものに制御できる範囲である。樹脂固形分が30重量%未満の場合には、粘度が低すぎて、銅箔表面への塗布直後に流れて膜厚均一性を確保しにくい。これに対して、樹脂固形分が70重量%を超えると、粘度が高くなり、銅箔表面への薄膜形成が困難となる。 Resin varnish according to the present invention: The resin varnish according to the present invention is prepared by adding a solvent to the above resin composition so that the resin solid content is in the range of 30 wt% to 70 wt%. The semi-cured resin layer formed with this resin varnish has a resin flow in the range of 0% to 10% when measured with a resin thickness of 55 μm according to MIL-P-13949G in the MIL standard. Features. As the solvent mentioned here, one kind of single solvent selected from the group of methyl ethyl ketone, dimethylacetamide, dimethylformamide, etc., which is a solvent having a boiling point in the range of 50 ° C. to 200 ° C., or a mixed solvent of two or more kinds is used. It is preferable. This is for obtaining a good semi-cured resin layer as described above. And the range of the resin solid content shown here is a range in which the film thickness can be controlled to the most accurate one when applied to the surface of the copper foil. When the resin solid content is less than 30% by weight, the viscosity is too low and it flows immediately after application to the copper foil surface, making it difficult to ensure film thickness uniformity. On the other hand, when the resin solid content exceeds 70% by weight, the viscosity increases and it becomes difficult to form a thin film on the surface of the copper foil.

当該樹脂ワニスは、これを用いて半硬化樹脂層を形成したとき、測定したレジンフローが0%〜10%の範囲にあることが好ましい。当該レジンフローが高いと、樹脂付銅箔の樹脂層を用いて形成する絶縁層の厚さが不均一になる。しかし、本件発明に係る樹脂ワニスは、レジンフローを10%以下という低い値に抑えることができる。なお、本件発明に係る樹脂ワニスは、樹脂流れが殆ど生じないレベルが実現可能であるので、当該レジンフローの下限値を0%とした。なお、本件発明に係る樹脂ワニスのレジンフローのより好ましい範囲は0%〜5%である。   When the resin varnish is used to form a semi-cured resin layer, the measured resin flow is preferably in the range of 0% to 10%. When the resin flow is high, the thickness of the insulating layer formed using the resin layer of the resin-coated copper foil becomes nonuniform. However, the resin varnish according to the present invention can suppress the resin flow to a low value of 10% or less. In addition, since the resin varnish which concerns on this invention can implement | achieve the level which resin flow hardly produces, the lower limit of the said resin flow was made into 0%. In addition, the more preferable range of the resin flow of the resin varnish concerning this invention is 0%-5%.

本件明細書において、レジンフローとは、MIL規格におけるMIL−P−13949Gに準拠して、樹脂厚さを55μmとした樹脂付銅箔から10cm角試料を4枚サンプリングし、この4枚の試料を重ねた状態(積層体)でプレス温度171℃、プレス圧14kgf/cm、プレス時間10分の条件で張り合わせ、そのときの樹脂流出重量を測定した結果から数1に基づいて算出した値である。In this specification, the resin flow is based on MIL-P-13949G in the MIL standard. Four 10 cm square samples are sampled from a resin-coated copper foil with a resin thickness of 55 μm. It is a value calculated based on Equation 1 from the result of measuring the resin outflow weight at the time of laminating under the conditions of a press temperature of 171 ° C., a press pressure of 14 kgf / cm 2 , and a press time of 10 minutes in a stacked state (laminate) .

Figure 2011068157
Figure 2011068157

本件発明に係る樹脂付銅箔: 本件発明に係る樹脂付銅箔は、銅箔の表面に樹脂層を備えた多層フレキシブルプリント配線板製造用の樹脂付銅箔である。そして、当該樹脂付銅箔において、樹脂層は、上述の多層フレキシブルプリント配線板の接着層形成用の樹脂組成物を用いて形成したことを特徴とする。 Resin-coated copper foil according to the present invention: The resin-coated copper foil according to the present invention is a resin-coated copper foil for producing a multilayer flexible printed wiring board having a resin layer on the surface of the copper foil. And in the said copper foil with resin, the resin layer was formed using the resin composition for contact bonding layer formation of the above-mentioned multilayer flexible printed wiring board, It is characterized by the above-mentioned.

ここで、銅箔は、特に限定を要するものではなく、厚さに関しても特段の限定はない。また、銅箔の製造方法も拘泥せず、電解法又は圧延法等、あらゆる製造方法により得られたものが使用可能である。また、この銅箔の樹脂層を形成する面には、粗化処理を施しても、施さなくとも良い。粗化処理があれば、銅箔と樹脂層との密着性は向上する。そして、粗化処理を施さなければ、平坦な表面となるため、ファインピッチ回路の形成能が向上する。更に、当該銅箔の表面には、防錆処理を施しても構わない。防錆処理に関しては、公知の亜鉛、亜鉛系合金等を用いた無機防錆、又は、ベンゾイミダゾール、トリアゾール等の有機単分子被膜による有機防錆等を採用することが可能である。更に、当該銅箔の樹脂層を形成する面には、シランカップリング剤処理層を備えることが好ましい。   Here, the copper foil is not particularly limited, and the thickness is not particularly limited. Moreover, the manufacturing method of copper foil is not restricted, and what was obtained by all the manufacturing methods, such as an electrolytic method or a rolling method, can be used. Further, the surface on which the resin layer of the copper foil is formed may or may not be roughened. If there exists a roughening process, the adhesiveness of copper foil and a resin layer will improve. And if it does not perform a roughening process, since it will become a flat surface, the formation capability of a fine pitch circuit will improve. Furthermore, the surface of the copper foil may be subjected to rust prevention treatment. Regarding the rust prevention treatment, it is possible to employ inorganic rust prevention using known zinc, zinc-based alloys, or the like, or organic rust prevention using an organic monomolecular film such as benzimidazole or triazole. Furthermore, it is preferable to provide a silane coupling agent treatment layer on the surface on which the resin layer of the copper foil is formed.

シランカップリング剤層は、特に粗化処理していない銅箔表面と樹脂層との濡れ性を改善するとともに、密着性を向上させるための助剤としての役割を果たす。例えば、銅箔の粗化処理を行わずに、防錆処理を施し、シランカップリング剤処理に、エポキシ官能性シランカップリング剤、オレフィン官能性シラン、アクリル官能性シラン、アミノ官能性シランカップリング剤又はメルカプト官能性シランカップリング剤等種々のものを用いることが可能であり、用途に応じて好適なシランカップリング剤を選択使用することで、引き剥がし強度が0.8kgf/cmを超えるものになる。   The silane coupling agent layer plays a role as an auxiliary agent for improving the wettability between the surface of the copper foil not particularly roughened and the resin layer and improving the adhesion. For example, without roughening copper foil, rust prevention treatment is applied, and silane coupling agent treatment is epoxy functional silane coupling agent, olefin functional silane, acrylic functional silane, amino functional silane coupling Various agents such as an agent or a mercapto-functional silane coupling agent can be used, and the peel strength exceeds 0.8 kgf / cm by selecting and using a suitable silane coupling agent according to the application become.

ここで用いることの出来るシランカップリング剤を、より具体的に明示しておくことにする。プリント配線板用プリプレグのガラスクロスに用いられると同様のカップリング剤を中心にビニルトリメトキシシラン、ビニルフェニルトリメトキシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、4−グリシジルブチルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−3−(4−(3−アミノプロポキシ)プトキシ)プロピル−3−アミノプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン、γ−メルカプトプロピルトリメトキシシラン等を用いることが可能である。   The silane coupling agent that can be used here will be described more specifically. Vinyl trimethoxy silane, vinyl phenyl trimethoxy lane, γ-methacryloxypropyl trimethoxy silane, γ-glycidoxy propyl trimethoxy silane mainly used for the same coupling agent as used for glass cloth of prepreg for printed wiring board, 4-glycidylbutyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) ptoxy) propyl-3- Aminopropyltrimethoxysilane, imidazolesilane, triazinesilane, γ-mercaptopropyltrimethoxysilane and the like can be used.

このシランカップリング剤層の形成は、一般的に用いられる浸漬法、シャワーリング法、噴霧法等、特に方法は限定されない。工程設計に合わせて、最も均一に銅箔とシランカップリング剤を含んだ溶液とを接触させ吸着させることのできる方法を任意に採用すれば良いのである。これらのシランカップリング剤は、溶媒としての水に0.5〜10g/l溶解させて、室温レベルの温度で用いる。シランカップリング剤は、銅箔の表面に突きだしたOH基と縮合結合することにより、被膜が形成されるため、いたずらに濃い濃度の溶液を用いても、その効果が著しく増大することはない。従って、本来は、工程の処理速度等に応じて決められるべきものである。但し、0.5g/lを下回る場合は、シランカップリング剤の吸着速度が遅く、一般的な商業ベースの採算に合わず、吸着も不均一なものとなる。また、10g/lを超える濃度であっても、特に吸着速度が速くなることもなく不経済となる。   The formation of the silane coupling agent layer is not particularly limited, such as a commonly used dipping method, showering method, spraying method, or the like. In accordance with the process design, a method that can contact and adsorb the solution containing the copper foil and the silane coupling agent most uniformly can be arbitrarily employed. These silane coupling agents are used at a room temperature level by dissolving 0.5 to 10 g / l in water as a solvent. Since the silane coupling agent forms a film by condensation bonding with OH groups protruding on the surface of the copper foil, the effect is not significantly increased even if a solution having a very high concentration is used. Therefore, it should be originally determined according to the processing speed of the process. However, if it is less than 0.5 g / l, the adsorption rate of the silane coupling agent is slow, which is not suitable for general commercial profit, and the adsorption is not uniform. Moreover, even if the concentration exceeds 10 g / l, the adsorption rate is not particularly increased, which is uneconomical.

以上に述べてきた樹脂付銅箔は、使用する銅箔と半硬化樹脂層との間に、ポリイミド樹脂、ポリアミド樹脂、ポリエーテルサルフォン樹脂、フェノキシ樹脂、アラミド樹脂、ポリビニルアセタール樹脂の1種又は2種以上の混合樹脂からなる補助樹脂層を形成することも可能である。この補助樹脂層は、当該半硬化樹脂層を形成する前に形成するものである。このような補助樹脂層と半硬化樹脂層との2層の層構成を採用することにより、樹脂付銅箔としての柔軟性を更に向上させ、フレキシブルプリント配線板用途に好適なものとすることができる。これらの補助樹脂層は、一般的にキャスティング法と称される方法で形成することが可能である。より具体的には、ポリイミド樹脂、ポリアミド樹脂、又はこれら2種類の混合樹脂のいずれかを形成するための樹脂ワニスを銅箔面に塗布し、乾燥工程により溶剤分を一部除去し、更に高温の乾燥工程で溶剤の除去及び/又は脱水縮合反応させることにより形成できる。このときの補助樹脂層の厚さは、10μm以下であることが望ましい。10μmを超えると、本発明で言う半硬化樹脂層と組み合わせた場合に、全体の厚さが増加することになるため、フレキシブルプリント配線板に加工したときの全体の厚さを薄くすることが困難になると同時に、半硬化樹脂層を形成する際の加熱で、樹脂付銅箔にカール現象が発生しやすくなるため好ましくない。   The copper foil with resin described above is one kind of polyimide resin, polyamide resin, polyether sulfone resin, phenoxy resin, aramid resin, polyvinyl acetal resin between the copper foil to be used and the semi-cured resin layer. It is also possible to form an auxiliary resin layer made of two or more kinds of mixed resins. This auxiliary resin layer is formed before the semi-cured resin layer is formed. By adopting such a two-layer structure of an auxiliary resin layer and a semi-cured resin layer, it is possible to further improve the flexibility as a resin-coated copper foil and to be suitable for flexible printed wiring board applications. it can. These auxiliary resin layers can be formed by a method generally called a casting method. More specifically, a resin varnish for forming either a polyimide resin, a polyamide resin, or a mixed resin of these two types is applied to the copper foil surface, a part of the solvent is removed by a drying process, and the temperature is further increased. It can be formed by removing the solvent and / or dehydrating condensation reaction in the drying step. At this time, the thickness of the auxiliary resin layer is desirably 10 μm or less. If it exceeds 10 μm, the total thickness will increase when combined with the semi-cured resin layer referred to in the present invention, so it is difficult to reduce the total thickness when processed into a flexible printed wiring board. At the same time, the curling phenomenon is likely to occur in the resin-coated copper foil due to heating when forming the semi-cured resin layer, which is not preferable.

本件発明に係る樹脂付銅箔の製造方法: 本件発明に係る樹脂付銅箔の製造方法は、上記多層フレキシブルプリント配線板製造用の樹脂付銅箔の製造方法であって、以下の工程a、工程bの手順で樹脂層の形成に用いる樹脂ワニスを調製し、当該樹脂ワニスを銅箔の表面に塗布し、乾燥させることで10μm〜80μmの厚さの半硬化樹脂層として樹脂付銅箔とすることを特徴とする。ここで、半硬化樹脂層の厚さが10μm未満の場合には、内層フレキシブルプリント配線板との密着性にバラツキが生じやすくなる。 Manufacturing method of resin-coated copper foil according to the present invention: The manufacturing method of the resin-coated copper foil according to the present invention is a manufacturing method of the resin-coated copper foil for manufacturing the multilayer flexible printed wiring board, comprising the following steps a, A resin varnish used for forming a resin layer is prepared in the procedure of step b, and the resin varnish is applied to the surface of the copper foil and dried to form a semi-cured resin layer having a thickness of 10 μm to 80 μm and a resin-coated copper foil It is characterized by doing. Here, when the thickness of the semi-cured resin layer is less than 10 μm, the adhesion with the inner-layer flexible printed wiring board tends to vary.

工程a: 樹脂組成物重量を100重量部としたとき、A成分が3重量部〜30重量部、B成分が13重量部〜35重量部、C成分が10重量部〜50重量部、D成分が3重量部〜16重量部、E成分が5重量部〜35重量部の範囲で各成分を含有する樹脂組成物とする。ここに記載した各成分及び配合割合に関しての説明は、上述の通りであるので、ここでの説明は省略する。なお、これらの成分の混合の順序、混合温度、混合手順、混合装置等に関し、特段の限定はない。 Step a: When the weight of the resin composition is 100 parts by weight, the A component is 3 to 30 parts by weight, the B component is 13 to 35 parts by weight, the C component is 10 to 50 parts by weight, and the D component Is a resin composition containing each component in the range of 3 to 16 parts by weight and E component in the range of 5 to 35 parts by weight. Since the description about each component and the mixture ratio described here is as above-mentioned, description here is abbreviate | omitted. There are no particular limitations on the order of mixing these components, the mixing temperature, the mixing procedure, the mixing apparatus, and the like.

工程b: 前記樹脂組成物を、有機溶剤を用いて溶解し、樹脂ワニスとする。このときの有機溶剤には、上述のように沸点が50℃〜200℃の範囲にある溶剤であり、メチルエチルケトン、ジメチルアセトアミド、ジメチルホルムアミド等の群から選ばれる1種の単独溶剤又は2種以上の混合溶剤を用いることが好ましい。上述したと同様の理由からである。そして、ここで樹脂固形分量を30重量%〜70重量%の樹脂ワニスとする。この樹脂固形分量の範囲を定めた理由に関しても上述したと同様である。なお、ここに具体的に挙げた溶剤以外でも、本件発明で用いるすべての樹脂成分を溶解することの出来るものであれば、その使用が不可能というわけではない。 Step b: The resin composition is dissolved using an organic solvent to obtain a resin varnish. The organic solvent at this time is a solvent having a boiling point in the range of 50 ° C. to 200 ° C. as described above, one single solvent selected from the group such as methyl ethyl ketone, dimethylacetamide, dimethylformamide, or two or more types. It is preferable to use a mixed solvent. This is because of the same reason as described above. And let resin solid content be 30 to 70 weight% resin varnish here. The reason for determining the range of the resin solid content is the same as described above. In addition, it is not impossible to use any solvent other than those specifically mentioned here as long as it can dissolve all the resin components used in the present invention.

以上のようにして得られる樹脂ワニスを、銅箔の片面に塗布する場合には、特に塗布方法に関しては限定されない。しかし、目的とする厚さ分を精度良く塗布しなければならないことを考えれば、形成する膜厚に応じた塗布方法、塗布装置を適宜選択使用すればよい。また、銅箔の表面に樹脂皮膜を形成した後の乾燥は、樹脂溶液の性質に応じて半硬化状態とすることのできる加熱条件を適宜採用すればよい。   When the resin varnish obtained as described above is applied to one side of a copper foil, the application method is not particularly limited. However, considering that the target thickness must be applied with high accuracy, a coating method and a coating apparatus corresponding to the film thickness to be formed may be appropriately selected and used. Moreover, what is necessary is just to employ | adopt suitably the heating conditions which can be made into a semi-hardened state according to the property of the resin solution for the drying after forming the resin film on the surface of copper foil.

本件発明に係る多層フレキシブルプリント配線板: 本件発明に係る多層フレキシブルプリント配線板は、上述の多層フレキシブルプリント配線板の接着層形成用の樹脂組成物を用いて得られることを特徴としたものである。即ち、本件発明に係る樹脂組成物を樹脂ワニスとして、この樹脂ワニスを用いて樹脂付銅箔を製造する。そして、この樹脂付銅箔を用いて多層フレキシブルプリント配線板としたものである。このとき、樹脂付銅箔を用いて多層フレキシブルプリント配線板とするまでの製造プロセスに関して、特段の限定はない。公知のあらゆる製造手法が使用できる。なお、本件発明に言う多層フレキシブルプリント配線板とは、3層以上の回路形状を含む導体層を備えるものを言う。以下、実施例を示す。 Multilayer flexible printed wiring board according to the present invention: The multilayer flexible printed wiring board according to the present invention is obtained by using the above-described resin composition for forming an adhesive layer of a multilayer flexible printed wiring board. . That is, using the resin composition according to the present invention as a resin varnish, a resin-coated copper foil is produced using the resin varnish. And it is set as the multilayer flexible printed wiring board using this copper foil with resin. At this time, there is no special limitation regarding a manufacturing process until it is set as a multilayer flexible printed wiring board using copper foil with resin. Any known manufacturing technique can be used. In addition, the multilayer flexible printed wiring board said to this invention says what is provided with the conductor layer containing the circuit shape of three or more layers. Examples are shown below.

実施例及び比較例で用いた樹脂成分を以下に示す。C成分のゴム変性ポリアミドイミド樹脂、F成分のリン含有難燃性エポキシ樹脂の合成例は後述する。   The resin components used in Examples and Comparative Examples are shown below. Examples of synthesis of the C component rubber-modified polyamideimide resin and the F component phosphorus-containing flame-retardant epoxy resin will be described later.

A成分:固形状の高耐熱性エポキシ樹脂(クレゾールノボラック型エポキシ樹脂 東都化成株式会社製 YDCN−704,軟化点90℃),
液状の高耐熱性エポキシ樹脂(ナフタレン型エポキシ樹脂 DIC株式会社製 HP4032−D)
B成分:エポキシ樹脂硬化剤(ビフェニル型フェノール樹脂 明和化成株式会社製 MEH−7851M)
C成分:ゴム変性ポリアミドイミド樹脂
D成分:リン含有難燃剤(芳香族縮合リン酸エステル 大八化学株式会社製 PX−200)
E成分:ビフェニル型エポキシ樹脂(日本化薬株式会社製 NC−3000)
F成分:リン含有難燃性エポキシ樹脂
G成分:ビスフェノールA型液状エポキシ樹脂(DIC株式会社製 エピクロン850S)
H成分:低弾性物質(アクリロニトリルブタジエンゴム JSR株式会社製PNR−1H)
A component: Solid high heat resistant epoxy resin (cresol novolac type epoxy resin YDCN-704, softening point 90 ° C. manufactured by Toto Kasei Co., Ltd.),
Liquid heat-resistant epoxy resin (Naphthalene type epoxy resin DIC Corporation HP4032-D)
Component B: epoxy resin curing agent (biphenyl type phenolic resin, Meiwa Kasei Co., Ltd., MEH-7851M)
Component C: Rubber-modified polyamideimide resin Component D: Phosphorus-containing flame retardant (aromatic condensed phosphate ester PX-200, manufactured by Daihachi Chemical Co., Ltd.)
E component: biphenyl type epoxy resin (NC-3000 manufactured by Nippon Kayaku Co., Ltd.)
F component: phosphorus-containing flame-retardant epoxy resin G component: bisphenol A type liquid epoxy resin (Epiclon 850S manufactured by DIC Corporation)
H component: low elasticity substance (acrylonitrile butadiene rubber JSR Co., Ltd. PNR-1H)

C成分のゴム変性ポリアミドイミド樹脂の調製: ここでは、特開2004−152675号公報に記載の方法を採用し、温度計、冷却管、窒素ガス導入管のついた4ツ口フラスコにトリメリット酸無水物(TMA)0.9モル、ジカルボキシポリ(アクリロニトリル−ブタジエン)ゴム(宇部興産製ハイカーCTBN1300×13:分子量3500)を0.1モル、ジフェニルメタンジイソシアネート(MDI)1モル、フッ化カリウム0.01モルを固形分濃度が20%となるようにN−メチル−2−ピロリドンと共に仕込み、120℃で1.5時間攪拌した後180℃に昇温して更に約3時間攪拌を行いゴム変性量9重量%のポリアミドイミド樹脂を合成した。得られたポリアミドイミド樹脂の対数粘度は0.65dl/g、ガラス転移温度は160℃であった。 Preparation of component C rubber-modified polyamideimide resin: Here, the method described in JP-A No. 2004-152675 was adopted, and trimellitic acid was added to a four-necked flask equipped with a thermometer, a cooling pipe, and a nitrogen gas introduction pipe. 0.9 mol of anhydride (TMA), 0.1 mol of dicarboxypoly (acrylonitrile-butadiene) rubber (Hiker CTBN 1300 × 13: molecular weight 3500, manufactured by Ube Industries), 1 mol of diphenylmethane diisocyanate (MDI), 0. 01 mol was charged with N-methyl-2-pyrrolidone so that the solid content concentration would be 20%, stirred at 120 ° C. for 1.5 hours, then heated to 180 ° C. and further stirred for about 3 hours to modify the amount of rubber modification A 9% by weight polyamideimide resin was synthesized. The obtained polyamidoimide resin had a logarithmic viscosity of 0.65 dl / g and a glass transition temperature of 160 ° C.

次に、F成分としてのリン含有難燃性エポキシ樹脂の合成例に関して述べる。   Next, a synthesis example of a phosphorus-containing flame-retardant epoxy resin as the F component will be described.

リン含有難燃性エポキシ樹脂の合成例: 攪拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコに、10−(2,5−ジヒドロキシフェニル)−10H−9−オキサ−10−ホスファフェナントレン−10−オキサイド(三光株式会社製 HCA−HQ)324重量部とエチルセロソルブ300重量部を仕込み、加熱して溶解した。YDF−170(東都化成社製ビスフェノールF型エポキシ樹脂)680重量部を仕込み、窒素ガスを導入しながら攪拌を行い、120℃まで加熱を行って混合した。トリフェニルホスフィン試薬を0.3重量部添加して160℃で4時間反応した。得られたエポキシ樹脂のエポキシ当量は501g/eq、リン含有率は3.1重量%であった。 Synthesis example of phosphorus-containing flame-retardant epoxy resin: 10- (2,5-dihydroxyphenyl) -10H was added to a four-necked glass separable flask equipped with a stirrer, thermometer, condenser, and nitrogen gas introducing device. 324 parts by weight of -9-oxa-10-phosphaphenanthrene-10-oxide (manufactured by Sanko Co., Ltd., HCA-HQ) and 300 parts by weight of ethyl cellosolve were charged and dissolved by heating. 680 parts by weight of YDF-170 (Bisphenol F type epoxy resin manufactured by Toto Kasei Co., Ltd.) was charged, stirred while introducing nitrogen gas, heated to 120 ° C. and mixed. 0.3 parts by weight of a triphenylphosphine reagent was added and reacted at 160 ° C. for 4 hours. The epoxy equivalent of the obtained epoxy resin was 501 g / eq, and the phosphorus content was 3.1% by weight.

[実施例1]
実施例1は、以上に述べた合成方法で得られたリン含有難燃性エポキシ樹脂、ゴム変性ポリアミドイミド樹脂等を用いて、表1に記載した配合割合の樹脂組成物とし、更に溶剤としてジメチルアセトアミド:メチルエチルケトン=3:2(重量比)の割合で混合した混合溶媒を用いて、樹脂ワニスを調製した。
[Example 1]
Example 1 uses a phosphorus-containing flame-retardant epoxy resin, a rubber-modified polyamide-imide resin, and the like obtained by the synthesis method described above, and a resin composition having a blending ratio shown in Table 1, and further uses dimethyl as a solvent. A resin varnish was prepared using a mixed solvent mixed at a ratio of acetamide: methyl ethyl ketone = 3: 2 (weight ratio).

Figure 2011068157
Figure 2011068157

上記樹脂ワニスを、エッジコーターを用いて、市販の電解銅箔(18μm厚さ)の粗化処理面に、乾燥後の厚さが50μmとなるように塗布し、150℃、3分間の加熱条件で乾燥させ、溶剤を気散して、樹脂付銅箔とした。この樹脂付銅箔を用いて、ガラス転移温度Tg、硬化後の樹脂層のフレキシビリティ評価、打ち抜き性能を評価した。また、この樹脂付銅箔を用いて多層プリント配線板を作製し、引き剥がし強さ及び常態はんだ耐熱性試験、煮沸はんだ耐熱性試験、吸湿はんだ耐熱性試験を行った。更に、上記樹脂付銅箔と同様の方法で、厚さ55μmの樹脂層を備える樹脂付銅箔を作製し、樹脂流れについて評価した。これらの評価及び試験結果について、表2にまとめて示す。   The resin varnish was applied to a roughened surface of a commercially available electrolytic copper foil (18 μm thick) using an edge coater so that the thickness after drying was 50 μm, and the heating conditions were 150 ° C. for 3 minutes. Then, the solvent was diffused to obtain a resin-coated copper foil. Using this resin-coated copper foil, the glass transition temperature Tg, the flexibility evaluation of the cured resin layer, and the punching performance were evaluated. Moreover, the multilayer printed wiring board was produced using this resin-coated copper foil, and peel strength and normal solder heat resistance test, boiling solder heat resistance test, and moisture absorption solder heat resistance test were performed. Further, a resin-coated copper foil provided with a resin layer having a thickness of 55 μm was prepared by the same method as that for the resin-coated copper foil, and the resin flow was evaluated. These evaluations and test results are summarized in Table 2.

[樹脂層の硬化後のフレキシブル性能評価]
ここでは、樹脂付銅箔を、加熱温度190℃、プレス圧40kgf/cmにて90分間真空プレスし、さらに銅箔をエッチングによって除去することにより、厚さ46μmの樹脂フィルムを作製した。そして、この樹脂フィルムを30mm×5mmに切り出し、耐屈曲性試験フィルムとした。そして、この耐屈曲性試験フィルムを用いて、MIT法による耐屈曲性試験を行った。MIT法による耐屈曲性試験は、MIT耐折装置として東洋精機製作所製の槽付フィルム耐折疲労試験機(品番:549)を用い、屈曲半径0.8mm、荷重0.5kgfとし、上記作製の耐屈曲性試験フィルムの繰り返し曲げ試験を実施した。その結果を示す表2では、2000回以上の繰り返し曲げ回数の測定が出来た耐屈曲性試験フィルムを合格○とした。なお、繰り返し曲げ回数は、MIT耐折装置の駆動ヘッドの一往復を1回(1サイクル)として測定した。
[Flexibility evaluation after curing of resin layer]
Here, the resin-coated copper foil was vacuum-pressed for 90 minutes at a heating temperature of 190 ° C. and a pressing pressure of 40 kgf / cm 2 , and the copper foil was removed by etching to produce a resin film having a thickness of 46 μm. And this resin film was cut out to 30 mm x 5 mm, and it was set as the bending resistance test film. And the bending resistance test by MIT method was done using this bending resistance test film. The bending resistance test by the MIT method uses a film folding fatigue tester with a tank (product number: 549) manufactured by Toyo Seiki Seisakusho as an MIT folding resistance device, with a bending radius of 0.8 mm and a load of 0.5 kgf. A repeated bending test of the bending resistance test film was performed. In Table 2 which shows the result, the bending resistance test film which was able to measure the number of repeated bendings of 2000 times or more was evaluated as acceptable. In addition, the number of repeated bendings was measured with one reciprocation of the driving head of the MIT folding apparatus as one time (one cycle).

[樹脂流れ]
上述の条件に従い、樹脂厚さ55μmの樹脂付銅箔のレジンフローを測定した。さらに、樹脂流れを評価した。まず、Bステージの樹脂付銅箔を銅面側からポンチにて打ち抜きを行った後、加熱温度を190℃、プレス圧40kgf/cmにて90分間真空プレスした。そして、プレス後に打ち抜いた部分を観察し、プレス加工により、打ち抜いた部分の淵からの樹脂のはみ出しを調べて樹脂流れ評価した。ここで、打ち抜いた部分の淵からの樹脂のはみ出しが200μm以下である場合を合格○とした。この評価結果を表2に示す。
[Resin flow]
According to the above-mentioned conditions, the resin flow of a resin-coated copper foil having a resin thickness of 55 μm was measured. Furthermore, the resin flow was evaluated. First, the B-staged resin-coated copper foil was punched from the copper surface side with a punch, and then vacuum-pressed for 90 minutes at a heating temperature of 190 ° C. and a pressing pressure of 40 kgf / cm 2 . Then, the punched part was observed after pressing, and the resin flow was evaluated by examining the protrusion of the resin from the punched part of the punched part by pressing. Here, the case where the protrusion of the resin from the punched portion of the punch was 200 μm or less was determined to be acceptable. The evaluation results are shown in Table 2.

[打ち抜き性能]
Bステージ樹脂付銅箔の打ち抜き性能は、Bステージの樹脂付銅箔を、銅箔面を上にして載置し、下面(樹脂面)から上面(銅箔面)へ向けてポンチにて打ち抜き加工を行った。ポンチで打ち抜いた際、樹脂粉が発生した場合を不合格×とし、樹脂粉が生じないが、Bステージ樹脂に亀裂が生じる場合を合格○、Bステージ樹脂に樹脂粉も亀裂も生じない場合を優良◎とし評価した。この評価結果を表2に示す。
[Punching performance]
The punching performance of B-stage resin-coated copper foil is as follows: B-stage resin-coated copper foil is placed with the copper foil surface facing up, and punched from the bottom surface (resin surface) to the top surface (copper foil surface) with a punch. Processing was performed. When punching with a punch, if the resin powder is generated as x rejected, no resin powder is produced, but if the B stage resin is cracked, pass B, and if the B stage resin is neither resin powder nor cracked Evaluated as excellent ◎. The evaluation results are shown in Table 2.

[ガラス転移温度Tgの測定]
上述のようにして作製した樹脂付銅箔を、加熱温度190℃、プレス圧40kgf/cmにて90分間真空プレスし、さらに銅箔をエッチングによって除去することにより、厚さ46μmの樹脂フィルムを作製した。そして、この樹脂フィルムを30mm×5mmに切り出し、ガラス転移温度Tgを測定した。ガラス転移温度Tgの測定は、動的粘弾性測定装置(DMA)として、セイコー電子工業株式会社製の動的粘弾性測定装置(品番:SDM5600)を用い測定した。この結果を以下の表2に示す。
[Measurement of glass transition temperature Tg]
The resin-coated copper foil produced as described above was vacuum-pressed for 90 minutes at a heating temperature of 190 ° C. and a pressing pressure of 40 kgf / cm 2 , and the copper foil was removed by etching to obtain a resin film having a thickness of 46 μm. Produced. And this resin film was cut out to 30 mm x 5 mm, and the glass transition temperature Tg was measured. The glass transition temperature Tg was measured using a dynamic viscoelasticity measuring device (product number: SDM5600) manufactured by Seiko Denshi Kogyo Co., Ltd. as a dynamic viscoelasticity measuring device (DMA). The results are shown in Table 2 below.

[多層プリント配線板を用いた評価]
引き剥がし強さ及び常態はんだ耐熱性試験: 市販の0.4mm厚さのFR−4(ガラス−エポキシ基材)の両面に、18μm厚さの電解銅箔を張り合わせた銅張積層板の両面に、内層回路の形成を行い、黒化処理を行うことで内層コア材を作製した。次に、この内層コア材の両面に、前記樹脂付銅箔を、加熱温度190℃、プレス圧40kgf/cm、90分間の真空プレス条件で積層成形し、4層の多層プリント配線板を得た。そして、この多層プリント配線板を用いて、10mm幅の引き剥がし試験用の直線回路を形成し、これを基板面に対して90°方向で引き剥がして「引き剥がし強さ」を測定した。また、4層の多層プリント配線板から50mm×50mmのサイズに切り出したはんだ耐熱測定用試料を、260℃のはんだ浴に浮かべ、ふくれが発生するまでの時間として「常態はんだ耐熱性」を測定した。引き剥がし強さは、1.0kgf/cmを超えた場合を○、1.0kgf/cm未満を×として表示することとした。また、常態はんだ耐熱性は、300秒以上の場合が○、300秒未満の場合が×として評価した。この評価結果を表2に示す。
[Evaluation using multilayer printed wiring board]
Peeling strength and normal solder heat resistance test: Both sides of a commercially available 0.4 mm thick FR-4 (glass-epoxy substrate) on both sides of a copper clad laminate laminated with 18 μm thick electrolytic copper foil Then, an inner layer circuit was formed, and a blackening process was performed to produce an inner layer core material. Next, the resin-coated copper foil is laminated on both surfaces of the inner layer core material under a vacuum pressing condition of a heating temperature of 190 ° C. and a pressing pressure of 40 kgf / cm 2 for 90 minutes to obtain a four-layer multilayer printed wiring board. It was. Then, using this multilayer printed wiring board, a 10 mm width peeling test linear circuit was formed, and this was peeled off in the direction of 90 ° with respect to the substrate surface, and the “stripping strength” was measured. In addition, a solder heat resistance measurement sample cut out from a four-layer multilayer printed wiring board to a size of 50 mm × 50 mm was floated in a 260 ° C. solder bath, and “normal solder heat resistance” was measured as the time until blistering occurred. . The peel strength was indicated as “◯” when exceeding 1.0 kgf / cm and “x” when less than 1.0 kgf / cm. In addition, the normal solder heat resistance was evaluated as “◯” when 300 seconds or more and “x” when less than 300 seconds. The evaluation results are shown in Table 2.

煮沸はんだ耐熱性試験: 上述の4層の多層プリント配線板から50mm×50mmのサイズに切り出したはんだ耐熱測定用試料の外層の銅箔層をエッチング除去した後、沸騰させたイオン交換水に浸漬して、3時間の煮沸処理を行った。そして、煮沸処理の終了した試料から、直ちに水分を十分に除去して、260℃のはんだ浴に20秒間浸漬し、ふくれ発生の有無を確認した。ふくれ無しを○、目視でふくれが確認できたものを×として評価した。その結果を表2に示す。 Boiled solder heat resistance test: After removing the copper foil layer of the outer layer of the solder heat resistance measurement sample cut out to the size of 50 mm × 50 mm from the four-layer multilayer printed wiring board described above, it was immersed in boiling ion exchange water. Then, a boiling treatment for 3 hours was performed. And from the sample which boiled, the water | moisture content was fully removed immediately, and it immersed in the solder bath of 260 degreeC for 20 second, and the presence or absence of blistering was confirmed. Evaluation was made with ○ indicating no blistering and × indicating that blistering was visually confirmed. The results are shown in Table 2.

吸湿はんだ耐熱性試験: 上述の4層の多層プリント配線板の製造において、当該樹脂付銅箔を、温度30℃、相対湿度65%の恒温恒湿槽内に、15時間保持して吸湿させたものを用いた。その他の、4層の多層プリント配線板の作製条件は、上述のとおりである。そして、この4層の多層プリント配線板から、50mm×50mmのサイズに切り出したはんだ耐熱測定用試料を、260℃のはんだ浴に浮かべ、ふくれが発生するまでの時間を測定した。その結果を表2に示す。ふくれが発生するまでの時間が300秒以上を○、300秒未満を×として評価した。 Moisture-absorbing solder heat resistance test: In the production of the above-described four-layer multilayer printed wiring board, the resin-coated copper foil was held for 15 hours in a constant temperature and humidity chamber with a temperature of 30 ° C. and a relative humidity of 65% to absorb moisture. Things were used. The other production conditions of the four-layer multilayer printed wiring board are as described above. Then, a solder heat resistance measurement sample cut out to a size of 50 mm × 50 mm from this four-layer multilayer printed wiring board was floated on a 260 ° C. solder bath, and the time until blistering was measured. The results are shown in Table 2. The time until blistering was evaluated as ◯ for 300 seconds or more and x for less than 300 seconds.

[実施例2〜実施例7]
実施例2〜実施例7では、実施例1の樹脂組成物に代えて、上述の樹脂成分を用いて、表1に掲載した配合割合の樹脂組成物とし、更に溶剤としてジメチルアセトアミドを用いて、樹脂ワニスを調製した。その他は、実施例1と同様である。
[Examples 2 to 7]
In Example 2 to Example 7, instead of the resin composition of Example 1, using the resin components described above, the resin composition of the blending ratio listed in Table 1, and further using dimethylacetamide as a solvent, A resin varnish was prepared. Others are the same as in the first embodiment.

比較例Comparative example

比較例1及び比較例2では、実施例1の樹脂組成物に代えて、上述の樹脂成分を用いて、表1に掲載した配合割合の樹脂組成物とし、更に溶剤としてジメチルアセトアミドを用いて、樹脂ワニスを調製した。その他は、実施例1と同様である。   In Comparative Example 1 and Comparative Example 2, in place of the resin composition of Example 1, using the above-described resin components, a resin composition having a blending ratio listed in Table 1, and further using dimethylacetamide as a solvent, A resin varnish was prepared. Others are the same as in the first embodiment.

Figure 2011068157
Figure 2011068157

表2に示したように、実施例1〜実施例7に示した樹脂付銅箔は、引き剥がし強さ、はんだ耐熱性、フレキシブル性能及び打ち抜き性能がともに良好な評価結果が得られた。また、レジンフローは、実施例1及び実施例5が1%、実施例2〜実施例4,実施例6,実施例7が1%未満と極めて低い結果であった。実施例2及び実施例3は、打ち抜き性能が非常に良い結果であった。この他、打ち抜き加工により形成した孔における樹脂流れも少なく、良好な結果が得られた。更に、ガラス転移温度Tgは、十分に高い温度とすることができた。これに対し、比較例1は、打ち抜き性能が劣る結果となり、比較例2は、常態はんだ耐熱性及び吸湿はんだ耐熱性が劣る結果となった。   As shown in Table 2, the resin-attached copper foils shown in Examples 1 to 7 had good evaluation results in terms of peel strength, solder heat resistance, flexible performance, and punching performance. In addition, the resin flow was 1% in Examples 1 and 5 and extremely low results in Examples 2 to 4, 4, 6 and 7 less than 1%. In Examples 2 and 3, the punching performance was very good. In addition, the resin flow in the holes formed by punching was small, and good results were obtained. Furthermore, the glass transition temperature Tg could be sufficiently high. In contrast, Comparative Example 1 resulted in inferior punching performance, and Comparative Example 2 resulted in inferior normal solder heat resistance and hygroscopic solder heat resistance.

本件発明に係る樹脂組成物は、フレキシブルプリント配線板の高密度実装化に対応可能であり、特に、多層フレキシブルプリント配線板のフレキシビリティ及び耐熱性を備え、且つ、接続信頼性の高い、高性能な多層フレキシブルプリント配線板の製造に利用可能である。   The resin composition according to the present invention is compatible with high-density mounting of flexible printed wiring boards, and in particular, has the flexibility and heat resistance of multilayer flexible printed wiring boards, and has high connection reliability and high performance. The present invention can be used for manufacturing a multilayer flexible printed wiring board.

Claims (12)

内層フレキシブルプリント配線板を多層化するための接着層を形成するために用いる樹脂組成物において、
以下のA成分〜E成分の各成分を含むことを特徴とした多層フレキシブルプリント配線板の接着層形成用の樹脂組成物。
A成分: 軟化点が50℃以上である固形状の高耐熱性エポキシ樹脂(但し、ビフェニル型エポキシ樹脂を除く。)。
B成分: ビフェニル型フェノール樹脂、フェノールアラルキル型フェノール樹脂の1種又は2種以上からなるエポキシ樹脂硬化剤。
C成分: 沸点が50℃〜200℃の範囲にある溶剤に可溶なゴム変性ポリアミドイミド樹脂。
D成分: 有機リン含有難燃剤。
E成分: ビフェニル型エポキシ樹脂。
In the resin composition used to form an adhesive layer for multilayering the inner layer flexible printed wiring board,
A resin composition for forming an adhesive layer of a multilayer flexible printed wiring board comprising the following components A to E:
A component: Solid high heat-resistant epoxy resin having a softening point of 50 ° C. or higher (excluding biphenyl type epoxy resin).
Component B: An epoxy resin curing agent comprising one or more of a biphenyl type phenol resin and a phenol aralkyl type phenol resin.
Component C: A rubber-modified polyamideimide resin soluble in a solvent having a boiling point in the range of 50 ° C to 200 ° C.
D component: An organic phosphorus-containing flame retardant.
E component: Biphenyl type epoxy resin.
前記A成分〜E成分の各成分に加えて、更に、F成分として、リン含有難燃性エポキシ樹脂を含む請求項1に記載の多層フレキシブルプリント配線板の接着層形成用の樹脂組成物。 The resin composition for forming an adhesive layer of a multilayer flexible printed wiring board according to claim 1, further comprising a phosphorus-containing flame retardant epoxy resin as an F component in addition to the components A to E. G成分として、エポキシ当量が200以下で、室温で液状のビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂の群から選ばれる1種又は2種以上からなるエポキシ樹脂を更に含む請求項1又は請求項2に記載の多層フレキシブルプリント配線板の接着層形成用の樹脂組成物。 The G component further includes an epoxy resin composed of one or more selected from the group of bisphenol A type epoxy resin, bisphenol F type epoxy resin, and bisphenol AD type epoxy resin having an epoxy equivalent of 200 or less and liquid at room temperature. A resin composition for forming an adhesive layer of the multilayer flexible printed wiring board according to claim 1. H成分として、熱可塑性樹脂及び/又は合成ゴムからなる低弾性物質を更に含む請求項1〜請求項3のいずれかに記載の多層フレキシブルプリント配線板の接着層形成用の樹脂組成物。 The resin composition for forming an adhesive layer of a multilayer flexible printed wiring board according to any one of claims 1 to 3, further comprising a low-elasticity substance made of a thermoplastic resin and / or a synthetic rubber as the H component. 前記A成分の軟化点が50℃以上である固形状の高耐熱性エポキシ樹脂は、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂のいずれか1種又は2種以上である請求項1〜請求項4のいずれかに記載の多層フレキシブルプリント配線板の接着層形成用の樹脂組成物。 The solid high heat-resistant epoxy resin in which the softening point of the component A is 50 ° C. or higher is one or more of cresol novolac type epoxy resin, phenol novolac type epoxy resin, and naphthalene type epoxy resin. A resin composition for forming an adhesive layer of a multilayer flexible printed wiring board according to any one of claims 1 to 4. 前記A成分として、室温で液状のノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂のいずれか1種又は2種以上からなる高耐熱性エポキシ樹脂を更に含む請求項1〜請求項5のいずれかに記載の多層フレキシブルプリント配線板の接着層形成用の樹脂組成物。 The A component further includes a high heat-resistant epoxy resin composed of one or more of a novolak type epoxy resin, a cresol novolak type epoxy resin, a phenol novolak type epoxy resin, and a naphthalene type epoxy resin that are liquid at room temperature. The resin composition for forming the adhesive layer of the multilayer flexible printed wiring board according to any one of claims 1 to 5. 樹脂組成物重量を100重量部としたとき、
A成分が3重量部〜30重量部、B成分が13重量部〜35重量部、C成分が10重量部〜50重量部、D成分が3重量部〜16重量部、E成分が5重量部〜35重量部である請求項1〜請求項6のいずれかに記載の多層フレキシブルプリント配線板の接着層形成用の樹脂組成物。
When the weight of the resin composition is 100 parts by weight,
A component is 3 to 30 parts by weight, B component is 13 to 35 parts by weight, C component is 10 to 50 parts by weight, D component is 3 to 16 parts by weight, and E component is 5 parts by weight. It is -35 weight part The resin composition for contact bonding layer formation of the multilayer flexible printed wiring board in any one of Claims 1-6.
請求項1〜請求項7のいずれかに記載の樹脂組成物に溶剤を加えて、樹脂固形分量が30重量%〜70重量%の範囲に調製した樹脂ワニスであって、
半硬化樹脂層とした際に、MIL規格におけるMIL−P−13949Gに準拠して、樹脂厚さ55μmで測定したときのレジンフローが0%〜10%の範囲であることを特徴とする樹脂ワニス。
A resin varnish prepared by adding a solvent to the resin composition according to any one of claims 1 to 7 and having a resin solid content in a range of 30 wt% to 70 wt%,
Resin varnish characterized by having a resin flow in the range of 0% to 10% when measured at a resin thickness of 55 μm in accordance with MIL-P-13949G in the MIL standard when a semi-cured resin layer is formed. .
銅箔の表面に樹脂層を備えた樹脂付銅箔において、
当該樹脂層は、請求項1〜請求項7のいずれかに記載の多層フレキシブルプリント配線板の接着層形成用の樹脂組成物を用いて形成したことを特徴とした多層フレキシブルプリント配線板製造用の樹脂付銅箔。
In the copper foil with resin provided with a resin layer on the surface of the copper foil,
The said resin layer was formed using the resin composition for adhesive layer formation of the multilayer flexible printed wiring board in any one of Claims 1-7, For multilayer flexible printed wiring board manufacture characterized by the above-mentioned. Copper foil with resin.
前記銅箔の樹脂層を形成する表面は、シランカップリング剤処理層を備えるものである請求項9に記載の多層フレキシブルプリント配線板製造用の樹脂付銅箔。 The surface with which the resin layer of the said copper foil forms is provided with the silane coupling agent process layer, The copper foil with resin for multilayer flexible printed wiring board manufacture of Claim 9. 請求項9又は請求項10に記載の多層フレキシブルプリント配線板製造用の樹脂付銅箔の製造方法であって、
以下の工程a、工程bの手順で樹脂層の形成に用いる樹脂ワニスを調製し、当該樹脂ワニスを銅箔の表面に塗布し、乾燥させることで10μm〜80μmの厚さの半硬化樹脂層として樹脂付銅箔とすることを特徴とする多層フレキシブルプリント配線板製造用の樹脂付銅箔の製造方法。
工程a: 樹脂組成物重量を100重量部としたとき、A成分が3重量部〜30重量部、B成分が13重量部〜35重量部、C成分が10重量部〜50重量部、D成分が3重量部〜16重量部、E成分が5重量部〜35重量部の範囲で各成分を含有する樹脂組成物とする。
工程b: 前記樹脂組成物を、有機溶剤を用いて溶解し、樹脂固形分量が30重量%〜70重量%の樹脂ワニスとする。
A method for producing a resin-coated copper foil for producing a multilayer flexible printed wiring board according to claim 9 or 10,
A resin varnish used for forming the resin layer is prepared by the following steps a and b, and the resin varnish is applied to the surface of the copper foil and dried to form a semi-cured resin layer having a thickness of 10 μm to 80 μm. A method for producing a resin-coated copper foil for producing a multilayer flexible printed wiring board, wherein the resin-coated copper foil is used.
Step a: When the weight of the resin composition is 100 parts by weight, the A component is 3 to 30 parts by weight, the B component is 13 to 35 parts by weight, the C component is 10 to 50 parts by weight, and the D component Is a resin composition containing each component in the range of 3 to 16 parts by weight and E component in the range of 5 to 35 parts by weight.
Process b: The said resin composition is melt | dissolved using an organic solvent, and it is set as the resin varnish whose resin solid content amount is 30 weight%-70 weight%.
請求項1〜請求項7のいずれかに記載の多層フレキシブルプリント配線板の接着層形成用の樹脂組成物を用いて得られることを特徴とする多層フレキシブルプリント配線板。 A multilayer flexible printed wiring board obtained by using the resin composition for forming an adhesive layer of the multilayer flexible printed wiring board according to any one of claims 1 to 7.
JP2011544285A 2009-12-02 2010-12-02 Resin composition for forming adhesive layer of multilayer flexible printed wiring board, resin varnish, copper foil with resin, method for producing copper foil with resin for multilayer flexible printed wiring board production Expired - Fee Related JP5750049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011544285A JP5750049B2 (en) 2009-12-02 2010-12-02 Resin composition for forming adhesive layer of multilayer flexible printed wiring board, resin varnish, copper foil with resin, method for producing copper foil with resin for multilayer flexible printed wiring board production

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009274922 2009-12-02
JP2009274922 2009-12-02
JP2011544285A JP5750049B2 (en) 2009-12-02 2010-12-02 Resin composition for forming adhesive layer of multilayer flexible printed wiring board, resin varnish, copper foil with resin, method for producing copper foil with resin for multilayer flexible printed wiring board production
PCT/JP2010/071570 WO2011068157A1 (en) 2009-12-02 2010-12-02 Resin composition for use in formation of bonding layer in multilayer flexible printed circuit board, resin varnish, resin-coated copper foil, manufacturing method for resin-coated copper foil for use in manufacturing of multilayer flexible printed circuit board, and multilayer flexible printed circuit board

Publications (2)

Publication Number Publication Date
JPWO2011068157A1 true JPWO2011068157A1 (en) 2013-04-18
JP5750049B2 JP5750049B2 (en) 2015-07-15

Family

ID=44115003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011544285A Expired - Fee Related JP5750049B2 (en) 2009-12-02 2010-12-02 Resin composition for forming adhesive layer of multilayer flexible printed wiring board, resin varnish, copper foil with resin, method for producing copper foil with resin for multilayer flexible printed wiring board production

Country Status (6)

Country Link
JP (1) JP5750049B2 (en)
KR (1) KR101757411B1 (en)
CN (1) CN102640576B (en)
MY (1) MY161045A (en)
TW (1) TWI490266B (en)
WO (1) WO2011068157A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102295740B (en) * 2011-07-11 2013-11-27 复旦大学 Polyamideimide cured epoxy resin composite material and preparation method thereof
CN102391810B (en) * 2011-09-19 2013-07-17 湖南神力铃胶粘剂制造有限公司 Heat-resisting color-changing anti-counterfeiting epoxy adhesive and preparation method thereof
US9955583B2 (en) 2013-07-23 2018-04-24 Jx Nippon Mining & Metals Corporation Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed wiring board, copper clad laminate and method for producing printed wiring board
WO2015012376A1 (en) 2013-07-24 2015-01-29 Jx日鉱日石金属株式会社 Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper-clad laminate, and method for manufacturing printed circuit board
CN103450836B (en) * 2013-09-04 2015-02-25 九江福莱克斯有限公司 Environmental-friendly, flexible, heat-conducting epoxy resin adhesive and high-heat-conduction flexible base material prepared by using same
CN103834342B (en) * 2014-03-19 2016-02-10 天津科技大学 A kind of high temperature resistant halogen-free flame-retardant adhesive for flexible printed circuit board
CN106103628B (en) * 2014-05-28 2019-03-29 东洋纺株式会社 Use the adhesive composition of polyamide-imide resin
KR102284125B1 (en) * 2014-07-10 2021-07-30 삼성전기주식회사 Resin-coated metal foil for use in manufacturing of printed circuit board, printed circuit board and manufacturing method thereof
KR101941386B1 (en) * 2014-11-12 2019-01-22 데쿠세리아루즈 가부시키가이샤 Heat-curable adhesive composition
JP6547220B2 (en) * 2014-12-16 2019-07-24 リンテック株式会社 Adhesive for die bonding
JP6640567B2 (en) 2015-01-16 2020-02-05 Jx金属株式会社 Copper foil with carrier, laminate, printed wiring board, method for manufacturing electronic equipment, and method for manufacturing printed wiring board
KR101852671B1 (en) 2015-01-21 2018-06-04 제이엑스금속주식회사 Copper foil with carrier, laminate, printed circuit board and method of manufacturing printed circuit board
KR101942621B1 (en) 2015-02-06 2019-01-25 제이엑스금속주식회사 Copper foil with carrier, laminate, printed circuit board, electronic device and method of manufacturing printed circuit board
JP2017193778A (en) 2016-04-15 2017-10-26 Jx金属株式会社 Copper foil, copper foil for high frequency circuit, copper foil with carrier, copper foil with carrier for high frequency circuit, laminate, method for manufacturing printed wiring board and method for producing electronic apparatus
CN107325489B (en) * 2017-08-14 2019-07-16 通威太阳能(安徽)有限公司 A kind of anticorrosion epoxy-phenol glue and its application in battery dies etching technique
CN107828358B (en) * 2017-10-12 2021-05-04 烟台德邦科技股份有限公司 Low-dielectric-constant environment-friendly underfill and preparation method thereof
US20190345323A1 (en) * 2018-05-11 2019-11-14 Samsung Electronics Co., Ltd. Resin composition for printed circuit board and integrated circuit package, and product using the same
KR102051375B1 (en) * 2018-05-11 2019-12-04 삼성전자주식회사 Resin composition for printed circuit board and IC package, and product using the same
JP6592640B1 (en) * 2018-06-21 2019-10-16 東洋紡株式会社 Adhesive composition comprising acrylonitrile butadiene rubber copolymerized polyamideimide resin
JP7348673B2 (en) * 2021-12-03 2023-09-21 ニッカン工業株式会社 Resin composition, and coverlay film, adhesive sheet, resin-coated metal foil, metal-clad laminate, or printed wiring board using the same
CN116939980B (en) * 2023-09-19 2024-01-23 江西鸿宇电路科技有限公司 High-heat-dissipation flexible LED circuit board and preparation method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01222945A (en) * 1988-03-02 1989-09-06 Mitsui Toatsu Chem Inc Flexible laminated material with metal foil
JP3432409B2 (en) * 1997-11-28 2003-08-04 日立化成工業株式会社 Heat resistant resin composition and adhesive film using the same
JP3708423B2 (en) * 2000-10-20 2005-10-19 株式会社日鉱マテリアルズ Phenolic curing agent for epoxy resin and epoxy resin composition using the same
JP2004217862A (en) * 2003-01-17 2004-08-05 Hitachi Chem Co Ltd Heat-resistant adhesive, laminate using this adhesive, heat sink with adhesive, and metal foil with adhesive
JP2004331677A (en) * 2003-04-30 2004-11-25 Hitachi Chem Co Ltd Epoxy resin composition for sealing and electronic part device
JP4481797B2 (en) * 2004-11-16 2010-06-16 株式会社フジクラ Flexible printed wiring board and manufacturing method thereof
TW200634095A (en) * 2005-03-16 2006-10-01 Chang Chun Plastics Co Ltd Polyoxyalkyleneamine modified polyamidepolyimide resin and composition thereof
JP5103928B2 (en) * 2007-02-13 2012-12-19 日立化成工業株式会社 Adhesive composition and adhesive film using the same
TWI347355B (en) * 2007-07-09 2011-08-21 Chin Yee Chemical Industres Co Ltd Flame retardant resins and flame retardant resin compositions
WO2009017253A1 (en) * 2007-07-31 2009-02-05 Sumitomo Bakelite Co., Ltd. Liquid resin composition for adhesive, semiconductor device, and process for producing semiconductor device

Also Published As

Publication number Publication date
MY161045A (en) 2017-04-14
TWI490266B (en) 2015-07-01
JP5750049B2 (en) 2015-07-15
WO2011068157A1 (en) 2011-06-09
KR101757411B1 (en) 2017-07-12
CN102640576B (en) 2014-10-29
KR20120116394A (en) 2012-10-22
CN102640576A (en) 2012-08-15
TW201130909A (en) 2011-09-16

Similar Documents

Publication Publication Date Title
JP5750049B2 (en) Resin composition for forming adhesive layer of multilayer flexible printed wiring board, resin varnish, copper foil with resin, method for producing copper foil with resin for multilayer flexible printed wiring board production
JP5430563B2 (en) Resin composition for forming an adhesive layer of a multilayer flexible printed wiring board
JP5650908B2 (en) Resin composition and copper foil with resin obtained using the resin composition
JP5291553B2 (en) Copper foil with composite resin layer, method for producing copper foil with composite resin layer, flexible double-sided copper-clad laminate and method for producing three-dimensional molded printed wiring board
JP5378620B2 (en) LAMINATED BOARD AND PRINTED WIRING BOARD MANUFACTURING METHOD
KR20070036769A (en) Adhesion assisting agent-bearing metal foil, printed wiring board, and production method of printed wiring board
JP6234143B2 (en) Curable resin composition, cured product thereof, electrical / electronic component and circuit board
JP2007224242A (en) Thermosetting resin composition, resin film in b stage and multilayer build-up base plate
JP2003286390A (en) Epoxy resin composition, varnish, film adhesive made by using epoxy resin composition, and its cured material
JP2009144052A (en) Resin composition for printed circuit board, insulating layer with supporting substrate, laminate, and printed circuit board
JP3821728B2 (en) Prepreg
JP3721950B2 (en) Epoxy resin composition, prepreg, multilayer printed wiring board
JP5398087B2 (en) Adhesive for heat dissipation substrate and heat dissipation substrate
JP2005105061A (en) Resin composition, conductive foil with resin, prepreg, sheet, sheet with conductive foil, laminated plate and printed wiring board
WO2008105563A1 (en) Flame-retardant adhesive resin composition and flexible printed board material using the same
JP2008195846A (en) Resin composition for printed circuit board, electrical insulation material with substrate, and metal-clad laminated board
JP2006028274A (en) Epoxy resin composition and prepreg using the same
KR101102218B1 (en) Resine composition and prepreg and printed wiring board using the same
JP6303257B2 (en) Pre-preg compatible with semi-additive process and metal-clad laminate using the same
KR101556657B1 (en) Resine composition and prepreg and printed wiring board using the same
JPH104270A (en) Method of manufacturing multilayer printed wiring board
JP5278706B2 (en) Flame-retardant adhesive resin composition and adhesive film using the same
JP2010083072A (en) Copper-clad laminated sheet and printed circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150515

R150 Certificate of patent or registration of utility model

Ref document number: 5750049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees