JP6303257B2 - Pre-preg compatible with semi-additive process and metal-clad laminate using the same - Google Patents

Pre-preg compatible with semi-additive process and metal-clad laminate using the same Download PDF

Info

Publication number
JP6303257B2
JP6303257B2 JP2012250684A JP2012250684A JP6303257B2 JP 6303257 B2 JP6303257 B2 JP 6303257B2 JP 2012250684 A JP2012250684 A JP 2012250684A JP 2012250684 A JP2012250684 A JP 2012250684A JP 6303257 B2 JP6303257 B2 JP 6303257B2
Authority
JP
Japan
Prior art keywords
metal
prepreg
semi
mass
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012250684A
Other languages
Japanese (ja)
Other versions
JP2014099516A (en
Inventor
仁 小野関
仁 小野関
翼 井上
翼 井上
山岸 一次
一次 山岸
郁夫 菅原
郁夫 菅原
田中 正史
正史 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2012250684A priority Critical patent/JP6303257B2/en
Publication of JP2014099516A publication Critical patent/JP2014099516A/en
Application granted granted Critical
Publication of JP6303257B2 publication Critical patent/JP6303257B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Description

本発明は、セミアディティブプロセス対応可能なプリプレグ及び、これを用いた金属張積層板、プリント配線板に関する。さらに、本発明は、セミアディティブプロセス対応可能なプリプレグを用いた多層配線板、半導体チップ搭載基板及び半導体パッケージ基板に関する。   The present invention relates to a prepreg capable of handling a semi-additive process, a metal-clad laminate using the same, and a printed wiring board. Furthermore, the present invention relates to a multilayer wiring board using a prepreg capable of handling a semi-additive process, a semiconductor chip mounting substrate, and a semiconductor package substrate.

近年、電子機器の小型化、軽量化、多機能化に伴い、プリント板実装の高密度化、さらには電子部品等の実装密度向上のため多層配線板の微細配線化が急速に進んでいる。小型・軽量化、微細配線化を可能とする多層配線板の製造手法としては、ガラスクロスを含まない絶縁樹脂をプリプレグの代わりとして用い、ビアホールによる層間接続を行うセミアディティブ工法を適用したビルドアップ多層配線板が知られている。このような多層配線板は、ビルドアップ層にガラスクロス等の基材を含まないためプリプレグに比較して高熱膨脹、低弾性率である。また、ガラスクロスを芯材とするプリプレグと接着層付き金属箔を用い、セミアディティブ工法を適用したビルドアップ多層配線板も知られている。しかし、このような多層配線板は、絶縁層がプリプレグと接着層の2層構造となるため、この界面での信頼性やビアホール形成におけるデスミア量の違いが問題となるリスクがある。これらの理由のため実装基板では、高熱膨脹性、低弾性率を起因とする熱処理後のそりの問題、また、2層構造を起因とする界面での耐熱性低下、ビアホール形成時の接着層の突起、くぼみが発生する問題があった。このため、絶縁層が1層構造であり、低熱膨脹性、高弾性率、かつ微細配線化に適応するため、めっき銅との高い接着強度を発現するセミアディティブ対応材料が求められていた。   In recent years, with the miniaturization, weight reduction, and multi-functionalization of electronic devices, multilayer wiring boards are rapidly becoming finer in order to increase the density of printed circuit board mounting and further improve the mounting density of electronic components and the like. As a manufacturing method of multilayer wiring boards that enable miniaturization, weight reduction, and fine wiring, build-up multilayers using a semi-additive method that uses interlayer resin via via holes, using insulating resin that does not contain glass cloth instead of prepreg Wiring boards are known. Such a multilayer wiring board does not contain a substrate such as glass cloth in the build-up layer, and therefore has higher thermal expansion and lower elastic modulus than the prepreg. A build-up multilayer wiring board using a prepreg having a glass cloth as a core material and a metal foil with an adhesive layer and applying a semi-additive construction method is also known. However, in such a multilayer wiring board, since the insulating layer has a two-layer structure of a prepreg and an adhesive layer, there is a risk that a difference in reliability at this interface or a desmear amount in forming a via hole becomes a problem. For these reasons, mounting substrates have problems of warpage after heat treatment due to high thermal expansion and low elastic modulus, reduced heat resistance at the interface due to the two-layer structure, and adhesion layer formation during via hole formation. There was a problem that protrusions and depressions occurred. For this reason, the insulating layer has a single layer structure, and a low heat expansion property, a high elastic modulus, and a semi-additive-compatible material that expresses high adhesive strength with plated copper has been demanded in order to adapt to fine wiring.

前記の課題は、絶縁樹脂の低熱膨脹率、高弾性率化である。これらを解決するため、例えば特許文献1(特開2005−23117号公報)のように、絶縁樹脂を高強度、高弾性率かつ誘電特性に優れたアラミドからなる不織布を基材として含浸し、半硬化させた接着シートをビルドアップ対応材料として用いることで、低熱膨脹率、高弾性率を図る方法がある。しかし、この方法では、アラミドは剛直高分子であって高結晶性であるため、その繊維表面が化学的に不活性であり、エポキシ樹脂等の熱硬化性樹脂との接着性が低いという問題点がある。そのため、吸湿耐熱性が低下する問題がある。
また、接着層を用いず、ガラスクロスを基材とし、フィラーを高充填したプリプレグで接着性確保のため金属箔を用いセミアディティブ工法する方法ある。この方法では、低熱膨脹率化、高弾性率化は可能ではある。しかし、粗化形状が大きすぎて、微細配線形成が困難である。
The above-mentioned problems are the low thermal expansion coefficient and high elastic modulus of the insulating resin. In order to solve these problems, for example, as in Patent Document 1 (Japanese Patent Laid-Open No. 2005-23117), an insulating resin is impregnated as a base material with a non-woven fabric made of aramid having high strength, high elastic modulus and excellent dielectric properties. There is a method of achieving a low thermal expansion coefficient and a high elastic modulus by using a cured adhesive sheet as a build-up compatible material. However, in this method, since aramid is a rigid polymer and has high crystallinity, the fiber surface is chemically inert and has a problem of low adhesion to thermosetting resins such as epoxy resins. There is. Therefore, there is a problem that moisture absorption heat resistance is lowered.
Further, there is a method of semi-additive construction using a metal foil for securing adhesion with a prepreg which is made of glass cloth as a base material and highly filled with a filler without using an adhesive layer. With this method, it is possible to achieve a low thermal expansion coefficient and a high elastic modulus. However, since the roughened shape is too large, it is difficult to form fine wiring.

特開2005−23117号公報JP 2005-23117 A

本発明は、公知の方法の不具合点を解消し、吸湿耐熱性を低下させず低熱膨脹、高弾性率のため熱処理後のそりが良好あり、かつ微細配線化を目的としたセミアディティブ工法への対応を可能とするセミアディティブプロセス対応可能なプリプレグ及び、これを用いた金属張積層板を提供するものである。   The present invention eliminates the disadvantages of the known methods, has a low thermal expansion without reducing the moisture absorption heat resistance, has a high elastic modulus, and has a good warpage after heat treatment, and is a semi-additive method for the purpose of making fine wiring. A prepreg capable of handling a semi-additive process and a metal-clad laminate using the same are provided.

本発明は、(A)アラルキル型エポキシ樹脂、(B)架橋ゴム粒子、(C)フェノール性水酸基を有するトリアジン環含有ノボラック型樹脂、(D)硬化促進剤を含む熱硬化性樹脂組成物をガラスクロスに含浸させたことを特徴とするプリプレグである。また、本発明の、本プリプレグと銅箔のような金属箔もしくは回路形成した基板を重ね、加熱加圧により得られる金属張積層板は、1層構造の絶縁層であり、ガラスクロスによる低熱膨脹性、高弾性率を有し、セミアディティブ工法による微細配線化に耐え得る特性を併せ持つものであり、そのため、プリント配線板の製造に際して、セミアディティブ工法の特徴を活かし、微細配線が形成されたプリント配線板を供することができる。実際に、この金属張積層板を用いることにより、金属箔を全面エッチングしてセミアディティブ工法に適用できる。   The present invention relates to a thermosetting resin composition comprising (A) an aralkyl type epoxy resin, (B) a crosslinked rubber particle, (C) a triazine ring-containing novolak type resin having a phenolic hydroxyl group, and (D) a curing accelerator. A prepreg characterized by impregnating cloth. In addition, the metal-clad laminate obtained by stacking the present prepreg and a metal foil such as a copper foil or a substrate on which a circuit is formed and heating and pressurizing is a single-layer insulating layer, and has a low thermal expansion due to glass cloth. And high elasticity, and also has the characteristics that can withstand the fine wiring by the semi-additive construction method. Therefore, in the production of printed wiring boards, the printed circuit board with fine wiring formed by utilizing the characteristics of the semi-additive construction method. A wiring board can be provided. Actually, by using this metal-clad laminate, the entire surface of the metal foil can be etched and applied to the semi-additive method.

本発明のプリプレグと銅箔もしくは回路形成した基板を重ね、加熱加圧にすることで、ガラスクロスを基材とし、めっき銅との密着性が高い絶縁層を有する銅張積層板が得られる。このため、1層構造の絶縁層であり、ガラスクロスによる低熱膨脹、高弾性率のため熱処理後のそりが良好あり、セミアディティブ工法による微細配線化に対応できるプリント配線板を作製することができる。   By stacking the prepreg of the present invention and a copper foil or a circuit-formed substrate and applying heat and pressure, a copper-clad laminate having an insulating layer having a glass cloth as a base material and high adhesion to plated copper is obtained. For this reason, it is an insulating layer having a single layer structure, and since it has low thermal expansion and high elastic modulus due to glass cloth, warpage after heat treatment is good, and a printed wiring board can be manufactured that can cope with fine wiring by a semi-additive method. .

本発明のプリプレグに用いるガラスクロスに含浸させる熱硬化性樹脂組成物は、(A)アラルキル型エポキシ樹脂、(B)架橋ゴム粒子、(C)フェノール性水酸基を有するトリアジン環含有ノボラック型樹脂、(D)硬化促進剤を含む熱硬化性樹脂組成物であり、該熱硬化性樹脂組成物を絶縁層として用いたプリプレグは、銅箔もしくは回路形成した基板を重ね、加熱加圧により得られる銅張積層板において、1層構造の絶縁層であり、ガラスクロスによる低熱膨脹、高弾性率を有し、セミアディティブ工法によるによる微細配線化に耐えうる特性を併せ持つ金属張積層板を作製できる。   The thermosetting resin composition impregnated in the glass cloth used for the prepreg of the present invention is (A) an aralkyl epoxy resin, (B) crosslinked rubber particles, (C) a triazine ring-containing novolac resin having a phenolic hydroxyl group, D) A thermosetting resin composition containing a curing accelerator, and a prepreg using the thermosetting resin composition as an insulating layer is a copper clad obtained by stacking copper foil or a circuit-formed substrate and heating and pressurizing. In the laminated plate, a metal-clad laminated plate that is an insulating layer having a single-layer structure, has a low thermal expansion due to glass cloth, a high elastic modulus, and can withstand fine wiring by a semi-additive method can be produced.

(A)成分のアラルキル型エポキシ樹脂は、化学式1で表される。ここで、X及びYは、ベンゼン環、ナフタレン環、ビフェニル構造等の芳香族環を表し、またX及びYの芳香族環の水素が置換されていても構わない。置換基としては、例えば、メチル、エチル、プロピル、フェニル基が挙げられる。nは繰返し数を表しその数に制限は特にない。

Figure 0006303257
The aralkyl type epoxy resin of the component (A) is represented by Chemical Formula 1. Here, X and Y represent an aromatic ring such as a benzene ring, a naphthalene ring, or a biphenyl structure, and hydrogen in the aromatic ring of X and Y may be substituted. Examples of the substituent include a methyl group, an ethyl group, a propyl group, and a phenyl group. n represents the number of repetitions, and the number is not particularly limited.
Figure 0006303257

アラルキル型エポキシ樹脂の具体例として、以下の例には限定はされないが、化学式2〜4のものが挙げられる。   Specific examples of the aralkyl type epoxy resin include, but are not limited to, the following examples, those having the chemical formulas 2 to 4.

例えば化学式2:

Figure 0006303257
For example, Formula 2:
Figure 0006303257

(式中、nは、1〜5を示す。Hは水素原子を示す。)が挙げられるが、特に分子中にビフェニル構造の芳香族環を含有したエポキシ樹脂(化学式3):

Figure 0006303257
In the formula, n represents 1 to 5. H represents a hydrogen atom. In particular, an epoxy resin containing an aromatic ring having a biphenyl structure in the molecule (Chemical Formula 3):
Figure 0006303257

(式中、nは、1〜5を示す。Hは水素原子を示す。)や、分子中にナフタレン構造の芳香族環を含有したエポキシ樹脂(化学式4):

Figure 0006303257
(Wherein n represents 1 to 5. H represents a hydrogen atom) or epoxy resin containing an aromatic ring having a naphthalene structure in the molecule (chemical formula 4):
Figure 0006303257

(式中、nは、1〜5を示す。Hは水素原子を示す。)が、無電解めっきの引き剥がし強さや耐熱性が優れているため有効である。   (In the formula, n represents 1 to 5. H represents a hydrogen atom.) However, it is effective because the peel strength and heat resistance of electroless plating are excellent.

これらの樹脂は単独で、または2種類以上混合して用いることもできる。また、(A)アラルキル型エポキシ樹脂に加えて、エポキシ樹脂の総量の50質量%以下の範囲で、ビスフェノールA型エポキシ樹脂や、フェノールノボラック型エポキシ樹脂、ゴム変性エポキシ樹脂等の他のエポキシ樹脂を併用しても構わない。   These resins can be used alone or in admixture of two or more. In addition to (A) aralkyl type epoxy resin, other epoxy resins such as bisphenol A type epoxy resin, phenol novolac type epoxy resin, rubber-modified epoxy resin, etc. within the range of 50% by mass or less of the total amount of epoxy resin. You may use together.

(A)アラルキル型エポキシ樹脂の市販品の例としては、三井化学株式会社製のEXL―3Lや日本化薬株式会社製のNC−3000S、NC−3000−H、新日鐵化学株式会社製のESN−170、ESN−480等が挙げられる。   (A) Examples of commercially available aralkyl epoxy resins include EXL-3L manufactured by Mitsui Chemicals, NC-3000S and NC-3000-H manufactured by Nippon Kayaku Co., Ltd., manufactured by Nippon Steel Chemical Co., Ltd. ESN-170, ESN-480, etc. are mentioned.

(B)成分の架橋ゴム粒子は、アクリロニトリルブタジエンゴム粒子、カルボン酸変性アクリロニトリルブタジエンゴム粒子、ブタジエンゴム−アクリル樹脂のコアシェル粒子から選択される少なくとも一種からなることが好ましい。   The crosslinked rubber particles (B) are preferably composed of at least one selected from acrylonitrile butadiene rubber particles, carboxylic acid-modified acrylonitrile butadiene rubber particles, and core-shell particles of butadiene rubber-acrylic resin.

アクリロニトリルブタジエンゴム粒子とは、アクリロニトリル、ブタジエンを共重合させ、かつ共重合する段階で、部分的に架橋させ粒子状にしたものである。またアクリル酸、メタクリル酸等のカルボン酸を併せて共重合することにより、カルボン酸変性アクリロニトリルブタジエンゴム粒子を得ることも可能である。ブタジエンゴム−アクリル樹脂のコアシェル粒子は、乳化重合でブタジエン粒子を重合させ、引き続きアクリル酸エステル、アクリル酸等のモノマーを添加して重合を続ける二段階の重合方法で得ることができる。粒子の大きさは、一次平均粒子径で、50nm〜1μmであることが好ましい。これらは、単独でも、2種以上を組み合せて用いてもよい。   The acrylonitrile butadiene rubber particles are those obtained by copolymerizing acrylonitrile and butadiene and partially cross-linking at the stage of copolymerization. It is also possible to obtain carboxylic acid-modified acrylonitrile butadiene rubber particles by copolymerizing together carboxylic acids such as acrylic acid and methacrylic acid. The core-shell particles of butadiene rubber-acrylic resin can be obtained by a two-stage polymerization method in which butadiene particles are polymerized by emulsion polymerization, followed by addition of monomers such as acrylic acid ester and acrylic acid. The size of the particles is preferably a primary average particle diameter of 50 nm to 1 μm. These may be used alone or in combination of two or more.

例えば、カルボン酸変性アクリロニトリルブタジエンゴム粒子の市販品としてはJSR株式会社製のXER−91が挙げられ、ブタジエンゴム−アクリル樹脂のコアシェル粒子はロームアンドハース株式会社製のEXL−2655や武田薬品工業株式会社のAC−3832が挙げられる。   For example, as a commercial product of carboxylic acid-modified acrylonitrile butadiene rubber particles, XER-91 manufactured by JSR Corporation may be mentioned, and core shell particles of butadiene rubber-acrylic resin may be EXL-2655 manufactured by Rohm and Haas Co., Ltd. or Takeda Pharmaceutical Co., Ltd. Company AC-3832.

(B)成分として、ポリビニルアセタール樹脂及びカルボン酸変性ポリビニルアセタール樹脂と架橋ゴム粒子とを併用すると金属箔の引き剥がし強さや無電解めっきの引き剥がし強さが向上しさらに好ましい。   As the component (B), it is more preferable to use a polyvinyl acetal resin, a carboxylic acid-modified polyvinyl acetal resin and a crosslinked rubber particle in combination to improve the peeling strength of the metal foil and the peeling strength of the electroless plating.

ポリビニルアセタール樹脂の種類、水酸基量、アセチル基量は特に限定されないが、重合度は1000〜2500のものが好ましい。この範囲にあると、はんだ耐熱性が確保でき、また、ワニスの粘度、取り扱い性も良好である。ここでポリビニルアセタール樹脂の数平均重合度は、たとえば、その原料であるポリ酢酸ビニルの数平均分子量(ゲルパーミエーションクロマトグラフィによる標準ポリスチレンの検量線を用いて測定する)から決定することができる。また、カルボン酸変性品などを用いることもできる。   Although the kind of polyvinyl acetal resin, the amount of hydroxyl groups, and the amount of acetyl groups are not particularly limited, those having a polymerization degree of 1000 to 2500 are preferred. Within this range, solder heat resistance can be secured, and the viscosity and handling properties of the varnish are good. Here, the number average degree of polymerization of the polyvinyl acetal resin can be determined, for example, from the number average molecular weight of polyvinyl acetate as a raw material (measured using a standard polystyrene calibration curve by gel permeation chromatography). Moreover, a carboxylic acid modified product etc. can also be used.

ポリビニルアセタール樹脂は、たとえば、積水化学工業株式会社製の商品名、エスレックBX−1、BX−2、BX−5、BX−55、BX−7、BH−3、BH−S、KS−3Z、KS−5、KS−5Z、KS−8、KS−23Z、電気化学工業株式会社製の商品名、電化ブチラール4000−2、5000A、6000C、6000EP等を使用することができる。これらの樹脂は単独で、または2種類以上混合して用いることもできる。   Polyvinyl acetal resin is, for example, trade names manufactured by Sekisui Chemical Co., Ltd., ESREC BX-1, BX-2, BX-5, BX-55, BX-7, BH-3, BH-S, KS-3Z, KS-5, KS-5Z, KS-8, KS-23Z, trade names made by Denki Kagaku Kogyo Co., Ltd., electrified butyral 4000-2, 5000A, 6000C, 6000EP, and the like can be used. These resins can be used alone or in admixture of two or more.

(A)成分の100質量部に対し、(B)成分が30〜90質量部であることが好ましい。(B)成分が少ないと、ピール強度や化学粗化後の無電解めっきのピール強度が低くなる傾向があり、多くなるとはんだ耐熱性等や絶縁信頼性が低下する傾向が認められるため、(B)成分の配合量は上記の範囲であることが好ましく、50〜70質量部であることがより好ましい。また、架橋ゴム粒子とポリビニルアセタール樹脂とを併用する場合には、ポリビニルアセタール樹脂を、(A)成分100質量部に対して、3質量部以上、特に5質量部以上、30質量部以下、特に10質量部以下の量で配合すると、銅箔の引き剥がし強さや化学粗化後の無電解めっきの引き剥がし強さが向上し、さらに好ましいものとなる。   It is preferable that (B) component is 30-90 mass parts with respect to 100 mass parts of (A) component. When the component (B) is small, the peel strength and the peel strength of the electroless plating after chemical roughening tend to be low. When the component is large, the solder heat resistance and the insulation reliability tend to decrease. The compounding amount of the component is preferably in the above range, more preferably 50 to 70 parts by mass. Moreover, when using together a crosslinked rubber particle and polyvinyl acetal resin, polyvinyl acetal resin is 3 mass parts or more with respect to 100 mass parts of (A) component, Especially 5 mass parts or more, 30 mass parts or less, Especially When blended in an amount of 10 parts by mass or less, the peel strength of the copper foil and the peel strength of the electroless plating after chemical roughening are improved, which is more preferable.

(C)成分としてフェノール性水酸基を有するトリアジン環含有ノボラック型樹脂は、ノボラック型フェノール樹脂の主鎖にトリアジン環を含むノボラック型フェノール樹脂を示し、トリアジン環を含むクレゾールノボラック型フェノール樹脂でも構わない。窒素含有量は、トリアジン環含有ノボラック型フェノール樹脂中、10〜25質量%が好ましく、より好ましくは12〜19質量%である。分子中の窒素含有量がこの範囲であると、誘電損失が大きくなりすぎることもなく、接着剤をワニスとする場合に、溶剤への溶解度が適切で、未溶解物の残存量が抑えられる。トリアジン環含有ノボラック型フェノール樹脂は、数平均分子量が、500〜600であるものを用いることができる。これらは単独でも、2種以上を組み合せて用いてもよい。   The triazine ring-containing novolak type resin having a phenolic hydroxyl group as the component (C) indicates a novolak type phenol resin containing a triazine ring in the main chain of the novolak type phenol resin, and may be a cresol novolak type phenol resin containing a triazine ring. The nitrogen content is preferably 10 to 25% by mass, more preferably 12 to 19% by mass in the triazine ring-containing novolac type phenol resin. When the nitrogen content in the molecule is within this range, the dielectric loss does not become too large, and when the adhesive is used as a varnish, the solubility in the solvent is appropriate and the remaining amount of undissolved material can be suppressed. As the triazine ring-containing novolac type phenol resin, one having a number average molecular weight of 500 to 600 can be used. These may be used alone or in combination of two or more.

なお、トリアジン環含有ノボラック型フェノール樹脂は、フェノールとアデヒドとトリアジン環含有化合物を、pH5〜9の条件下で反応させて得ることができる。フェノールに換えクレゾールを用いるとトリアジン環含有クレゾールノボラック型フェノール樹脂となる。クレゾールは、o−、m−、p−クレゾールのいずれも使用することができ、トリアジン環含有化合物としてはメラミン、グアナミン及びその誘導体、シアヌル酸及びその誘導体を使用することができる。   The triazine ring-containing novolak type phenol resin can be obtained by reacting phenol, aldehyde, and a triazine ring-containing compound under conditions of pH 5-9. When cresol is used instead of phenol, a triazine ring-containing cresol novolac type phenol resin is obtained. As cresol, any of o-, m-, and p-cresol can be used, and melamine, guanamine and derivatives thereof, cyanuric acid and derivatives thereof can be used as the triazine ring-containing compound.

市販品としては、DIC株式会社製のトリアジン環含有クレゾールノボラック型フェノール樹脂、フェノライトLA−3018−50P(窒素含有量18質量%)等が挙げられる。   As a commercial item, the triazine ring containing cresol novolak type phenol resin by DIC Corporation, phenolite LA-3018-50P (nitrogen content 18 mass%), etc. are mentioned.

(C)成分として、上記のフェノール性水酸基を有するトリアジン環含有ノボラック型樹脂に、フェノール性水酸基を有するアラルキル型樹脂を併用することにより、金属箔の引き剥がし強さや無電解めっきの引き剥がし強さが向上し、さらに好ましい。   (C) As a component, by using the aralkyl type resin having a phenolic hydroxyl group in combination with the above-mentioned triazine ring-containing novolak type resin having a phenolic hydroxyl group, the peeling strength of the metal foil and the peeling strength of electroless plating Is more preferable.

フェノール性の水酸基を有するアラルキル型樹脂は、化学式5で表される。ここで、X及びYは、ベンゼン環、ナフタレン環、ビフェニル構造等の芳香族環を表し、またX及びYの芳香族環の水素が置換されていてもよい。置換基としては、例えば、メチル、エチル、プロピル、フェニル基が挙げられる。nは繰返し数を表しその数に制限は特にない。

Figure 0006303257
The aralkyl type resin having a phenolic hydroxyl group is represented by Chemical Formula 5. Here, X and Y represent an aromatic ring such as a benzene ring, a naphthalene ring, or a biphenyl structure, and hydrogen in the aromatic ring of X and Y may be substituted. Examples of the substituent include a methyl group, an ethyl group, a propyl group, and a phenyl group. n represents the number of repetitions, and the number is not particularly limited.
Figure 0006303257

フェノール性水酸基を有するアラルキル型樹脂の具体例としては、以下の例には限定されないが、化学式6〜8のものが挙げられる。   Specific examples of the aralkyl type resin having a phenolic hydroxyl group include, but are not limited to, the following examples, but those having chemical formulas 6 to 8.

化学式6:

Figure 0006303257
Chemical formula 6:
Figure 0006303257

(式中、nは、1〜5を示す。Hは水素原子を示す。)が挙げられるが、特に、分子中にビフェニル構造の芳香族環を含有したフェノール樹脂(化学式7):

Figure 0006303257
(Wherein n represents 1 to 5. H represents a hydrogen atom), and in particular, a phenol resin containing an aromatic ring having a biphenyl structure in the molecule (chemical formula 7):
Figure 0006303257

(式中、nは、1〜5を示す。Hは水素原子を示す。)や、ナフタレン構造の芳香族環が含有したナフトール樹脂
(化学式8):

Figure 0006303257
(Wherein n represents 1 to 5. H represents a hydrogen atom) or a naphthol resin containing an aromatic ring having a naphthalene structure (Chemical Formula 8):
Figure 0006303257

(式中、nは、1〜5を示す。Hは水素原子を示す。)は、金属箔の引き剥がし強さや耐熱性が優れているため有効である。これらの樹脂は単独で、または2種類以上混合して用いることもできる。また、(C)成分として、ビスフェノールA等の二官能フェノールや、ノボラック型フェノール樹脂、アミノ樹脂等の、他のエポキシ樹脂硬化剤を併用しても構わない。   (In the formula, n represents 1 to 5. H represents a hydrogen atom.) Is effective because the peel strength and heat resistance of the metal foil are excellent. These resins can be used alone or in admixture of two or more. Moreover, as (C) component, you may use together other epoxy resin hardening | curing agents, such as bifunctional phenols, such as bisphenol A, a novolak-type phenol resin, and an amino resin.

フェノール性水酸基を有するアラルキル型樹脂の市販品の例としては、三井化学株式会社製XXLC―3L、明和化成株式会社製HEM―7851、新日鉄化学株式会社製SN―170、SN―180、SN―485などが挙げられる。   Examples of commercially available aralkyl type resins having a phenolic hydroxyl group include XXLC-3L manufactured by Mitsui Chemicals, HEM-7851 manufactured by Meiwa Kasei Co., Ltd., SN-170, SN-180, and SN-485 manufactured by Nippon Steel Chemical Co., Ltd. Etc.

(C)フェノール性水酸基を有するトリアジン環含有ノボラック型樹脂やアラルキル型樹脂などのエポキシ樹脂硬化剤の配合量は、(A)成分のエポキシ樹脂のエポキシ基1当量に対して、フェノール性水酸基が0.6〜0.9当量、好ましくは、0.8当量となるように配合することが好ましく、このような量で配合することにより、無電解めっきの引き剥がし強さや耐熱性が優れた熱硬化性樹脂組成物が得られる。   (C) The compounding amount of the epoxy resin curing agent such as a triazine ring-containing novolak type resin or aralkyl type resin having a phenolic hydroxyl group is such that the phenolic hydroxyl group is 0 with respect to 1 equivalent of the epoxy group of the epoxy resin of the component (A). .6 to 0.9 equivalent, preferably 0.8 equivalent, and by adding such an amount, thermosetting with excellent peeling strength and heat resistance of electroless plating A functional resin composition is obtained.

(D)成分の硬化促進剤としては、どのようなものを用いても構わないが、潜在性の熱硬化促進剤である各種イミダゾール類やBF3アミン錯体を配合することが好ましい。プリプレグの保存安定性、Bステージにした際の取り扱い性及びはんだ耐熱性の点から、2−フェニルイミダゾール、2−エチル−4−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾリウムトリメリテート、1,8−ジアザビシクロウンデセンが好ましい。また、これらの硬化促進剤を2種類以上併用しても構わない。 As the curing accelerator for the component (D), any kind may be used, but it is preferable to blend various imidazoles and BF 3 amine complexes which are latent thermosetting accelerators. From the viewpoint of the storage stability of the prepreg, the handleability at the B stage, and the solder heat resistance, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate, 1 , 8-diazabicycloundecene is preferred. Moreover, you may use together two or more types of these hardening accelerators.

(D)成分の配合量は、熱硬化性樹脂組成物中の(A)アラルキル型エポキシ樹脂100質量部に対して、0.1〜5質量部の範囲が好ましく、0.5〜2質量部の範囲がより好ましい。これらの範囲にあると、十分なはんだ耐熱性、プリプレグの保存安定性及びBステージにした際の良好な取り扱い性が得られる。   (D) The compounding quantity of a component has the preferable range of 0.1-5 mass parts with respect to 100 mass parts of (A) aralkyl type epoxy resins in a thermosetting resin composition, 0.5-2 mass parts The range of is more preferable. Within these ranges, sufficient solder heat resistance, storage stability of the prepreg, and good handleability when using the B stage can be obtained.

本発明のプリプレグに用いる熱硬化性樹脂組成物には、熱膨張性を低減し、実装時の信頼性向上を図るため、(E)無機フィラーを含有していても良い。   The thermosetting resin composition used for the prepreg of the present invention may contain (E) an inorganic filler in order to reduce thermal expansion and improve reliability during mounting.

(E)成分の無機フィラーは、特に限定されないが、シリカ、溶融シリカ、タルク、アルミナ、水酸化アルミニウム、硫酸バリウム、水酸化カルシウム、アエロジル及び炭酸カルシウムが挙げられる。無機フィラーには、分散性を高める等の目的で、これらをシランカップリング剤等の各種カップリング剤で処理したものも含まれる。これらは、単独でも、2種以上を組み合せて用いてもよい。なお、誘電特性や低熱膨張性の点からシリカが好ましい。   Although the inorganic filler of (E) component is not specifically limited, Silica, fused silica, talc, alumina, aluminum hydroxide, barium sulfate, calcium hydroxide, aerosil, and calcium carbonate can be mentioned. Inorganic fillers include those treated with various coupling agents such as a silane coupling agent for the purpose of enhancing dispersibility. These may be used alone or in combination of two or more. Silica is preferred from the viewpoint of dielectric properties and low thermal expansion.

(E)成分である無機フィラーの配合量は、(A)〜(D)成分の容積の合計中、1〜50容積%の範囲であることが好ましい。配合量がこの範囲にあると、熱膨張係数と誘電損失が大きくなることもなく、無電解めっきの引き剥がし強さの低下も少ない。なお、本発明で用いる熱硬化性樹脂組成物に無機フィラーを分散させるには、例えば、ニーダー、ボールミル、ビーズミル、3本ロール、ナノマイザー等既知の混練方法を用いることができる。   (E) It is preferable that the compounding quantity of the inorganic filler which is a component is the range of 1-50 volume% in the sum total of the volume of (A)-(D) component. When the blending amount is in this range, the thermal expansion coefficient and dielectric loss do not increase, and the peel strength of the electroless plating does not decrease significantly. In addition, in order to disperse | distribute an inorganic filler to the thermosetting resin composition used by this invention, known kneading | mixing methods, such as a kneader, a ball mill, bead mill, 3 rolls, a nanomizer, can be used, for example.

本発明のプリプレグに用いる熱硬化性樹脂組成物には難燃性を向上させるため、(F)難燃剤を含有させてもよい。(F)成分として臭素系難燃剤やリン系難燃剤があるが、どのような難燃剤を用いても構わない。   In order to improve flame retardancy, the thermosetting resin composition used for the prepreg of the present invention may contain (F) a flame retardant. As the component (F), there are brominated flame retardants and phosphorus-based flame retardants, but any flame retardant may be used.

(F)成分として例えば、テトラブロモビスフェノールA骨格を有する臭素化エポキシ樹脂やテトラブロモビスフェノールA等のエポキシ樹脂硬化剤などがある。またリン系の難燃剤として、同様にリン含有エポキシ樹脂やフェノール性水酸基含有のリン化合物などがある。   Examples of the component (F) include brominated epoxy resins having a tetrabromobisphenol A skeleton and epoxy resin curing agents such as tetrabromobisphenol A. Similarly, phosphorus-based flame retardants include phosphorus-containing epoxy resins and phenolic hydroxyl group-containing phosphorus compounds.

リン系難燃剤の市販品としては、東都化成製FX−305、三光株式会社製のHCA−HQ等が挙げられる。   As a commercial item of a phosphorus flame retardant, Toto Kasei FX-305, Sanko Co., Ltd. HCA-HQ, etc. are mentioned.

難燃性を付与する場合、熱硬化性樹脂組成物における、(F)難燃剤の配合量は、(A)〜(D)成分および(E)無機フィラーの質量の合計中、臭素原子換算で1.0〜10質量%、リン原子換算で、1.0〜3.5質量%の範囲が好ましい。配合量がこの範囲にあると、難燃性が良好で、絶縁信頼性に優れ、かつプリプレグのTgが低すぎることもない。   When imparting flame retardancy, the blending amount of (F) flame retardant in the thermosetting resin composition is calculated in terms of bromine atoms in the total mass of components (A) to (D) and (E) inorganic filler. The range of 1.0-3.5 mass% is preferable in 1.0-10 mass% and phosphorus atom conversion. When the blending amount is within this range, the flame retardancy is good, the insulation reliability is excellent, and the Tg of the prepreg is not too low.

本発明のプリプレグに用いる熱硬化性樹脂組成物には、可とう性向上のため、(G)熱可塑性樹脂を含有していても良い。   The thermosetting resin composition used for the prepreg of the present invention may contain (G) a thermoplastic resin in order to improve flexibility.

本発明における、(G)熱可塑性樹脂としては、フッ素樹脂、ポリフェニレンエーテル、変性ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリカーボネート、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリアリレート、ポリアミド、ポリアミドイミド、ポリブタジエンなどが例示されるが、これらに限定されるわけではない。熱可塑性樹脂は、1種類のものを単独で用いても良いし、2種類以上を混合して用いても良い。   Examples of the thermoplastic resin (G) in the present invention include fluororesin, polyphenylene ether, modified polyphenylene ether, polyphenylene sulfide, polycarbonate, polyether imide, polyether ether ketone, polyarylate, polyamide, polyamide imide, and polybutadiene. However, it is not limited to these. One type of thermoplastic resin may be used alone, or two or more types may be mixed and used.

熱可塑性樹脂の中でも、ポリフェニレンエーテルおよび変性ポリフェニレンエーテルを配合すると、硬化物の誘電特性が向上するので有用である。ポリフェニレンエーテルおよび変性ポリフェニレンエーテルとしては、例えば、ポリ(2,6−ジメチル−1,4−フェニレン)エーテル、ポリ(2,6−ジメチル−1,4−フェニレン)エーテルとポリスチレンのアロイ化ポリマ、ポリ(2,6−ジメチル−1,4−フェニレン)エーテルとスチレン−ブタジエンコポリマのアロイ化ポリマ、ポリ(2,6−ジメチル−1,4−フェニレン)エーテルとスチレン−無水マレイン酸コポリマのアロイ化ポリマ、ポリ(2,6−ジメチル−1,4−フェニレン)エーテルとポリアミドのアロイ化ポリマ、ポリ(2,6−ジメチル−1,4−フェニレン)エーテルとスチレン−ブタジエン−アクリロニトリルコポリマのアロイ化ポリマなどが挙げられる。また、ポリフェニレンエーテルに反応性、重合性を付与するために、ポリマー鎖末端にアミノ基、エポキシ基、カルボキシル基、スチリル基、メタクリル基などの官能基を導入したり、ポリマー鎖側鎖にアミノ基、エポキシ基、カルボキシル基、スチリル基、メタクリル基などの官能基を導入したりしてもよい。   Among thermoplastic resins, blending polyphenylene ether and modified polyphenylene ether is useful because it improves the dielectric properties of the cured product. Examples of polyphenylene ether and modified polyphenylene ether include poly (2,6-dimethyl-1,4-phenylene) ether, poly (2,6-dimethyl-1,4-phenylene) ether and polystyrene alloyed polymer, poly Alloyed polymer of (2,6-dimethyl-1,4-phenylene) ether and styrene-butadiene copolymer, Alloyed polymer of poly (2,6-dimethyl-1,4-phenylene) ether and styrene-maleic anhydride copolymer Alloyed polymer of poly (2,6-dimethyl-1,4-phenylene) ether and polyamide, alloyed polymer of poly (2,6-dimethyl-1,4-phenylene) ether and styrene-butadiene-acrylonitrile copolymer, etc. Is mentioned. In addition, in order to impart reactivity and polymerizability to polyphenylene ether, functional groups such as amino groups, epoxy groups, carboxyl groups, styryl groups, and methacryl groups are introduced at the ends of polymer chains, or amino groups are introduced into the side chains of polymer chains. In addition, a functional group such as an epoxy group, a carboxyl group, a styryl group, or a methacryl group may be introduced.

また、熱可塑性樹脂の中でも、ポリアミドイミド樹脂は、耐熱性、耐湿性に優れることに加え、金属に対する接着性が良好であるので有用である。ポリアミドイミドの原料のうち、酸成分としては、無水トリメリット酸、無水トリメリット酸モノクロライド、アミン成分としては、メタフェニレンジアミン、パラフェニレンジアミン、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルメタン、ビス[4−(アミノフェノキシ)フェニル]スルホン、2,2’−ビス[4−(4−アミノフェノキシ)フェニル]プロパンなどが例示されるが、これに限定されるわけではない。乾燥性を向上させるためにシロキサン変性としても良く、この場合、アミノ成分にシロキサンジアミンが用いられる。   Among thermoplastic resins, polyamideimide resin is useful because it has excellent heat resistance and moisture resistance and also has good adhesion to metals. Among the raw materials of polyamideimide, trimellitic anhydride, trimellitic anhydride monochloride, as the acid component, and metaphenylene diamine, paraphenylene diamine, 4,4′-diaminodiphenyl ether, 4,4′- as the amine component. Examples include, but are not limited to, diaminodiphenylmethane, bis [4- (aminophenoxy) phenyl] sulfone, 2,2′-bis [4- (4-aminophenoxy) phenyl] propane, and the like. In order to improve drying property, it may be modified with siloxane. In this case, siloxane diamine is used as the amino component.

本発明のプリプレグに用いる熱硬化性樹脂組成物には、必要に応じて、顔料、レベリング剤、消泡剤、イオントラップ剤等の添加剤を配合してもよい。   The thermosetting resin composition used for the prepreg of the present invention may contain additives such as pigments, leveling agents, antifoaming agents, and ion trapping agents, if necessary.

本発明のプリプレグは、前記した熱硬化性樹脂組成物を、ガラスクロスに塗工し、半硬化(Bステージ化)して得られたものである。   The prepreg of the present invention is obtained by coating the above-described thermosetting resin composition on a glass cloth and semi-curing (B-stage).

本発明のプリプレグは、前記熱硬化性樹脂組成物をガラスクロスに含浸又は、吹付け、押出し等の方法で塗工し、加熱等により半硬化(Bステージ化)して製造することができる。
プリプレグのガラスクロスとして、各種の電気絶縁材料用積層板に用いられている周知のものが使用できる。その材質としては、Eガラス、Dガラス、Sガラス及びQガラス等や、並びにそれらの混合物等が挙げられる。材質は目的とする成形物の用途や性能により選択され、必要により、単独又は2種類以上の材質及び形状を組み合わせることができる。ガラスクロスの厚さは、特に制限されず、例えば、約0.03〜0.5mmを使用することができ、シランカップリング剤等で表面処理したもの又は機械的に開繊処理を施したものが、耐熱性や耐湿性、加工性の面から好適である。該基材に対する熱硬化性樹脂組成物の付着量が、乾燥後のプリプレグの樹脂含有率で、20〜90質量%となるように、基材に含浸又は塗工した後、通常、100〜200℃の温度で1〜30分加熱乾燥し、半硬化(Bステージ化)させて、本発明のプリプレグを得ることができる。
The prepreg of the present invention can be produced by impregnating or spraying the thermosetting resin composition with a method such as spraying or extrusion, and semi-curing (B-stage) by heating or the like.
As the glass cloth of the prepreg, well-known materials used for various types of laminated sheets for electrical insulating materials can be used. Examples of the material include E glass, D glass, S glass, and Q glass, and mixtures thereof. The material is selected depending on the intended use and performance of the molded article, and can be used alone or in combination of two or more types of materials and shapes. The thickness of the glass cloth is not particularly limited. For example, a thickness of about 0.03 to 0.5 mm can be used, and the surface is treated with a silane coupling agent or the like, or is mechanically subjected to fiber opening treatment. However, it is suitable from the aspects of heat resistance, moisture resistance, and workability. After the substrate is impregnated or coated so that the amount of the thermosetting resin composition attached to the substrate is 20 to 90% by mass in terms of the resin content of the prepreg after drying, it is usually 100 to 200. The prepreg of the present invention can be obtained by heating and drying at a temperature of 1 to 30 minutes and semi-curing (B-stage).

なお、熱硬化性樹脂組成物を、ガラスクロスに含浸させる方法としては、次のホットメルト法又はソルベント法により行うことが好ましい。
ホットメルト法は、樹脂を有機溶剤に溶解することなく、該樹脂組成物との剥離性の良い塗工紙に一旦コーティングし、それをガラスクロスにラミネートする、あるいは樹脂組成物を有機溶剤に溶解することなく、ダイコーターによりガラスクロス材に直接塗工するなどして、プリプレグを製造する方法である。またソルベント法は、支持体付絶縁フィルムと同様にして、樹脂組成物を有機溶剤に溶解して樹脂ワニスを調製し、このワニスにガラスクロスを浸漬し、樹脂ワニスをガラスクロスに含浸させ、その後乾燥させる方法である。
In addition, as a method of impregnating a glass cloth with a thermosetting resin composition, it is preferable to carry out by the following hot melt method or solvent method.
In the hot melt method, without dissolving the resin in the organic solvent, the coated paper having good releasability from the resin composition is once coated and laminated on a glass cloth, or the resin composition is dissolved in the organic solvent. In this method, the prepreg is produced by directly coating the glass cloth material with a die coater. In the same manner as the insulating film with a support, the solvent method is prepared by dissolving the resin composition in an organic solvent to prepare a resin varnish, immersing the glass cloth in this varnish, impregnating the glass cloth with the resin varnish, It is a method of drying.

ワニス化する際の有機溶剤としては、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、ベンゼン、キシレン、トルエン等の芳香族炭化水素類、エチレングリコールモノエチルエーテル等のアルコール類、エチルエトキシプロピオネート等のエステル類、N、N−ジメチルホルムアミド、N、N−ジメチルアセトアミド、N−メチルピロリドン等のアミド類が挙げられる。これらの有機溶剤は、単独でも、2種以上を混合して用いてもよい。プリプレグに対する有機溶剤の使用量は、特に限定されず、従来から使用されている量とすることができる。   Examples of organic solvents for varnishing include ketones such as acetone, methyl ethyl ketone, and cyclohexanone, aromatic hydrocarbons such as benzene, xylene, and toluene, alcohols such as ethylene glycol monoethyl ether, and ethyl ethoxypropionate. Examples include esters, amides such as N, N-dimethylformamide, N, N-dimethylacetamide, and N-methylpyrrolidone. These organic solvents may be used alone or in combination of two or more. The usage-amount of the organic solvent with respect to a prepreg is not specifically limited, It can be made into the quantity conventionally used.

本発明の金属張積層板は、前述のプリプレグを用いて積層成形して得られたものである。例えば、プリプレグを1〜20枚重ね、その片面又は両面に金属箔を配置した構成で積層成形することにより金属張積層板を製造することができる。
成形条件は、電気絶縁材料用積層板及び多層板の手法が適用でき、例えば多段プレス、多段真空プレス、連続成形、オートクレーブ成形機等を使用し、温度100〜250℃、圧力2〜100kg/cm2、加熱時間0.1〜5時間の範囲で成形することができる。また、本発明のプリプレグと内層用配線板とを組合せ、積層成形して、多層板を製造することもできる。
The metal-clad laminate of the present invention is obtained by laminate molding using the above-described prepreg. For example, a metal-clad laminate can be produced by laminating 1 to 20 prepregs and laminating them with a configuration in which metal foil is disposed on one or both sides thereof.
The molding conditions can be applied to the laminates and multilayer boards for electrical insulating materials, for example, using a multistage press, multistage vacuum press, continuous molding, autoclave molding machine, etc., temperature 100-250 ° C., pressure 2-100 kg / cm. 2 and can be molded in a heating time range of 0.1 to 5 hours. Further, the prepreg of the present invention and the inner layer wiring board can be combined and laminated to produce a multilayer board.

本発明に用いる金属箔としては、特に限定されるものではないが、例えば銅箔、ニッケル箔、アルミ箔などを用いることができ、通常は銅箔を使用する。銅箔の種類は電解銅箔、圧延銅箔など特に限定されるものではない。また、使用する金属箔の厚みについても、特に限定されるものではない。一般にプリント配線板に用いられている、厚み105μm以下の金属箔で構わないし、ピーラブルタイプの金属箔を用いることもできる。尚、ピーラブルタイプの代わりに、アルミキャリアやニッケルキャリアを有するようなエッチャブルタイプの金属箔を用いることもできる。使用する金属箔のプリプレグと接する面の粗さは、微細配線形成の点から、粗化処理が施していなく、十点平均粗さ(Rz)が3.0μm以下であることが好ましい。   Although it does not specifically limit as metal foil used for this invention, For example, copper foil, nickel foil, aluminum foil etc. can be used, and copper foil is normally used. The type of copper foil is not particularly limited, such as electrolytic copper foil or rolled copper foil. Further, the thickness of the metal foil to be used is not particularly limited. A metal foil having a thickness of 105 μm or less, which is generally used for a printed wiring board, may be used, and a peelable type metal foil may be used. Note that an etchable type metal foil having an aluminum carrier or a nickel carrier may be used instead of the peelable type. The roughness of the surface of the metal foil used that is in contact with the prepreg is preferably not roughened from the viewpoint of fine wiring formation, and the ten-point average roughness (Rz) is preferably 3.0 μm or less.

市販品としては、三井金属鉱業株式会社製のMT18Ex箔、古河電工株式会社製のF2WS箔などが挙げられる。   Examples of commercially available products include MT18Ex foil manufactured by Mitsui Mining & Smelting Co., Ltd., F2WS foil manufactured by Furukawa Electric Co., Ltd. and the like.

本発明の多層プリント配線板は前述の積層板を用いて製造されたものであり、プリント配線板は前記積層板の表面に回路を形成して製造される。すなわち、本発明の積層板をセミアディティブプロセスによって配線加工し、前述のプリプレグを介して配線加工した積層板を複数積層し、加熱プレス加工することによって一括して多層化する。その後、ドリル加工又はレーザー加工によるスルーホール又はブラインドビアホールの形成と、めっき又は導電性ペーストによる層間配線の形成を経て多層プリント配線板を製造することができる。   The multilayer printed wiring board of the present invention is manufactured using the above-mentioned laminated board, and the printed wiring board is manufactured by forming a circuit on the surface of the laminated board. That is, the laminated board of the present invention is subjected to wiring processing by a semi-additive process, a plurality of laminated boards subjected to wiring processing through the above-described prepreg are stacked, and multilayered by heating press processing. Then, a multilayer printed wiring board can be manufactured through formation of a through hole or blind via hole by drilling or laser processing and formation of an interlayer wiring by plating or conductive paste.

セミアディティブプロセスは、プリプレグなどの絶縁層の上に無電解めっき層を形成し、この層を給電層として用い電解めっきによる回路を形成する方法であり、微細な配線を形成できるものである。しかしながら、微細配線を形成するには、プリプレグなどの絶縁層とメッキ層との密着性が高いことや、プレプレグなどの絶縁層の表面が平坦であることが必要となる。本発明のプリプレグは、用いる熱硬化性樹脂組成物が、特に(A)アラルキル型エポキシ樹脂と、(B)架橋ゴム粒子と、(C)フェノール性水酸基を有するトリアジン環含有ノボラック型樹脂とを組み合わせて用いることにより、セミアディティブプロセスにおいて必要なめっき層との密着性が確保されることになる。本発明のプリプレグには、このような優れた密着性があることにより、セミアディティブプロセスの特徴である微細配線の形成が可能となるものなのであって、セミアディティブプロセスによる配線形成に好適なプリプレグおよび金属張積層板となり得るものとなる。   The semi-additive process is a method in which an electroless plating layer is formed on an insulating layer such as a prepreg, and a circuit by electrolytic plating is formed using this layer as a power feeding layer, and fine wiring can be formed. However, in order to form fine wiring, it is necessary that the adhesion between an insulating layer such as a prepreg and a plating layer is high, and that the surface of the insulating layer such as a prepreg is flat. In the prepreg of the present invention, the thermosetting resin composition used is a combination of (A) an aralkyl type epoxy resin, (B) a crosslinked rubber particle, and (C) a triazine ring-containing novolak type resin having a phenolic hydroxyl group. As a result, the adhesion with the plating layer necessary in the semi-additive process is ensured. Since the prepreg of the present invention has such excellent adhesion, it is possible to form fine wiring, which is a feature of the semi-additive process, and the prepreg suitable for wiring formation by the semi-additive process and It can become a metal-clad laminate.

(実施例1)
下記に示す熱硬化性樹脂組成物を作製した。
(熱硬化性樹脂組成物の作製)
・アラルキル型エポキシ樹脂、ESN−480(エポキシ当量215、新日鐵化学株式会社製) 100質量部
・カルボン酸変性アクリロニトリルブタジエンゴム粒子、XER−91SE−15(JSR株式会社製) 65質量部
トリアジン環含有クレゾールノボラック型フェノール樹脂、フェノライトLA−3018−50P(窒素含有量18%、水酸基当量151、DIC株式会社製) 70質量部
・アミン化合物、1、8−ジアザビシクロウンデセン、DBU(関東化学株式会社製) 1質量部
・溶剤、メチルエチルケトン 150質量部
Example 1
The thermosetting resin composition shown below was produced.
(Preparation of thermosetting resin composition)
Aralkyl-type epoxy resin, ESN-480 (epoxy equivalent 215, manufactured by Nippon Steel Chemical Co., Ltd.) 100 parts by massCarboxylic acid-modified acrylonitrile butadiene rubber particles, XER-91SE-15 (manufactured by JSR Corporation) 65 parts by mass triazine ring Containing cresol novolac type phenol resin, phenolite LA-3018-50P (nitrogen content 18%, hydroxyl group equivalent 151, manufactured by DIC Corporation) 70 parts by mass, amine compound, 1,8-diazabicycloundecene, DBU (Kanto) Chemical Co., Ltd.) 1 part by mass / solvent, methyl ethyl ketone 150 parts by mass

(プリプレグの作製)
上記熱硬化性樹脂組成物Aを厚さ0.1mmのEガラスクロスに含浸塗工し、160℃で10分加熱乾燥して樹脂含有量50質量%のプリプレグを得た。
(Preparation of prepreg)
The thermosetting resin composition A was impregnated on 0.1 mm thick E glass cloth and dried by heating at 160 ° C. for 10 minutes to obtain a prepreg having a resin content of 50 mass%.

次に、このプリプレグを1枚に、厚み12μmの電解銅箔(製品名F2−WS12:古河電工株式会社製。Rz=2.0μm)を上下に配置し、圧力4.0MPa、温度185℃で90分間プレスを行って、銅張積層板を作製した。   Next, an electrolytic copper foil (product name: F2-WS12: manufactured by Furukawa Electric Co., Ltd., Rz = 2.0 μm) with a thickness of 12 μm is arranged vertically on one sheet of this prepreg, at a pressure of 4.0 MPa and a temperature of 185 ° C. A copper clad laminate was produced by pressing for 90 minutes.

(実施例2)
実施例1において、アラルキル型エポキシ樹脂としてNC―3000−H(エポキシ当量290、日本化薬株式会社製)100質量部、トリアジン環含有クレゾールノボラック型フェノール樹脂LA−3018−50P(窒素含有量18%、水酸基当量151、DIC株式会社製)15質量部、また、フェノール性水酸基を有するアラルキル型樹脂としてSN−485(水酸基当量215、新日鐵化学株式会社製)を50質量部併用した。その他は、実施例1と同様にして行った。
(Example 2)
In Example 1, 100 parts by mass of NC-3000-H (epoxy equivalent 290, manufactured by Nippon Kayaku Co., Ltd.) as an aralkyl type epoxy resin, triazine ring-containing cresol novolac type phenol resin LA-3018-50P (nitrogen content 18%) , Hydroxyl equivalent 151, manufactured by DIC Corporation) 15 parts by mass, and 50 parts by mass of SN-485 (hydroxyl equivalent 215, manufactured by Nippon Steel Chemical Co., Ltd.) as an aralkyl type resin having a phenolic hydroxyl group. Others were performed in the same manner as in Example 1.

(実施例3)
実施例2において、カルボン酸変性アクリロニトリルブタジエンゴム粒子10質量部の代わりに、ブタジエンゴム−アクリル樹脂のコアシェル粒子、EXL−2655(ロームアンドハース株式会社製)のEXL−2655 8質量部を用いた。その他は、実施例2と同様にして行った。
(Example 3)
In Example 2, instead of 10 parts by mass of the carboxylic acid-modified acrylonitrile butadiene rubber particles, butadiene rubber-acrylic resin core-shell particles, 8 parts by mass of EXL-2655 (manufactured by Rohm and Haas Co., Ltd.) were used. Others were performed in the same manner as in Example 2.

(実施例4)
実施例2において、ポリビニルアセタール樹脂、KS−23Z(重合度2000以上、積水化学株式会社製)を5質量部添加した。その他は、実施例2と同様にして行った。
Example 4
In Example 2, 5 parts by mass of polyvinyl acetal resin, KS-23Z (degree of polymerization of 2000 or more, manufactured by Sekisui Chemical Co., Ltd.) was added. Others were performed in the same manner as in Example 2.

(比較例1)
実施例1の樹脂組成物1を作製する際に、エポキシ樹脂にクレゾールノボラック型エポキシ樹脂、N−665(エポキシ当量209、DIC株式会社製)100質量部を用い、エポキシ樹脂硬化剤にノボラック型フェノール樹脂HP−850N(水酸基当量106、日立化成工業株式会社製)を50質量部とした他は、実施例1と同様に評価用サンプルを作製した。
(Comparative Example 1)
In preparing the resin composition 1 of Example 1, 100 parts by mass of a cresol novolac type epoxy resin, N-665 (epoxy equivalent 209, manufactured by DIC Corporation) was used as an epoxy resin, and a novolac type phenol was used as an epoxy resin curing agent. An evaluation sample was prepared in the same manner as in Example 1, except that the resin HP-850N (hydroxyl equivalent 106, manufactured by Hitachi Chemical Co., Ltd.) was changed to 50 parts by mass.

(比較例2)
実施例1において、上記樹脂組成物Aから作製したプリプレグの代わりに、アラルキル型エポキシ樹脂を用いていない、日立化成工業株式会社製ガラス布基材高Tgエポキシ樹脂プリプレグGEA−679FG(厚み0.1mm)を用いた。その他は、実施例1と同様にして行った。
(Comparative Example 2)
In Example 1, instead of the prepreg produced from the resin composition A, a glass cloth substrate high Tg epoxy resin prepreg GEA-679FG (thickness 0.1 mm) manufactured by Hitachi Chemical Co., Ltd., which does not use an aralkyl epoxy resin. ) Was used. Others were performed in the same manner as in Example 1.

(比較例3)
実施例1において、熱硬化性樹脂組成物Aを厚み12μmの電解銅箔(製品名F2−WS12:古河電工株式会社製。Rz=2.0μm)の接着面(粗化面)に塗布し接着層付銅箔を作製した。塗布後は残溶剤が5%以下になるように160℃で10分程度の乾燥を行った。塗布した熱硬化性樹脂組成物Aの厚みは、5μmであった。この接着層付銅箔を日立化成工業株式会社製ガラス布基材高Tgエポキシ樹脂プリプレグGEA−679FG(厚み0.1mm)の上下に配置し、圧力4.0MPa、温度185℃で90分間プレスを行って、銅張積層板を作製した。
(Comparative Example 3)
In Example 1, the thermosetting resin composition A was applied to an adhesive surface (roughened surface) of an electrolytic copper foil having a thickness of 12 μm (product name F2-WS12: manufactured by Furukawa Electric Co., Ltd., Rz = 2.0 μm). A copper foil with a layer was produced. After coating, drying was performed at 160 ° C. for about 10 minutes so that the residual solvent was 5% or less. The thickness of the applied thermosetting resin composition A was 5 μm. This copper foil with an adhesive layer is placed above and below a glass cloth base high Tg epoxy resin prepreg GEA-679FG (thickness 0.1 mm) manufactured by Hitachi Chemical Co., Ltd., and pressed for 90 minutes at a pressure of 4.0 MPa and a temperature of 185 ° C. A copper-clad laminate was made.

(微細配線形成評価)
実施例1〜4、比較例1〜3で得られた両面銅張積層板を全面エッチングし、以下に示すセミアディティブ法を用いて、最小回路導体幅/回路導体間隔(L/S)=20/20μmとなるように回路パターンを形成した。
(Evaluation of fine wiring formation)
The double-sided copper-clad laminates obtained in Examples 1 to 4 and Comparative Examples 1 to 3 were etched on the entire surface, and the minimum circuit conductor width / circuit conductor interval (L / S) = 20 using the semi-additive method shown below. A circuit pattern was formed to be / 20 μm.

全面エッチングした基板の粗化処理として、70℃に加温した溶剤膨潤液(ローム&ハース株式会社製、MLBコンディショナー211:商品名)に3分間、80℃に加温した過マンガン酸粗化液(シップレイ株式会社製、MLBプロモータ213:商品名)に5分間、硫酸ヒドロキシルアミン系中和液(シップレイ株式会社製、MLBニュートラライザー216−2:商品名)に5分間浸漬する。
次に、粗化処理を施した基板に、次に、コンディショナー(日立化成工業株式会社製、CLC−601(商品名)を使用)に60℃で5分間浸漬、60℃の湯による湯洗、水洗(常温の水による、以下同じ)、無電解めっき用触媒液(日立化成工業株式会社製、HS−202B(商品名)を使用)に常温で10分間浸漬、常温の水による水洗、パラジウムの活性化処理液(日立化成工業株式会社製、ADP−401(商品名)を使用)に常温で5分間浸漬、水洗をこの順に行った。
次に、無電解銅めっき液(日立化成工業株式会社製、CUST201(商品名)を使用)に常温で15分間浸漬し、水洗、80℃、10分間乾燥後を行い、無電解めっき薄付け(0.5μm)を行った。
次に、ドライフィルムフォトレジストであるRY−3325(日立化成工業株式会社製、商品名)を、無電解めっき層の表面にラミネートし、電解銅めっきを行う箇所をマスクしたフォトマスクを介して紫外線を露光し、現像してめっきレジストを形成した。
次に、硫酸銅浴を用いて、液温25℃、電流密度1.0A/dm2の条件で、電解銅めっきを20μmほど行い、回路形成を行った。
次に、回路パターンが確実に形成されているかを、顕微鏡と抵抗計を用いて評価した。
As a roughening treatment for the substrate etched on the entire surface, a permanganic acid roughening solution heated to 80 ° C. for 3 minutes in a solvent swelling solution (MLB conditioner 211: trade name, manufactured by Rohm & Haas Co., Ltd.) heated to 70 ° C. (Shipley Co., Ltd., MLB promoter 213: trade name) is immersed in a hydroxylamine sulfate neutralizing solution (Shipley Co., Ltd., MLB neutralizer 216-2: trade name) for 5 minutes.
Next, the substrate subjected to the roughening treatment is then immersed in a conditioner (made by Hitachi Chemical Co., Ltd., using CLC-601 (trade name)) at 60 ° C. for 5 minutes, washed with hot water at 60 ° C., Washed with water (normal temperature water, the same shall apply hereinafter), electroless plating catalyst solution (made by Hitachi Chemical Co., Ltd., using HS-202B (trade name)) for 10 minutes at normal temperature, rinsed with normal temperature water, It was immersed in an activation treatment liquid (Hitachi Chemical Industry Co., Ltd., using ADP-401 (trade name)) at room temperature for 5 minutes and washed in this order.
Next, it is immersed in an electroless copper plating solution (manufactured by Hitachi Chemical Co., Ltd., CUST201 (trade name)) at room temperature for 15 minutes, washed with water, dried at 80 ° C. for 10 minutes, and electroless plating thinned ( 0.5 μm).
Next, RY-3325 (trade name, manufactured by Hitachi Chemical Co., Ltd.), which is a dry film photoresist, is laminated on the surface of the electroless plating layer, and ultraviolet rays are passed through a photomask that masks a place where electrolytic copper plating is performed. Was exposed and developed to form a plating resist.
Next, using a copper sulfate bath, electrolytic copper plating was performed for about 20 μm under the conditions of a liquid temperature of 25 ° C. and a current density of 1.0 A / dm 2 to form a circuit.
Next, it was evaluated using a microscope and an ohmmeter whether the circuit pattern was reliably formed.

(めっきピール強度の測定)
実施例1〜4、比較例1〜3における微細配線形成評価用の回路パターンの一部を用いて、評価サンプルの導体引き剥がし強さを測定した。引き剥がしは垂直引き剥がし強さを測定した。測定は常に20℃で行った。測定方法は、JIS−C−6481に準じた。なお、めっきピール強度としては、一般的に、0.6kN/m以上あれば十分である。
(Measurement of plating peel strength)
Using part of the circuit pattern for fine wiring formation evaluation in Examples 1 to 4 and Comparative Examples 1 to 3, the conductor peeling strength of the evaluation sample was measured. For peeling, the vertical peeling strength was measured. Measurements were always made at 20 ° C. The measuring method was based on JIS-C-6482. In general, the plating peel strength is 0.6 kN / m or more.

(吸湿耐熱試験)
実施例1〜4、比較例1〜3における基板の吸湿耐熱試験を行った。試験は各銅張積層板を全面エッチングした後、121℃、湿度100%、2気圧の条件で2時間処理し、その後288℃のはんだ浴に20秒浸漬して、基板に膨れ等が発生しないかどうかの確認を行った。試験には平山製作所製飽和型PCT装置PC―242を用いた。
(Hygroscopic heat resistance test)
The moisture absorption heat resistance test of the board | substrate in Examples 1-4 and Comparative Examples 1-3 was done. In the test, after each copper-clad laminate was etched on the entire surface, it was treated for 2 hours under the conditions of 121 ° C., humidity 100%, 2 atm, and then immersed in a solder bath at 288 ° C. for 20 seconds, so that the substrate does not swell. It was confirmed whether or not. A saturation type PCT apparatus PC-242 manufactured by Hirayama Seisakusho was used for the test.

(そり量の測定)
実施例1〜4、比較例1〜3における銅張積層板の両面の銅箔を250mm×330mm切断し全面エッチングした後、140℃、20分処理、次いで170℃、30分処理をし、そり発生を観察することで評価した。そりは、試料片を定盤上に置いたときに、定盤から最大の隔たりを測定して評価し、この隔たりが5mm以上の場合をNGとし、以下の場合をOKとした。
(Measurement of warpage)
The copper foils on both sides of the copper-clad laminates in Examples 1 to 4 and Comparative Examples 1 to 3 were cut 250 mm × 330 mm and etched on the entire surface, followed by treatment at 140 ° C. for 20 minutes, and then at 170 ° C. for 30 minutes. Evaluation was made by observing the occurrence. The sled was evaluated by measuring the maximum distance from the surface plate when the sample piece was placed on the surface plate. The case where the distance was 5 mm or more was evaluated as NG, and the case below was determined as OK.

(レーザービアホール(LVH)の観察)
この銅張り積層板を、エッチング処理により3μm厚までエッチングを施し,さらに、銅表面粗化液CZ−8100(メック株式会社製,商品名)にて粗化した。その後、その表面からダイレクトレーザー加工を、レーザーマシン(LC−1C21:日立ビアメカニクス社製)を用いてパルス幅10μs、周波数1000Hz、ショット数6ショットの条件で行った。次に,温度80±5℃、濃度55±10g/Lの過マンガン酸ナトリウム溶液を用いて、デスミア処理を施し、さらにめっき処理を施した。
(Observation of laser via hole (LVH))
This copper-clad laminate was etched to a thickness of 3 μm by etching, and further roughened with a copper surface roughening solution CZ-8100 (trade name, manufactured by MEC Co., Ltd.). Thereafter, direct laser processing was performed from the surface using a laser machine (LC-1C21: manufactured by Hitachi Via Mechanics) under the conditions of a pulse width of 10 μs, a frequency of 1000 Hz, and a shot number of 6 shots. Next, desmear treatment was performed using a sodium permanganate solution having a temperature of 80 ± 5 ° C. and a concentration of 55 ± 10 g / L, followed by further plating treatment.

得られた基板の断面を実体顕微鏡にて観察し、LVHの突起やくぼみの発生の有無を確認した。LVHの突起やくぼみの発生が全く認められないものを○、LVHの突起またはくぼみの発生が認められたものを×とした。   The cross section of the obtained substrate was observed with a stereomicroscope to confirm the presence or absence of LVH protrusions and depressions. The case where no LVH protrusions or dents were observed was marked with ○, and the case where LVH protrusions or dents were observed was marked with ×.

(試験結果)
試験結果を表1に示す。実施例1〜4で作製した銅張積層板により作製した基板は、微細配線形成にも優れ、めっきピールも高く、めっき銅との密着性に優れていることが分かった。また、基板の吸湿耐熱性も良好であり、そり、LVHの形状も良好であった。比較例1はめっきピールが低く、回路形成時にラインの剥がれ発生した。また、吸湿耐熱性でも膨れが発生した。比較例2については、高充填されたフィラーが表面にあり、めっき銅との密着性が低下し、回路形成時にライン剥れが発生し、微細配線形成が困難であった。比較例3は回路形成においては良好であったが、接着層とプリプレグ層の2層構造であるため、LVH形成後のデスミア量の違いで接着層部分が突起状になっていた。
(Test results)
The test results are shown in Table 1. It turned out that the board | substrate produced with the copper clad laminated board produced in Examples 1-4 was excellent also in fine wiring formation, the plating peel was high, and was excellent in adhesiveness with plated copper. The substrate also had good moisture absorption heat resistance, and the shape of the warp and LVH was also good. In Comparative Example 1, the plating peel was low, and line peeling occurred during circuit formation. Further, swelling occurred even in moisture absorption heat resistance. In Comparative Example 2, there was a highly filled filler on the surface, the adhesion with the plated copper was lowered, line peeling occurred during circuit formation, and fine wiring formation was difficult. Comparative Example 3 was good in circuit formation, but because of the two-layer structure of the adhesive layer and the prepreg layer, the adhesive layer portion had a protrusion shape due to the difference in the amount of desmear after LVH formation.

Figure 0006303257
Figure 0006303257

Claims (3)

(A)アラルキル型エポキシ樹脂、(B)架橋ゴム粒子、(C)フェノール性水酸基を有するトリアジン環含有ノボラック型樹脂、(D)硬化促進剤を含む熱硬化性樹脂組成物をガラスクロスに含浸させたセミアディティブプロセス用プリプレグと金属箔とを積層成形してなる金属張積層板であって、
前記熱硬化性樹脂組成物が、前記(B)架橋ゴム粒子、(A)アラルキル型エポキシ樹脂100質量部に対して、30〜90質量部含有し
前記金属箔の十点平均粗さ(Rz)が3.0μm以下である、金属張積層板。
A glass cloth is impregnated with (A) an aralkyl type epoxy resin, (B) a crosslinked rubber particle, (C) a triazine ring-containing novolak type resin having a phenolic hydroxyl group, and (D) a thermosetting resin composition containing a curing accelerator. A metal-clad laminate formed by laminating a semi-additive process prepreg and a metal foil ,
The thermosetting resin composition contains the crosslinked rubber particles (B) in an amount of 30 to 90 parts by mass with respect to 100 parts by mass of the (A) aralkyl epoxy resin ,
A metal-clad laminate, wherein the metal foil has a ten-point average roughness (Rz) of 3.0 μm or less.
請求項記載の金属張積層板の金属箔を除去後、セミアディティブプロセスによって配線形成して得られるプリント配線板。 A printed wiring board obtained by forming a wiring by a semi-additive process after removing the metal foil of the metal-clad laminate according to claim 1 . (A)アラルキル型エポキシ樹脂、(B)架橋ゴム粒子、(C)フェノール性水酸基を有するトリアジン環含有ノボラック型樹脂、(D)硬化促進剤を含む熱硬化性樹脂組成物をガラスクロスに含浸させたセミアディティブプロセス用プリプレグと金属箔とを積層成形する金属張積層板の製造方法であって、
前記熱硬化性樹脂組成物が、前記(B)架橋ゴム粒子を、(A)アラルキル型エポキシ樹脂100質量部に対して、30〜90質量部含有し、
前記金属箔の十点平均粗さ(Rz)が3.0μm以下である、金属張積層板の製造方法。
A glass cloth is impregnated with (A) an aralkyl type epoxy resin, (B) a crosslinked rubber particle, (C) a triazine ring-containing novolak type resin having a phenolic hydroxyl group, and (D) a thermosetting resin composition containing a curing accelerator. A method for producing a metal-clad laminate in which a prepreg for a semi-additive process and a metal foil are laminated and formed ,
The thermosetting resin composition contains the crosslinked rubber particles (B) in an amount of 30 to 90 parts by mass with respect to 100 parts by mass of the (A) aralkyl epoxy resin,
The manufacturing method of a metal-clad laminated board whose ten-point average roughness (Rz) of the said metal foil is 3.0 micrometers or less.
JP2012250684A 2012-11-14 2012-11-14 Pre-preg compatible with semi-additive process and metal-clad laminate using the same Active JP6303257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012250684A JP6303257B2 (en) 2012-11-14 2012-11-14 Pre-preg compatible with semi-additive process and metal-clad laminate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012250684A JP6303257B2 (en) 2012-11-14 2012-11-14 Pre-preg compatible with semi-additive process and metal-clad laminate using the same

Publications (2)

Publication Number Publication Date
JP2014099516A JP2014099516A (en) 2014-05-29
JP6303257B2 true JP6303257B2 (en) 2018-04-04

Family

ID=50941289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012250684A Active JP6303257B2 (en) 2012-11-14 2012-11-14 Pre-preg compatible with semi-additive process and metal-clad laminate using the same

Country Status (1)

Country Link
JP (1) JP6303257B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6850548B2 (en) * 2016-04-22 2021-03-31 三菱瓦斯化学株式会社 Resin composition for printed wiring board, prepreg, resin sheet, laminated board, metal foil-clad laminated board, and printed wiring board

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218855A (en) * 2005-01-12 2006-08-24 Hitachi Chem Co Ltd Metallic foil with adhesive assistant, printed wiring board and its manufacturing method
TWI506082B (en) * 2009-11-26 2015-11-01 Ajinomoto Kk Epoxy resin composition
JP2012158637A (en) * 2011-01-31 2012-08-23 Sumitomo Bakelite Co Ltd Resin composition for printed wiring board, prepreg, laminated board, resin sheet, printed wiring board, and semiconductor device

Also Published As

Publication number Publication date
JP2014099516A (en) 2014-05-29

Similar Documents

Publication Publication Date Title
JP5625422B2 (en) Thermosetting insulating resin composition, and insulating film with support, prepreg, laminate and multilayer printed wiring board using the same
US8465837B2 (en) Epoxy resin composition, prepreg, laminate board, multilayer printed wiring board, semiconductor device, insulating resin sheet, and process for manufacturing multilayer printed wiring board
KR102142753B1 (en) Thermosetting resin composition, and prepreg, insulating film with support, laminate plate, and printed wiring board, each obtained using same
US7740936B2 (en) Adhesion assisting agent fitted metal foil, and printed wiring board using thereof
JP5407679B2 (en) Thermosetting insulating resin composition, and insulating film with support, prepreg, laminate and multilayer printed wiring board using the same
JP5195582B2 (en) Thermosetting insulating resin composition, and insulating film with support, prepreg, laminate and multilayer printed wiring board using the same
JP6234143B2 (en) Curable resin composition, cured product thereof, electrical / electronic component and circuit board
JP5589292B2 (en) Thermosetting insulating resin composition, and insulating film with support, prepreg, laminate and multilayer printed wiring board using the same
JP5002943B2 (en) Metal foil with adhesive aid and printed wiring board using the same
JP2007001291A (en) Metallic foil with adhesion adjuvant, printed-wiring board using the same, and manufacturing method for printed-wiring board
JP2009176889A (en) Insulating resin composition for multilayer printed wiring board, insulating film with support, multilayer printed wiring board, and manufacturing method therefor
KR20230049098A (en) Copper foil with a resin layer and a laminate using the same
JP4913328B2 (en) Metal foil with adhesive aid and printed wiring board using the same
JP2002241590A (en) Flame-retardant epoxy resin composition
JP2011051247A (en) Metal foil with thermosetting resin composition layer, metal clad laminated plate, and printed wiring board
JP6303257B2 (en) Pre-preg compatible with semi-additive process and metal-clad laminate using the same
JP2004014611A (en) Insulation film with supports, multilayer printed circuit board, and its manufacturing method
JP2006108314A (en) Metal plated board, manufacturing method thereof, flexible printed wiring board, and multilayer printed wiring board
JP5407678B2 (en) Thermosetting insulating resin composition, and insulating film with support, prepreg, laminate and multilayer printed wiring board using the same
JP2011052184A (en) Thermosetting insulating resin composition and insulating film with substrate using the same, prepreg, laminated board, and multilayer printed circuit board
JP2005175265A (en) Adhesive sheet for multilayer wiring boards and method for manufacturing multilayer wiring board
JP4019800B2 (en) Insulating resin composition manufacturing method, insulating resin composition, multilayer wiring board and manufacturing method thereof
JP5482831B2 (en) Metal foil with adhesion aid, printed wiring board using the same, and method for producing the same
JP4279161B2 (en) Ultra-thin flexible wiring board
JP2000104038A (en) Composition for adhesive sheet, adhesive sheet, adhesive sheet with metal foil and laminated sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180219

R151 Written notification of patent or utility model registration

Ref document number: 6303257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350