JP5589292B2 - Thermosetting insulating resin composition, and insulating film with support, prepreg, laminate and multilayer printed wiring board using the same - Google Patents

Thermosetting insulating resin composition, and insulating film with support, prepreg, laminate and multilayer printed wiring board using the same Download PDF

Info

Publication number
JP5589292B2
JP5589292B2 JP2009080409A JP2009080409A JP5589292B2 JP 5589292 B2 JP5589292 B2 JP 5589292B2 JP 2009080409 A JP2009080409 A JP 2009080409A JP 2009080409 A JP2009080409 A JP 2009080409A JP 5589292 B2 JP5589292 B2 JP 5589292B2
Authority
JP
Japan
Prior art keywords
resin composition
insulating resin
multilayer printed
printed wiring
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009080409A
Other languages
Japanese (ja)
Other versions
JP2010229356A (en
Inventor
智彦 小竹
信次 土川
寛之 泉
雅則 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2009080409A priority Critical patent/JP5589292B2/en
Publication of JP2010229356A publication Critical patent/JP2010229356A/en
Application granted granted Critical
Publication of JP5589292B2 publication Critical patent/JP5589292B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

本発明は、耐熱性が高く、低熱膨張性を有し、優れたメッキ密着強度を示す多層プリント配線板用の熱硬化性絶縁樹脂組成物、並びにこれを用いた支持体付絶縁フィルム、プリプレグ、積層板及び多層プリント配線板に関する。   The present invention is a thermosetting insulating resin composition for multilayer printed wiring boards having high heat resistance, low thermal expansibility, and excellent plating adhesion strength, as well as an insulating film with a support, a prepreg using the same, The present invention relates to a laminated board and a multilayer printed wiring board.

近年、電子機器の小型化、軽量化、多機能化が一段と進み、これに伴い、LSIやチップ部品等の高集積化が進みその形態も多ピン化、小型化へと急速に変化している。このため多層プリント配線板は、電子部品の実装密度を向上するために、微細配線化の開発が進められている。
これらの要求に合致する多層プリント配線板の製造方法として、ビルトアップ方式があり、軽量化や小型化、微細化に適した手法として主流になりつつある。
In recent years, electronic devices have become smaller, lighter, and more functional, and along with this, higher integration of LSIs and chip components has progressed, and the form has rapidly changed to multi-pin and miniaturization. . For this reason, in order to improve the mounting density of electronic components, the development of micro wiring has been advanced for multilayer printed wiring boards.
There is a built-up method as a method for manufacturing a multilayer printed wiring board meeting these requirements, and it is becoming mainstream as a method suitable for weight reduction, miniaturization, and miniaturization.

また、環境意識の高まりから燃焼時に有害な物質を発生する可能性がある材料は電子部品も含めて規制する動きが活発になっている。従来の多層プリント配線板には、難燃化のためにブロム化合物が使用されてきたが、燃焼時に有害な物質を発生する可能性があるので、近い将来にこのブロム化合物が使用できなくなるものと予想される。
電子部品を多層プリント配線板に接続するために一般的に用いられるはんだも鉛を含まない鉛フリーはんだが実用化されつつある。この鉛フリーはんだは、従来の共晶はんだよりも使用温度が約20〜30℃高くなることから従来にも増して材料には高い耐熱性が必要になっている。
In addition, there is an active movement to regulate materials including electronic parts that may generate harmful substances during combustion due to increased environmental awareness. In conventional multilayer printed wiring boards, bromo compounds have been used for flame retardancy, but harmful substances may be generated during combustion, so this bromine compound will not be usable in the near future. is expected.
A lead-free solder containing no lead is also being put into practical use as a solder generally used for connecting an electronic component to a multilayer printed wiring board. This lead-free solder has a higher use temperature than conventional eutectic solder by about 20 to 30 ° C. Therefore, the material is required to have higher heat resistance than ever before.

さらに、前記ビルドアップ構造の多層プリント配線板において、高密度化をするために層数の増加と共に、ビア部分のフィルド化、スタック化が進んでいる。しかしながら、多層プリント配線板の薄型化のためにガラスクロスを含まない絶縁樹脂層は、熱膨脹率が大きい傾向を示すため、フィルド化、スタック化したビアの銅との熱膨張率の差が、接続信頼性に大きく影響し、信頼性の懸念材料になっている。このようなことから、絶縁樹脂層には熱膨脹率の小さい材料が要求されるようになってきた。   Furthermore, in the multilayer printed wiring board having the build-up structure, in order to increase the density, the number of layers is increased and the via portion is filled and stacked. However, insulation resin layers that do not contain glass cloth tend to have a large coefficient of thermal expansion for the purpose of reducing the thickness of multilayer printed wiring boards, so the difference in coefficient of thermal expansion with copper in filled and stacked vias It greatly affects reliability and is a concern for reliability. For this reason, a material having a low coefficient of thermal expansion has been required for the insulating resin layer.

このような状況に対して、信頼性の確保を目的に、様々な方法が提案されている。低熱膨張率化を目的に、熱膨脹率の小さい無機フィラーを多量に充填し、絶縁層全体の熱膨張率を低下させる方法(例えば、特許文献1参照)、一般に使用されている無機充填材を低弾性率の樹脂で被覆した充填材を絶縁樹脂に配合し、耐クラック性を向上させ、接続信頼性の向上を図る方法(例えば、特許文献2参照)、銅箔とプリプレグの間に線状のゴムを添加した絶縁層を付与し、接続信頼性の向上を達成させる方法(例えば、特許文献3参照)、耐熱性、低熱膨張に有用であると考えられるイミド骨格を導入する方法があり、このイミド骨格を導入する方法として、例えばイミド基を有する芳香族ジアミンとエポキシ樹脂を用いたビルトアップ用熱硬化性組成物(例えば、特許文献4参照)が提案されている。   For such a situation, various methods have been proposed for the purpose of ensuring reliability. For the purpose of reducing the coefficient of thermal expansion, a method of filling a large amount of an inorganic filler having a small coefficient of thermal expansion to lower the thermal expansion coefficient of the entire insulating layer (for example, see Patent Document 1), and reducing the generally used inorganic filler A method of blending a filler coated with an elastic modulus resin into an insulating resin, improving crack resistance and improving connection reliability (for example, see Patent Document 2), a linear shape between a copper foil and a prepreg There are a method of providing an insulating layer added with rubber and achieving improved connection reliability (for example, see Patent Document 3), a method of introducing an imide skeleton that is considered to be useful for heat resistance and low thermal expansion, As a method for introducing an imide skeleton, for example, a thermosetting composition for build-up using an aromatic diamine having an imide group and an epoxy resin (for example, see Patent Document 4) has been proposed.

しかしながら、無機フィラーを多量に充填する方法(特許文献1)は、流動性の低下や、絶縁信頼性の低下などの問題が発生する。また、樹脂で被覆した充填材や、低弾性率のシリコーン樹脂を使用した絶縁樹脂(特許文献2)は、マトリックス全体をその組成物で構成するため、非常に高価であったり、充填材を多く用いるため、銅箔との接着力が低下するという課題がある。線状のゴムを添加した絶縁層を付与した基板を用いる方法(特許文献3)は、ゴム成分を添加することにより、この絶縁層の耐熱性の低下が懸念される。さらに、低分子ポリイミド化合物をエポキシ樹脂の硬化剤として用いた場合(特許文献4)、そのほとんどがエポキシ樹脂の特性と変わらない場合が多い。   However, the method of filling a large amount of inorganic filler (Patent Document 1) causes problems such as a decrease in fluidity and a decrease in insulation reliability. In addition, a filler coated with a resin and an insulating resin using a low-modulus silicone resin (Patent Document 2) are composed of the composition of the entire matrix, and are therefore very expensive or include a large amount of filler. Since it uses, there exists a subject that the adhesive force with copper foil falls. In the method using a substrate provided with an insulating layer to which linear rubber is added (Patent Document 3), there is a concern that the heat resistance of the insulating layer is lowered by adding a rubber component. Furthermore, when a low molecular weight polyimide compound is used as a curing agent for an epoxy resin (Patent Document 4), most of them are not different from the characteristics of the epoxy resin in many cases.

特開2004−182851号公報JP 2004-182851 A 特許第2508389号公報Japanese Patent No. 2508389 特公平6−9908号公報Japanese Patent Publication No. 6-9908 特開2000−17148号公報JP 2000-17148 A

本発明の目的は、以上のような状況から、耐熱性が高く、低熱膨張性を有し、優れたメッキ密着強度を示す多層プリント配線板用の熱硬化性絶縁樹脂組成物、並びにこれを用いた支持体付絶縁フィルム、プリプレグ、積層板及び多層プリント配線板を提供することである。   An object of the present invention is to provide a thermosetting insulating resin composition for a multilayer printed wiring board having high heat resistance, low thermal expansion, and excellent plating adhesion strength, as well as the above-described situation. The present invention provides an insulating film with a support, a prepreg, a laminate, and a multilayer printed wiring board.

本発明は、上記の課題を解決するために鋭意研究した結果、多層プリント配線板用絶縁樹脂組成物として、有機溶媒中で反応させて得られるN置換マレイミド基と酸性置換基とを有する硬化剤と、エポキシ樹脂及び化学粗化可能な化合物を含有する樹脂組成物を使用することにより、上記目的が達成できることを見出し、本発明を完成した。
すなわち、本発明は、以下の熱硬化性絶縁樹脂組成物、支持体付絶縁フィルム、プリプレグ、積層板及び多層プリント配線板を提供するものである。
As a result of earnest research to solve the above-mentioned problems, the present invention is a curing agent having an N-substituted maleimide group and an acidic substituent obtained by reacting in an organic solvent as an insulating resin composition for multilayer printed wiring boards. And it discovered that the said objective could be achieved by using the resin composition containing an epoxy resin and the compound which can be chemically roughened, and completed this invention.
That is, the present invention provides the following thermosetting insulating resin composition, insulating film with support, prepreg, laminate and multilayer printed wiring board.

1.1分子中に少なくとも2個のN−置換マレイミド基を有するマレイミド化合物(a)と、一般式(I)に示す酸性置換基を有するアミン化合物(b)を有機溶媒中で反応させて製造される、N−置換マレイミド基と酸性置換基を有する硬化剤(A)、1分子中に少なくとも2個のエポキシ基を有するエポキシ樹脂(B)及び化学粗化可能な化合物(C)を含有することを特徴とする熱硬化性絶縁樹脂組成物。 1.1 Manufactured by reacting a maleimide compound (a) having at least two N-substituted maleimide groups in the molecule with an amine compound (b) having an acidic substituent represented by the general formula (I) in an organic solvent. A curing agent (A) having an N-substituted maleimide group and an acidic substituent, an epoxy resin (B) having at least two epoxy groups in one molecule, and a compound (C) capable of chemical roughening The thermosetting insulating resin composition characterized by the above-mentioned.

Figure 0005589292
(R1は各々独立に、酸性置換基である水酸基、カルボキシル基又はスルホン酸基を示し、R2は各々独立に水素原子、炭素数1〜5の脂肪族炭化水素基、ハロゲン原子を示し、xは1〜5の整数、yは0〜4の整数で、且つxとyの和は5である)
Figure 0005589292
(R 1 independently represents a hydroxyl group, a carboxyl group or a sulfonic acid group which is an acidic substituent, and R 2 each independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms, a halogen atom, (x is an integer from 1 to 5, y is an integer from 0 to 4, and the sum of x and y is 5)

2.化学粗化可能な化合物(C)が、架橋ゴム粒子である上記1の熱硬化性絶縁樹脂組成物。
3.架橋ゴム粒子が、コアシェル型ゴム粒子、架橋アクリロニトリルブタジエンゴム粒子、架橋スチレンブタジエンゴム粒子及びアクリルゴム粒子からなる群から選択される少なくとも一種である上記2の熱硬化性絶縁樹脂組成物。
4.化学粗化可能な化合物(C)が、ポリビニルアセタール樹脂である上記1の熱硬化性絶縁樹脂組成物。
2. The thermosetting insulating resin composition according to 1 above, wherein the chemical roughening compound (C) is a crosslinked rubber particle.
3. 2. The thermosetting insulating resin composition according to 2 above, wherein the crosslinked rubber particles are at least one selected from the group consisting of core-shell type rubber particles, crosslinked acrylonitrile butadiene rubber particles, crosslinked styrene butadiene rubber particles and acrylic rubber particles.
4). The thermosetting insulating resin composition according to 1 above, wherein the chemical roughening compound (C) is a polyvinyl acetal resin.

5.さらに、1分子中に少なくとも2個の1級アミノ基を有するアミン化合物(D)を含有する上記1〜4のいずれかの熱硬化性絶縁樹脂組成物。
6.さらに、熱可塑性樹脂(E)を含有する上記1〜5のいずれかの熱硬化性絶縁樹脂組成物。
7.さらに、難燃性を付与するリン化合物(F)を含有する上記1〜6のいずれかの熱硬化性絶縁樹脂組成物。
8.さらに、前記エポキシ樹脂の硬化剤及び/又は硬化促進剤(G)を含有する上記1〜7のいずれかに記載の熱硬化性絶縁樹脂組成物。
9.固形物換算の(A)、(B)及び(D)〜(G)成分の合計量100質量部に対し、10〜45質量部の無機充填材(H)を含有する上記1〜8のいずれかの熱硬化性絶縁樹脂組成物。
5. Furthermore, the thermosetting insulating resin composition in any one of said 1-4 containing the amine compound (D) which has an at least 2 primary amino group in 1 molecule.
6). Furthermore, the thermosetting insulation resin composition in any one of said 1-5 containing a thermoplastic resin (E).
7). Furthermore, the thermosetting insulating resin composition in any one of said 1-6 containing the phosphorus compound (F) which provides a flame retardance.
8). Furthermore, the thermosetting insulating resin composition in any one of said 1-7 containing the hardening | curing agent and / or hardening accelerator (G) of the said epoxy resin.
9. Any of the above 1 to 8 containing 10 to 45 parts by mass of the inorganic filler (H) with respect to 100 parts by mass of the total amount of the components (A), (B) and (D) to (G) in terms of solid matter A thermosetting insulating resin composition.

10.上記1〜9のいずれかの熱硬化性絶縁樹脂組成物の半硬化状態のフィルムが支持表面に形成されていることを特徴とする支持体付絶縁フィルム。
11.上記1〜9のいずれかの熱硬化性絶縁樹脂組成物が繊維から成るシート状補強基材中に含侵されていることを特徴とするプリプレグ。
12.絶縁樹脂層が、(1)上記1〜9のいずれかの熱硬化性絶縁樹脂組成物、(2)上記10の支持体付絶縁フィルム、(3)上記11のプリプレグのいずれかを用いて形成されたものであることを特徴とする積層板。
13.上記12の積層板を用いて製造されてなることを特徴とする多層プリント配線板。
10. An insulating film with a support, wherein a semi-cured film of the thermosetting insulating resin composition according to any one of 1 to 9 is formed on a support surface.
11. A prepreg characterized in that the thermosetting insulating resin composition according to any one of 1 to 9 above is impregnated in a sheet-like reinforcing base material comprising fibers.
12 An insulating resin layer is formed using any one of (1) the thermosetting insulating resin composition of any one of 1 to 9 above, (2) the insulating film with support of 10 above, and (3) the prepreg of 11 above. A laminated board characterized by being made.
13. A multilayer printed wiring board produced by using the above 12 laminated board.

本発明の多層プリント配線板用の熱硬化性絶縁樹脂組成物は、有機溶媒中で反応させて得られるN置換マレイミド基と酸性置換基とを有する硬化剤(A)、エポキシ樹脂(B)及び化学粗化可能な化合物(C)を含有することにより、特にガラス転移温度(Tg)が高いので耐熱性が高く、低熱膨張性を有し、優れたメッキ密着強度を示す絶縁樹脂層を形成可能な熱硬化性樹脂組成物が得られ、該熱硬化性絶縁樹脂組成物及びこれを用いた支持体付絶縁フィルム、プリプレグより製造される積層板及び多層プリント配線板は、はんだ耐熱性、銅付き耐熱性(T−288)、耐湿性及び難燃性の全てにバランスが取れて高信頼性を有し、電子部品等に好適な製品が得られる。   A thermosetting insulating resin composition for a multilayer printed wiring board according to the present invention includes a curing agent (A), an epoxy resin (B), and an N-substituted maleimide group obtained by reacting in an organic solvent and an acidic substituent. By containing the chemical roughening compound (C), it is possible to form an insulating resin layer that has particularly high glass transition temperature (Tg), high heat resistance, low thermal expansion, and excellent plating adhesion strength. A thermosetting resin composition is obtained, and the thermosetting insulating resin composition and the insulating film with a support using the same, the laminate and the multilayer printed wiring board produced from the prepreg are solder heat resistant, with copper A balance between heat resistance (T-288), moisture resistance and flame retardancy is achieved, and a highly reliable product suitable for electronic parts and the like can be obtained.

以下、本発明について詳細に説明する。
本発明に係る熱硬化性絶縁樹脂組成物(以下、単に絶縁樹脂組成物とも云う)は、1分子中に少なくとも2個のN−置換マレイミド基を有するマレイミド化合物(a)と、一般式(I)に示す酸性置換基を有するアミン化合物(b)を有機溶媒中で反応させて製造される、N−置換マレイミド基と酸性置換基を有する硬化剤(A)、1分子中に少なくとも2個のエポキシ基を有するエポキシ樹脂(B)及び化学粗化可能な化合物(C)を含有することを特徴とする熱硬化性絶縁樹脂組成物である。
Hereinafter, the present invention will be described in detail.
The thermosetting insulating resin composition according to the present invention (hereinafter also simply referred to as an insulating resin composition) includes a maleimide compound (a) having at least two N-substituted maleimide groups in one molecule, and a general formula (I And a curing agent (A) having an N-substituted maleimide group and an acidic substituent, which is produced by reacting an amine compound (b) having an acidic substituent shown in FIG. A thermosetting insulating resin composition comprising an epoxy resin (B) having an epoxy group and a compound (C) capable of chemical roughening.

Figure 0005589292
(R1は各々独立に、酸性置換基である水酸基、カルボキシル基又はスルホン酸基を示し、R2は各々独立に水素原子、炭素数1〜5の脂肪族炭化水素基、ハロゲン原子を示し、xは1〜5の整数、yは0〜4の整数で、且つxとyの和は5である。)
Figure 0005589292
(R 1 independently represents a hydroxyl group, a carboxyl group or a sulfonic acid group which is an acidic substituent, and R 2 each independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms, a halogen atom, x is an integer of 1 to 5, y is an integer of 0 to 4, and the sum of x and y is 5.)

1分子中に少なくとも2個のN−置換マレイミド基を有するマレイミド化合物(a)としては、例えば、N,N'−エチレンビスマレイミド、N,N'−ヘキサメチレンビスマレイミド、N,N'−(1,3−フェニレン)ビスマレイミド、N,N'−[1,3−(2−メチルフェニレン)]ビスマレイミド、N,N'−[1,3−(4−メチルフェニレン)]ビスマレイミド、N,N'−(1,4−フェニレン)ビスマレイミド、ビス(4−マレイミドフェニル)メタン、ビス(3−メチル−4−マレイミドフェニル)メタン、3,3−ジメチル−5,5−ジエチル−4,4−ジフェニルメタンビスマレイミド、ビス(4−マレイミドフェニル)エーテル、ビス(4−マレイミドフェニル)スルホン、ビス(4−マレイミドフェニル)スルフィド、ビス(4−マレイミドフェニル)ケトン、ビス(4−マレイミドシクロヘキシル)メタン、1,4−ビス(4−マレイミドフェニル)シクロヘキサン、1,4−ビス(マレイミドメチル)シクロヘキサン、1,4−ビス(マレイミドメチル)ベンゼン、1,3−ビス(4−マレイミドフェノキシ)ベンゼン、1,3-ビス(3−マレイミドフェノキシ)ベンゼン、ビス[4−(3−マレイミドフェノキシ)フェニル]メタン、ビス[4−(4−マレイミドフェノキシ)フェニル]メタン、1,1−ビス[4−(3−マレイミドフェノキシ)フェニル]エタン、1,1−ビス[4−(4−マレイミドフェノキシ)フェニル]エタン、1,2−ビス[4−(3−マレイミドフェノキシ)フェニル]エタン、1,2−ビス[4−(4−マレイミドフェノキシ)フェニル]エタン、2,2-ビス[4−(3−マレイミドフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−マレイミドフェノキシ)フェニル]プロパン、2,2−ビス[4−(3−マレイミドフェノキシ)フェニル]ブタン、2,2−ビス[4−(4−マレイミドフェノキシ)フェニル]ブタン、2,2−ビス[4−(3−マレイミドフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス[4−(4−マレイミドフェノキシ)フェニル] −1,1,1,3,3,3−ヘキサフルオロプロパン、4,4−ビス(3−マレイミドフェノキシ)ビフェニル、4,4−ビス(4−マレイミドフェノキシ)ビフェニル、ビス[4−(3−マレイミドフェノキシ)フェニル]ケトン、ビス[4−(4−マレイミドフェノキシ)フェニル]ケトン、2,2'−ビス(4−マレイミドフェニル)ジスルフィド、ビス(4−マレイミドフェニル)ジスルフィド、ビス[4−(3−マレイミドフェノキシ)フェニル]スルフィド、ビス[4−(4−マレイミドフェノキシ)フェニル]スルフィド、ビス[4−(3−マレイミドフェノキシ)フェニル]スルホキシド、ビス[4−(4−マレイミドフェノキシ)フェニル]スルホキシド、ビス[4−(3−マレイミドフェノキシ)フェニル]スルホン、ビス[4−(4−マレイミドフェノキシ)フェニル]スルホン、ビス[4−(3−マレイミドフェノキシ)フェニル]エーテル、ビス[4−(4−マレイミドフェノキシ)フェニル]エーテル、1,4−ビス[4−(4−マレイミドフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−マレイミドフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,4−ビス[4−(3−マレイミドフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(3−マレイミドフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,4−ビス[4−(4−マレイミドフェノキシ)−3,5−ジメチル−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−マレイミドフェノキシ)−3,5−ジメチル−α,α−ジメチルベンジル]ベンゼン、1,4−ビス[4−(3−マレイミドフェノキシ)−3,5−ジメチル−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(3−マレイミドフェノキシ)−3,5−ジメチル−α,α−ジメチルベンジル]ベンゼン、ポリフェニルメタンマレイミド等が挙げられ、これらのマレイミド化合物は、単独で用いても2種類以上を混合して用いてもよい。
これらの中で、反応率が高く、より高耐熱性化できるビス(4−マレイミドフェニル)メタン、ビス(4−マレイミドフェニル)スルホン、N,N'−(1,3−フェニレン)ビスマレイミド、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパンが好ましく、安価である点からビス(4−マレイミドフェニル)メタン、N,N'−(1,3−フェニレン)ビスマレイミドがより好ましく、溶剤への溶解性の点から、ビス(4−マレイミドフェニル)メタンが特に好ましい。
Examples of the maleimide compound (a) having at least two N-substituted maleimide groups in one molecule include N, N′-ethylene bismaleimide, N, N′-hexamethylene bismaleimide, N, N ′-( 1,3-phenylene) bismaleimide, N, N ′-[1,3- (2-methylphenylene)] bismaleimide, N, N ′-[1,3- (4-methylphenylene)] bismaleimide, N , N ′-(1,4-phenylene) bismaleimide, bis (4-maleimidophenyl) methane, bis (3-methyl-4-maleimidophenyl) methane, 3,3-dimethyl-5,5-diethyl-4, 4-diphenylmethane bismaleimide, bis (4-maleimidophenyl) ether, bis (4-maleimidophenyl) sulfone, bis (4-maleimidophenyl) sulfide, bis (4-maleimidophenyl) Nyl) ketone, bis (4-maleimidocyclohexyl) methane, 1,4-bis (4-maleimidophenyl) cyclohexane, 1,4-bis (maleimidomethyl) cyclohexane, 1,4-bis (maleimidomethyl) benzene, 1, 3-bis (4-maleimidophenoxy) benzene, 1,3-bis (3-maleimidophenoxy) benzene, bis [4- (3-maleimidophenoxy) phenyl] methane, bis [4- (4-maleimidophenoxy) phenyl] Methane, 1,1-bis [4- (3-maleimidophenoxy) phenyl] ethane, 1,1-bis [4- (4-maleimidophenoxy) phenyl] ethane, 1,2-bis [4- (3-maleimide) Phenoxy) phenyl] ethane, 1,2-bis [4- (4-maleimidophenoxy) phenyl] ethane, 2,2-bis [4- (3-male Dophenoxy) phenyl] propane, 2,2-bis [4- (4-maleimidophenoxy) phenyl] propane, 2,2-bis [4- (3-maleimidophenoxy) phenyl] butane, 2,2-bis [4 -(4-maleimidophenoxy) phenyl] butane, 2,2-bis [4- (3-maleimidophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, 2,2-bis [ 4- (4-maleimidophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, 4,4-bis (3-maleimidophenoxy) biphenyl, 4,4-bis (4-maleimidophenoxy) ) Biphenyl, bis [4- (3-maleimidophenoxy) phenyl] ketone, bis [4- (4-maleimidophenoxy) phenyl] ketone, 2,2′-bis (4-maleimidophenyl) di Rufide, bis (4-maleimidophenyl) disulfide, bis [4- (3-maleimidophenoxy) phenyl] sulfide, bis [4- (4-maleimidophenoxy) phenyl] sulfide, bis [4- (3-maleimidophenoxy) phenyl ] Sulfoxide, bis [4- (4-maleimidophenoxy) phenyl] sulfoxide, bis [4- (3-maleimidophenoxy) phenyl] sulfone, bis [4- (4-maleimidophenoxy) phenyl] sulfone, bis [4- ( 3-maleimidophenoxy) phenyl] ether, bis [4- (4-maleimidophenoxy) phenyl] ether, 1,4-bis [4- (4-maleimidophenoxy) -α, α-dimethylbenzyl] benzene, 1,3 -Bis [4- (4-maleimidophenoxy) -α, α-dimethylbenzyl] benzene, 1,4-bis [ -(3-maleimidophenoxy) -α, α-dimethylbenzyl] benzene, 1,3-bis [4- (3-maleimidophenoxy) -α, α-dimethylbenzyl] benzene, 1,4-bis [4- ( 4-maleimidophenoxy) -3,5-dimethyl-α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-maleimidophenoxy) -3,5-dimethyl-α, α-dimethylbenzyl] benzene 1,4-bis [4- (3-maleimidophenoxy) -3,5-dimethyl-α, α-dimethylbenzyl] benzene, 1,3-bis [4- (3-maleimidophenoxy) -3,5- Dimethyl-α, α-dimethylbenzyl] benzene, polyphenylmethanemaleimide and the like. These maleimide compounds may be used alone or in combination of two or more.
Among these, bis (4-maleimidophenyl) methane, bis (4-maleimidophenyl) sulfone, N, N ′-(1,3-phenylene) bismaleimide, which has a high reaction rate and can have higher heat resistance, 2 , 2-bis (4- (4-maleimidophenoxy) phenyl) propane is preferred, and bis (4-maleimidophenyl) methane and N, N ′-(1,3-phenylene) bismaleimide are more preferred because of their low cost. From the viewpoint of solubility in a solvent, bis (4-maleimidophenyl) methane is particularly preferred.

一般式(I)に示す酸性置換基を有するアミン化合物(b)としては、例えば、m−アミノフェノール、p−アミノフェノール、o−アミノフェノール、p−アミノ安息香酸、m−アミノ安息香酸、o−アミノ安息香酸、o−アミノベンゼンスルホン酸、m−アミノベンゼンスルホン酸、p−アミノベンゼンスルホン酸、3,5−ジヒドロキシアニリン、3,5−ジカルボキシアニリン等が挙げられ、これらの中で、溶解性や合成の収率の点からm−アミノフェノール、p−アミノフェノール、o−アミノフェノール、p−アミノ安息香酸、m−アミノ安息香酸、及び3,5−ジヒドロキシアニリンが好ましく、耐熱性の点からm−アミノフェノール及びp−アミノフェノールがより好ましく、低毒性である点からm−アミノフェノールが特に好ましい。   Examples of the amine compound (b) having an acidic substituent represented by the general formula (I) include m-aminophenol, p-aminophenol, o-aminophenol, p-aminobenzoic acid, m-aminobenzoic acid, o -Aminobenzoic acid, o-aminobenzenesulfonic acid, m-aminobenzenesulfonic acid, p-aminobenzenesulfonic acid, 3,5-dihydroxyaniline, 3,5-dicarboxyaniline, etc., among these, From the viewpoint of solubility and synthesis yield, m-aminophenol, p-aminophenol, o-aminophenol, p-aminobenzoic acid, m-aminobenzoic acid, and 3,5-dihydroxyaniline are preferable, and heat resistant M-Aminophenol and p-aminophenol are more preferable from the viewpoint, and m-aminophenol is particularly preferable from the viewpoint of low toxicity. Preferred.

この反応で使用される有機溶媒は特に制限されないが、例えばエタノール、プロパノール、ブタノール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤、酢酸エチルエステルやγ−ブチロラクトン等のエステル系溶剤、テトラヒドロフラン等のエーテル系溶剤、トルエン、キシレン、メシチレン等の芳香族系溶剤、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等の窒素原子含有溶剤、ジメチルスルホキシド等の硫黄原子含有溶剤等が挙げられ、1種又は2種以上を混合して使用できる。
これらの中で、溶解性の点からシクロヘキサノン、プロピレングリコールモノメチルエーテル、メチルセロソルブ、γ−ブチロラクトン、ジメチルアセトアミドが好ましく、低毒性であることや揮発性が高く残溶剤として残りにくい点から、シクロヘキサノン、プロピレングリコールモノメチルエーテル、ジメチルアセトアミドが特に好ましい。
The organic solvent used in this reaction is not particularly limited, but alcohol solvents such as ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, and ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. Ester solvents such as ethyl acetate and γ-butyrolactone, ether solvents such as tetrahydrofuran, aromatic solvents such as toluene, xylene, mesitylene, nitrogen atom-containing solvents such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, Examples include sulfur atom-containing solvents such as dimethyl sulfoxide, and one or two or more of them can be used in combination.
Among these, cyclohexanone, propylene glycol monomethyl ether, methyl cellosolve, γ-butyrolactone, and dimethylacetamide are preferable from the viewpoint of solubility. Cyclohexanone and propylene are low toxicity and high volatility and hardly remain as a residual solvent. Glycol monomethyl ether and dimethylacetamide are particularly preferred.

ここでマレイミド化合物(a)と酸性置換基を有するアミン化合物(b)の使用量は、(b)成分の−NH2基の当量(Tb)に対する(a)成分のマレイミド基の当量(Ta)の当量比(Ta/Tb)が1.0〜10.0の範囲であることが好ましく、該当量比(Ta/Tb)が2.0〜10.0の範囲であることがさらに好ましい。該当量比(Ta/Tb)を1.0以上とすることによりゲル化及び耐熱性が低下することがなく、10.0以下とすることにより有機溶剤への溶解性、メッキ密着強度、及び耐熱性が低下することがない。
また、有機溶媒の使用量は、(a)成分と(b)成分の合計量100質量部当たり、10〜1000質量部とすることが好ましく、100〜500質量部とすることがより好ましく、200〜500質量部とすることが特に好ましい。有機溶剤の配合量を10質量部以上とすることにより硬化剤の有機溶媒への十分な溶解性が得られ、また1000質量部以下とすることにより長時間の反応時間となることがない。
Here, the use amount of the maleimide compound (a) and the amine compound (b) having an acidic substituent is the equivalent of the maleimide group (T) of the component (a) to the equivalent (T b ) of the —NH 2 group of the component (b). preferably the equivalent ratio of a) (T a / T b ) is in the range of 1.0 to 10.0, the corresponding amount ratio (T a / T b) is in the range of 2.0 to 10.0 More preferably. Appropriate amount ratio (T a / T b) without gelation and heat resistance is decreased by a 1.0 or more, solubility in an organic solvent by a 10.0, plating adhesion strength, And heat resistance does not fall.
The amount of the organic solvent used is preferably 10 to 1000 parts by mass, more preferably 100 to 500 parts by mass, per 100 parts by mass of the total amount of the component (a) and the component (b). It is especially preferable to set it as -500 mass parts. When the blending amount of the organic solvent is 10 parts by mass or more, sufficient solubility of the curing agent in the organic solvent can be obtained, and when it is 1000 parts by mass or less, a long reaction time is not caused.

(a)成分と(b)成分の反応温度は、好ましくは50〜200℃であり、さらに好ましくは70〜160℃である。反応時間は、好ましくは0.1〜10時間であり、さらに好ましくは1〜6時間である。
また、この反応には任意に反応触媒を使用することができ、特に限定されない。反応触媒の例としては、トリエチルアミン、ピリジン、トリブチルアミン等のアミン類、メチルイミダゾール、フェニルイミダゾール等のイミダゾール類、トリフェニルホスフィン等のリン系触媒等があげられ、1種又は2種以上を混合して使用できる。
The reaction temperature of the component (a) and the component (b) is preferably 50 to 200 ° C, more preferably 70 to 160 ° C. The reaction time is preferably 0.1 to 10 hours, more preferably 1 to 6 hours.
Moreover, a reaction catalyst can be arbitrarily used for this reaction, and it is not specifically limited. Examples of the reaction catalyst include amines such as triethylamine, pyridine, and tributylamine, imidazoles such as methylimidazole and phenylimidazole, phosphorus-based catalysts such as triphenylphosphine, and the like. Can be used.

次に、 (B)成分は、1分子中に少なくとも2個のエポキシ基を有するエポキシ樹脂であれば特に限定されず、例えば、ビスフェノールA系、ビスフェノールF系、ビフェニル系、ノボラック系、多官能フェノール系、ナフタレン系、脂環式系及びアルコール系等のグリシジルエーテル、グリシジルアミン系並びにグリシジルエステル系等が挙げられ、1種又は2種以上を混合して使用することができる。具体的には、誘電特性、耐熱性、耐湿性及び銅箔接着性の点からビスフェノールF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン環含有エポキシ樹脂、アントラセン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、及びクレゾールノボラック型エポキシ樹脂等が好ましく、良好な低熱膨張性や高いガラス転移温度を有する点から、ナフタレン環含有エポキシ樹脂、アントラセン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、及びフェノールノボラック型エポキシ樹脂がより好ましい。   Next, the component (B) is not particularly limited as long as it is an epoxy resin having at least two epoxy groups in one molecule. For example, bisphenol A, bisphenol F, biphenyl, novolac, polyfunctional phenol Examples thereof include glycidyl ethers, glycidyl ethers, glycidyl amines, glycidyl esters, and the like such as naphthyl, naphthalene, alicyclic, and alcohols, which can be used alone or in combination. Specifically, in terms of dielectric properties, heat resistance, moisture resistance and copper foil adhesion, bisphenol F type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene ring-containing epoxy resin, anthracene type epoxy resin, biphenyl type epoxy resin, Biphenyl aralkyl type epoxy resin, phenol novolac type epoxy resin, cresol novolak type epoxy resin, etc. are preferable, and naphthalene ring-containing epoxy resin, anthracene type epoxy resin, biphenyl type from the viewpoint of good low thermal expansion and high glass transition temperature An epoxy resin, a biphenyl aralkyl type epoxy resin, and a phenol novolac type epoxy resin are more preferable.

本発明の絶縁樹脂組成物における固形分換算の(A)成分及び(B)成分の質量比は、これらの合計量100質量部として、(A)成分を20〜90質量部とすることが好ましく、40〜90質量部とすることがより好ましい。(A)成分を20質量部以上とすることにより、難燃性、耐熱性、接着性及び誘電特性が向上する。また、90質量部以下とすることにより吸湿による絶縁信頼性の低下がなく、220℃以上の高温でかつ長時間の成形が必要でない。   The mass ratio of the (A) component and the (B) component in terms of solid content in the insulating resin composition of the present invention is preferably such that the total amount is 100 parts by mass and the (A) component is 20 to 90 parts by mass. 40 to 90 parts by mass is more preferable. By setting the component (A) to 20 parts by mass or more, flame retardancy, heat resistance, adhesiveness and dielectric properties are improved. Further, when the content is 90 parts by mass or less, there is no decrease in insulation reliability due to moisture absorption, and molding at a high temperature of 220 ° C. or higher and for a long time is not necessary.

化学粗化可能な化合物(C)は、デスミア処理によって、後述する絶縁樹脂層表面に微細な粗化形状を形成する化合物であれば特に問わないが、架橋ゴム粒子、ポリビニルアセタール樹脂が好ましく、最も好ましくは、架橋ゴム粒子である。   The compound (C) capable of chemical roughening is not particularly limited as long as it is a compound that forms a fine roughened shape on the surface of the insulating resin layer to be described later by desmear treatment, but crosslinked rubber particles and polyvinyl acetal resin are preferred, Preferably, it is a crosslinked rubber particle.

上記の架橋ゴム粒子としては、コアシェル型ゴム粒子、架橋アクリロニトリルブタジエンゴム粒子、架橋スチレンブタジエンゴム粒子、アクリルゴム粒子などが挙げられる。
コアシェル型ゴム粒子は、コア層とシェル層とを有するゴム粒子であり、例えば、外層のシェル層がガラス状ポリマーで構成され、内層のコア層がゴム状ポリマーで構成される2層構造、または外層のシェル層がガラス状ポリマーで構成され、中間層がゴム状ポリマーで構成され、コア層がガラス状ポリマーで構成される3層構造のものなどが挙げられる。ガラス状ポリマー層は、例えば、メタクリル酸メチルの重合物などで構成され、ゴム状ポリマー層は、例えば、ブチルアクリレート重合物(ブチルゴム)などで構成される。
Examples of the crosslinked rubber particles include core-shell type rubber particles, crosslinked acrylonitrile butadiene rubber particles, crosslinked styrene butadiene rubber particles, and acrylic rubber particles.
The core-shell type rubber particles are rubber particles having a core layer and a shell layer. For example, a two-layer structure in which an outer shell layer is formed of a glassy polymer and an inner core layer is formed of a rubbery polymer, or Examples include a three-layer structure in which the outer shell layer is made of a glassy polymer, the intermediate layer is made of a rubbery polymer, and the core layer is made of a glassy polymer. The glassy polymer layer is made of, for example, a polymer of methyl methacrylate, and the rubbery polymer layer is made of, for example, a butyl acrylate polymer (butyl rubber).

コアシェル型ゴム粒子の具体例としては、スタフィロイドAC3832、AC3816N〔以上、商品名、ガンツ化成(株)製〕、メタブレンKW−4426〔商品名、三菱レイヨン(株)製〕、EXL−2655〔商品名:ローム・アンド・ハース(株)製〕等が挙げられる。
架橋アクリロニトリルブタジエンゴム(NBR)粒子の具体例としては、XER−91〔平均粒径0.5μm、JSR(株)製〕などが挙げられる。
架橋スチレンブタジエンゴム(SBR)粒子の具体例としては、XSK−500〔平均粒径0.5μm、JSR(株)製〕などが挙げられる。
アクリルゴム粒子の具体例としては、メタブレンW300A(平均粒径0.1μm)、W450A(平均粒径0.2μm)〔以上、三菱レイヨン(株)製〕を挙げられる。
架橋ゴム粒子は、単独でも、2種以上を組み合せて用いてもよい。
Specific examples of the core-shell type rubber particles include Staphyloid AC3832, AC3816N [above, trade name, manufactured by Gantz Kasei Co., Ltd.], Metabrene KW-4426 [trade name, manufactured by Mitsubishi Rayon Co., Ltd.], EXL-2655 [Product Name: manufactured by Rohm and Haas Co., Ltd.).
Specific examples of the crosslinked acrylonitrile butadiene rubber (NBR) particles include XER-91 [average particle diameter of 0.5 μm, manufactured by JSR Corporation].
Specific examples of the cross-linked styrene butadiene rubber (SBR) particles include XSK-500 (average particle size 0.5 μm, manufactured by JSR Corporation).
Specific examples of the acrylic rubber particles include Methbrene W300A (average particle size 0.1 μm), W450A (average particle size 0.2 μm) [manufactured by Mitsubishi Rayon Co., Ltd.].
The crosslinked rubber particles may be used alone or in combination of two or more.

架橋ゴム粒子の平均粒径は、好ましくは0.005〜1μmの範囲であり、より好ましくは0.2〜0.6μmの範囲である。架橋ゴム粒子の平均粒径は、動的光散乱法を用いて測定することができる。例えば、適当な有機溶剤に架橋ゴム粒子を超音波などにより均一に分散させ、濃厚系粒径アナライザー〔FPAR−1000;大塚電子(株)製〕を用いて、ゴム粒子の粒度分布を質量基準で作成し、そのメディアン径を平均粒径とすることで測定される。   The average particle size of the crosslinked rubber particles is preferably in the range of 0.005 to 1 μm, more preferably in the range of 0.2 to 0.6 μm. The average particle diameter of the crosslinked rubber particles can be measured using a dynamic light scattering method. For example, the crosslinked rubber particles are uniformly dispersed in an appropriate organic solvent by ultrasonic waves, and the particle size distribution of the rubber particles is measured on a mass basis using a concentrated particle size analyzer [FPAR-1000; manufactured by Otsuka Electronics Co., Ltd.]. It is measured by making the median diameter as an average particle diameter.

ポリビニルアセタール樹脂としては、その種類、水酸基量、アセチル基量は特に限定されないが、数平均重合度は1000〜2500のものが好ましい。この範囲にあると、はんだ耐熱性が確保でき、また、ワニスの粘度、取り扱い性も良好である。ここでポリビニルアセタール樹脂の数平均重合度は、たとえば、その原料であるポリ酢酸ビニルの数平均分子量(ゲルパーミエーションクロマトグラフィによる標準ポリスチレンの検量線を用いて測定する)から決定することができる。また、カルボン酸変性品などを用いることもできる。   As a polyvinyl acetal resin, the kind, the amount of hydroxyl groups, and the amount of acetyl groups are not particularly limited, but those having a number average polymerization degree of 1000 to 2500 are preferred. Within this range, solder heat resistance can be secured, and the viscosity and handling properties of the varnish are good. Here, the number average degree of polymerization of the polyvinyl acetal resin can be determined, for example, from the number average molecular weight of polyvinyl acetate as a raw material (measured using a standard polystyrene calibration curve by gel permeation chromatography). Moreover, a carboxylic acid modified product etc. can also be used.

ポリビニルアセタール樹脂として、例えば、積水化学工業(株)製の商品名、エスレックBX−1、BX−2、BX−5、BX−55、BX−7、BH−3、BH−S、KS−3Z、KS−5、KS−5Z、KS−8、KS−23Z、電気化学工業(株)製の商品名、電化ブチラール4000−2、5000A、6000C、6000EPが挙げられる。
ポリビニルアセタール樹脂は単独で、または2種類以上混合して用いることもできる。
As a polyvinyl acetal resin, for example, Sekisui Chemical Co., Ltd. trade name, ESREC BX-1, BX-2, BX-5, BX-55, BX-7, BH-3, BH-S, KS-3Z , KS-5, KS-5Z, KS-8, KS-23Z, trade names manufactured by Denki Kagaku Kogyo Co., Ltd., and electrified butyral 4000-2, 5000A, 6000C, 6000EP.
Polyvinyl acetal resins can be used alone or in admixture of two or more.

本発明の絶縁樹脂組成物には、さらに1分子中に少なくとも2個の1級アミノ基を有するアミン化合物(D)を含有させることができる。アミン化合物(D)は硬化剤(A)と反応して硬化剤として作用する化合物を与える。この場合、アミン化合物(D)は配合前に有機溶媒中で硬化剤(A)と反応させても良い。   The insulating resin composition of the present invention can further contain an amine compound (D) having at least two primary amino groups in one molecule. The amine compound (D) reacts with the curing agent (A) to give a compound that acts as a curing agent. In this case, the amine compound (D) may be reacted with the curing agent (A) in an organic solvent before blending.

(D)成分は、1分子中に少なくとも2個の1級アミノ基を有するアミン化合物であれば、特に限定されるものではないが、例えば、m−フェニレンジアミン、p−フェニレンジアミン、4,6−ジメチル−m−フェニレンジアミン、2,5−ジメチル−p−フェニレンジアミン、2,3,5,6−テトラメチル−p−フェニレンジアミン、2,4−ジアミノメシチレン、m−キシレン−2,5−ジアミン、m−キシリレンジアミン、p−キシリレンジアミン、2,4−ジアミノトルエン、2,5−ジアミノトルエン、2,4−ビス(アミノ−t−ブチル)トルエン、2,4−ジアミノキシレン、2,4−ジアミノピリジン、2,6−ジアミノピリジン、2,5−ジアミノピリジン、2,4−ジアミノデュレン、4,5−ジアミノ−6−ヒドロキシ−2−メルカプトピリミジン、3−ビス(3−アミノベンジル)ベンゼン、4−ビス(4−アミノベンジル)ベンゼン、1,4−ビス(4−アミノフェニル)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、3−ビス(3−(3−アミノフェノキシ)フェノキシ)ベンゼン、4−ビス(4−(4−アミノフェノキシ)フェノキシ)ベンゼン、3−ビス(3−(3−(3−アミノフェノキシ)フェノキシ)フェノキシ)ベンゼン、4−ビス(4−(4−(4−アミノフェノキシ)フェノキシ)フェノキシ)ベンゼン、3−ビス(α,α−ジメチル−3−アミノベンジル)ベンゼン、1,4−ビス(α,α−ジメチル−3−アミノベンジル)ベンゼン、3−ビス(α,α−ジメチル−4−アミノベンジル)ベンゼン、ビス(4−メチルアミノペンチル)ベンゼン、p−ビス(2−メチル−4−アミノペンチル)ベンゼン、1,4−ビス(3−アミノプロピルジメチルシリル)ベンゼン、ビス[(4−アミノフェニル)−2−プロピル]1,4−ベンゼン、2,5−ジアミノベンゼンスルホン酸、3,3'−ジアミノジフェニルメタン、4,4'−ジアミノジフェニルメタン、3,3'−ジメチル−4,4'−ジアミノジフェニルメタン、3,3'、5,5'−テトラメチル−4,4'−ジアミノジフェニルメタン、4,4'−メチレン−ビス(2−クロロアニリン)、3,3'−ジアミノジフェニルエタン、4,4'−ジアミノジフェニルエタン、2,2'−ジアミノジフェニルプロパン、3,3'−ジアミノジフェニルプロパン、4,4'−ジアミノジフェニルプロパン、2,2'−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2'−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、3−(2',4'−ジアミノフェノキシ)プロパンスルホン酸、ビス(4−アミノフェニル)ジエチルシラン、3,3’−ジアミノベンゾフェノン、4,4’−ジアミノベンゾフェノン、3,3’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,3'−ジメチル−4,4'−ジアミノジフェニルエーテル、ビス(4−アミノ−t−ブチルフェニル)エ−テル、4,4'−ジアミノジフェニルエーテル−2,2'−ジスルホン酸、1,5−ジアミノナフタレン、1,4−ジアミノナフタレン、2,6−ジアミノナフタレン、9,9'−ビス(4−アミノフェニル)フルオレン、9,9'−ビス(4−アミノフェニル)フルオレン−2,7−ジスルホン酸、9,9'−ビス(4−アミノフェノキシフェニル)フルオレン、ジアミノアントラキノン等の芳香族アミン類、エチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、2,5−ジメチルヘキサメチレンジアミン、3−メトキシヘキサメチレンジアミン、2,5−ジメチルヘプタメチレンジアミン、3−メチルヘプタメチレンジアミン、4,4−ジメチルヘプタメチレンジアミン、5−メチルノナメチレンジアミン、1,4−ジアミノシクロヘキサン、1,3−ビス(3−アミノプロピル)テトラメチルジシロキサン、ジアミノポリシロキサン、2,5−ジアミノ−1,3,4−オキサジアゾ−ル、ビス(4−アミノシクロヘキシル)メタン等の脂肪族アミン類、メラミン、ベンゾグアナミン、アセトグアナミン、2,4−ジアミノ−6−ビニル−s−トリアジン、2,4−ジアミノ−6−アリル−s−トリアジン、2,4−ジアミノ−6−アクリロイルオキシエチル−s−トリアジン、2,4−ジアミノ−6−メタクリロイルオキシエチル−s−トリアジン等のグアナミン化合物類が挙げられる。   The component (D) is not particularly limited as long as it is an amine compound having at least two primary amino groups in one molecule. For example, m-phenylenediamine, p-phenylenediamine, 4,6 -Dimethyl-m-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, 2,4-diaminomesitylene, m-xylene-2,5- Diamine, m-xylylenediamine, p-xylylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 2,4-bis (amino-t-butyl) toluene, 2,4-diaminoxylene, 2 , 4-diaminopyridine, 2,6-diaminopyridine, 2,5-diaminopyridine, 2,4-diaminodurene, 4,5-diamino-6-hydride Xyl-2-mercaptopyrimidine, 3-bis (3-aminobenzyl) benzene, 4-bis (4-aminobenzyl) benzene, 1,4-bis (4-aminophenyl) benzene, 1,3-bis (3- Aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 3-bis (3- (3-aminophenoxy) phenoxy) benzene, 4-bis (4- (4-aminophenoxy) phenoxy) benzene, 3-bis (3- (3- (3-aminophenoxy) phenoxy) phenoxy) benzene, 4-bis (4- (4- (4-aminophenoxy) phenoxy) ) Phenoxy) benzene, 3-bis (α, α-dimethyl-3-aminobenzyl) benzene, 1,4-bis (α, α-dimethyl-3-amino) Nobenzyl) benzene, 3-bis (α, α-dimethyl-4-aminobenzyl) benzene, bis (4-methylaminopentyl) benzene, p-bis (2-methyl-4-aminopentyl) benzene, 1,4- Bis (3-aminopropyldimethylsilyl) benzene, bis [(4-aminophenyl) -2-propyl] 1,4-benzene, 2,5-diaminobenzenesulfonic acid, 3,3′-diaminodiphenylmethane, 4,4 '-Diaminodiphenylmethane, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 3,3', 5,5'-tetramethyl-4,4'-diaminodiphenylmethane, 4,4'-methylene-bis ( 2-chloroaniline), 3,3′-diaminodiphenylethane, 4,4′-diaminodiphenylethane, 2,2′-diaminodiphenylpropane 3,3′-diaminodiphenylpropane, 4,4′-diaminodiphenylpropane, 2,2′-bis [4- (4-aminophenoxy) phenyl] propane, 2,2′-bis [4- (4-amino) Phenoxy) phenyl] hexafluoropropane, 3- (2 ′, 4′-diaminophenoxy) propanesulfonic acid, bis (4-aminophenyl) diethylsilane, 3,3′-diaminobenzophenone, 4,4′-diaminobenzophenone, 3,3′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 3,3′-dimethyl-4,4′-diaminodiphenyl ether, bis (4-amino-tert-butylphenyl) ether, 4,4 ′ -Diaminodiphenyl ether-2,2'-disulfonic acid, 1,5-diaminonaphthalene, 1,4-diaminonaphthalene 2,6-diaminonaphthalene, 9,9′-bis (4-aminophenyl) fluorene, 9,9′-bis (4-aminophenyl) fluorene-2,7-disulfonic acid, 9,9′-bis (4 -Aminophenoxyphenyl) aromatic amines such as fluorene and diaminoanthraquinone, ethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, 2,5- Dimethylhexamethylenediamine, 3-methoxyhexamethylenediamine, 2,5-dimethylheptamethylenediamine, 3-methylheptamethylenediamine, 4,4-dimethylheptamethylenediamine, 5-methylnonamethylenediamine, 1,4-diaminosilane Aliphatic acids such as rhohexane, 1,3-bis (3-aminopropyl) tetramethyldisiloxane, diaminopolysiloxane, 2,5-diamino-1,3,4-oxadiazol, bis (4-aminocyclohexyl) methane Amines, melamine, benzoguanamine, acetoguanamine, 2,4-diamino-6-vinyl-s-triazine, 2,4-diamino-6-allyl-s-triazine, 2,4-diamino-6-acryloyloxyethyl- Examples thereof include guanamine compounds such as s-triazine and 2,4-diamino-6-methacryloyloxyethyl-s-triazine.

これらアミン化合物の中で、良好な反応性や耐熱性を有する芳香族アミン類であるm−フェニレンジアミン、p−フェニレンジアミン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4'−ジアミノジフェニルメタン、2,2'−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、4,4’−ジアミノベンゾフェノン、4,4’−ジアミノジフェニルエーテル及びグアナミン化合物類であるベンゾグアナミンが好ましく、安価である点からp−フェニレンジアミン、4,4'−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテル、ベンゾグアナミンがより好ましく、溶媒への溶解性の点から4,4'−ジアミノジフェニルメタンが特に好ましい。
アミン化合物は、単独で、または2種類以上混合して用いることもできる。
Among these amine compounds, m-phenylenediamine, p-phenylenediamine, 1,4-bis (4-aminophenoxy) benzene, 4,4′-, which are aromatic amines having good reactivity and heat resistance. Diaminodiphenylmethane, 2,2'-bis [4- (4-aminophenoxy) phenyl] propane, 4,4'-diaminobenzophenone, 4,4'-diaminodiphenyl ether, and benzoguanamines, which are guanamine compounds, are preferred and inexpensive. From the viewpoint, p-phenylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, and benzoguanamine are more preferable, and 4,4′-diaminodiphenylmethane is particularly preferable from the viewpoint of solubility in a solvent.
Amine compounds can be used alone or in admixture of two or more.

アミン化合物(D)を硬化剤(A)と反応させる際に使用される有機溶媒は特に制限されないが、例えばエタノール、プロパノール、ブタノール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤、酢酸エチルエステルやγ−ブチロラクトン等のエステル系溶剤、テトラヒドロフラン等のエーテル系溶剤、トルエン、キシレン、メシチレン等の芳香族系溶剤、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等の窒素原子含有溶剤、ジメチルスルホキシド等の硫黄原子含有溶剤等が挙げられ、1種又は2種以上を混合して使用できる。
これらの中で、溶解性の点からシクロヘキサノン、プロピレングリコールモノメチルエーテル、メチルセロソルブ、γ−ブチロラクトンが好ましく、低毒性であることや揮発性が高く残溶剤として残りにくい点から、シクロヘキサノン、プロピレングリコールモノメチルエーテル、ジメチルアセトアミドが特に好ましい。
The organic solvent used when the amine compound (D) is reacted with the curing agent (A) is not particularly limited, but alcohol solvents such as ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, acetone, etc. , Ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, ester solvents such as ethyl acetate and γ-butyrolactone, ether solvents such as tetrahydrofuran, aromatic solvents such as toluene, xylene and mesitylene, dimethylformamide, dimethyl Examples thereof include nitrogen atom-containing solvents such as acetamide and N-methylpyrrolidone, sulfur atom-containing solvents such as dimethyl sulfoxide, and the like.
Among these, cyclohexanone, propylene glycol monomethyl ether, methyl cellosolve, and γ-butyrolactone are preferable from the viewpoint of solubility. Cyclohexanone, propylene glycol monomethyl ether are preferable because of low toxicity and high volatility and hardly remain as a residual solvent. Dimethylacetamide is particularly preferred.

ここで硬化剤(A)に対するアミン化合物(D)の使用量は、(D)成分の−NH2基の当量(TD)に対する(A)成分のマレイミド基の当量(TA)の当量比(TA/TD)が1.0〜10.0の範囲であることが好ましく、該当量比(TA/TD)が2.0〜10.0の範囲であることがさらに好ましい。該当量比(TA/TD)を1.0以上とすることによりゲル化及び耐熱性が低下することがなく、10.0以下とすることにより有機溶剤への溶解性、メッキ密着強度、及び耐熱性が低下することがない。
また、有機溶媒の使用量は、硬化剤(A)とアミン化合物(D)の総和100質量部当たり、10〜1000質量部とすることが好ましく、100〜500質量部とすることがより好ましく、200〜500質量部とすることが特に好ましい。有機溶剤の配合量を10質量部以上とすることにより、硬化剤の有機溶媒への溶解性が不足することがなく、1000重量部以下とすることにより、反応に長時間を要することがなくなる。
Here, the amount of the amine compound (D) used relative to the curing agent (A) is the equivalent ratio of the equivalent (T A ) of the maleimide group of the (A) component to the equivalent (T D ) of the —NH 2 group of the (D) component. preferably (T a / T D) is in the range of 1.0 to 10.0, more preferably appropriate amount ratio (T a / T D) is in the range of 2.0 to 10.0. Appropriate amount ratio (T A / T D) without gelation and heat resistance is decreased by a 1.0 or more, solubility in an organic solvent by a 10.0, plating adhesion strength, And heat resistance does not fall.
Moreover, it is preferable to set it as 10-1000 mass parts per 100 mass parts of sum total of a hardening | curing agent (A) and an amine compound (D), and, as for the usage-amount of an organic solvent, it is more preferable to set it as 100-500 mass parts. It is especially preferable to set it as 200-500 mass parts. When the blending amount of the organic solvent is 10 parts by mass or more, the solubility of the curing agent in the organic solvent is not insufficient, and when it is 1000 parts by weight or less, the reaction does not take a long time.

アミン化合物(D)と硬化剤(A)の反応温度は、50〜200℃であることが好ましく70〜160℃であることが特に好ましい。反応時間は0.1〜10時間であることが好ましく、1〜6時間であることが特に好ましい。
また、この反応には任意に反応触媒を使用することができ、特に限定されない。反応触媒の例としては、トリエチルアミン、ピリジン、トリブチルアミン等のアミン類、メチルイミダゾール、フェニルイミダゾール等のイミダゾール類、トリフェニルホスフィン等のリン系触媒等が挙げられ、1種又は2種以上を混合して使用できる。
The reaction temperature of the amine compound (D) and the curing agent (A) is preferably 50 to 200 ° C, and particularly preferably 70 to 160 ° C. The reaction time is preferably from 0.1 to 10 hours, particularly preferably from 1 to 6 hours.
Moreover, a reaction catalyst can be arbitrarily used for this reaction, and it is not specifically limited. Examples of the reaction catalyst include amines such as triethylamine, pyridine, and tributylamine, imidazoles such as methylimidazole and phenylimidazole, and phosphorus-based catalysts such as triphenylphosphine. Can be used.

本発明の絶縁樹脂組成物には、さらに熱可塑性樹脂(E)を含有させることができる。熱可塑性樹脂としては、例えば、フェノキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンスルフィド樹脂、ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル樹脂、ポリアリレート樹脂、ポリブタジエン樹脂などが挙げられるが、本発明の絶縁樹脂組成物における相溶性や樹脂組成物の保存安定性の観点から特にフェノキシ樹脂が好ましい。   The insulating resin composition of the present invention can further contain a thermoplastic resin (E). Examples of the thermoplastic resin include phenoxy resin, polyimide resin, polyamideimide resin, polyetherimide resin, polysulfone resin, polyethersulfone resin, polyphenylene sulfide resin, polyphenylene ether resin, polycarbonate resin, polyether ether ketone resin, and polyester resin. , Polyarylate resins, polybutadiene resins, and the like. Phenoxy resins are particularly preferable from the viewpoints of compatibility in the insulating resin composition of the present invention and storage stability of the resin composition.

フェノキシ樹脂としては、特に限定されず、例えば、ビスフェノール型フェノキシ樹脂、ノボラック型フェノキシ樹脂、ナフタレン型フェノキシ樹脂、ビフェニル型フェノキシ樹脂等のフェノキシ樹脂が挙げられる。これらは、単独で使用してもよく、2種以上を組み合わせて使用してもよい。フェノキシ樹脂としては、耐熱性や耐湿性の観点から、特にビフェニル型フェノキシ樹脂が好ましい。熱可塑性樹脂の重量平均分子量は、特に限定されるものではないが、好ましくは5000〜100000である。   The phenoxy resin is not particularly limited, and examples thereof include phenoxy resins such as bisphenol type phenoxy resin, novolac type phenoxy resin, naphthalene type phenoxy resin, and biphenyl type phenoxy resin. These may be used alone or in combination of two or more. The phenoxy resin is particularly preferably a biphenyl type phenoxy resin from the viewpoint of heat resistance and moisture resistance. Although the weight average molecular weight of a thermoplastic resin is not specifically limited, Preferably it is 5000-100000.

市販されているフェノキシ樹脂は、ビスフェノールA型フェノキシ樹脂としては、フェノトートYP50〔商品名、東都化成(株)製〕、E−1256〔商品名、ジャパンエポキシレジン(株)製〕、フルオレン型フェノキシ樹脂としては、FX280、FX293〔商品名、東都化成(株)製〕、ビフェニル型フェノキシ樹脂としては、YX8100、YL6954、YL6974〔商品名、ジャパンエポキシレジン(株)製〕等が挙げられる。   Commercially available phenoxy resins include, as bisphenol A type phenoxy resins, phenotote YP50 [trade name, manufactured by Tohto Kasei Co., Ltd.], E-1256 [trade name, manufactured by Japan Epoxy Resin Co., Ltd.], fluorene type phenoxy. Examples of the resin include FX280, FX293 [trade name, manufactured by Toto Kasei Co., Ltd.], and examples of the biphenyl type phenoxy resin include YX8100, YL6954, and YL6974 (trade name, manufactured by Japan Epoxy Resin Co., Ltd.).

本発明の絶縁樹脂組成物には、さらに難燃性を付与するリン化合物(F)を含有させることができる。難燃性を付与するリン化合物(F)としては、例えば、リン含有エポキシ樹脂、リン含有フェノール樹脂、フェノキシホスファゼン化合物、縮合型リン酸エステル化合物、ジホスフィン酸塩等が挙げられる。特にこれらを併用することが有効である。   The insulating resin composition of the present invention may further contain a phosphorus compound (F) that imparts flame retardancy. Examples of the phosphorus compound (F) imparting flame retardancy include a phosphorus-containing epoxy resin, a phosphorus-containing phenol resin, a phenoxyphosphazene compound, a condensed phosphate ester compound, and a diphosphinate. It is particularly effective to use these in combination.

本発明の絶縁樹脂組成物には、N−置換マレイミド基と酸性置換基を有する硬化剤(A)に加えて、任意にエポキシ樹脂硬化剤及び/又は硬化促進剤(G)を併用することができる。
エポキシ樹脂硬化剤としては、エポキシ樹脂の硬化作用があれば特に限定されるものではないが、例としては、無水マレイン酸、無水マレイン酸共重合体等の酸無水物、ジシアンジアミド等のアミン化合物、フェノールノボラック、クレゾールノボラック、アミノトリアジンノボラック樹脂等のフェノール化合物等が挙げられる。これらの中で、硬化性と低熱膨張性の観点からジシアンジアミド、クレゾールノボラック、アミノトリアジンノボラックが好ましく、難燃性や接着性が向上することからジシアンジアミド、アミノトリアジンノボラック樹脂が特に好ましい。エポキシ樹脂の硬化剤は1種又は2種以上を混合して使用できる。
また、硬化促進剤としては、イミダゾール類及びその誘導体、第三級アミン類及び第四級アンモニウム塩等が挙げられる。
In addition to the curing agent (A) having an N-substituted maleimide group and an acidic substituent, the insulating resin composition of the present invention may optionally include an epoxy resin curing agent and / or a curing accelerator (G). it can.
The epoxy resin curing agent is not particularly limited as long as it has a curing action of epoxy resin, but examples include acid anhydrides such as maleic anhydride and maleic anhydride copolymers, amine compounds such as dicyandiamide, Examples thereof include phenol compounds such as phenol novolac, cresol novolac, and aminotriazine novolac resin. Among these, dicyandiamide, cresol novolak, and aminotriazine novolak are preferable from the viewpoints of curability and low thermal expansion, and dicyandiamide and aminotriazine novolak resin are particularly preferable because flame retardancy and adhesion are improved. The epoxy resin curing agent can be used alone or in combination of two or more.
Examples of the curing accelerator include imidazoles and derivatives thereof, tertiary amines and quaternary ammonium salts.

本発明に係る絶縁樹脂組成物は、固形分換算の(A)(B)及び(D)〜(G)成分(以下、これらの成分を樹脂成分とも云う)の合計量100質量部当たり、以下のような質量部とすることが好ましい。
硬化剤(A)の含有量は20〜90質量部とすることが好ましく、40〜90質量部とすることがより好ましい。(A)成分を20質量部以上とすることにより、難燃性、耐熱性、接着性及び誘電特性が向上する。
エポキシ樹脂(B)の含有量は10〜80質量部とすることが好ましく、10〜60質量部とすることがより好ましい。(B)成分を10質量部以上とすることにより、耐吸湿性、耐薬品性が向上し、また、80質量部以下とすることにより、接着性、難燃性が低下することがない。
The insulating resin composition according to the present invention has the following components (A) (B) and (D) to (G) in terms of solid content (hereinafter, these components are also referred to as resin components) per 100 parts by mass. It is preferable to set it as a mass part.
The content of the curing agent (A) is preferably 20 to 90 parts by mass, and more preferably 40 to 90 parts by mass. By setting the component (A) to 20 parts by mass or more, flame retardancy, heat resistance, adhesiveness and dielectric properties are improved.
The content of the epoxy resin (B) is preferably 10 to 80 parts by mass, and more preferably 10 to 60 parts by mass. When the component (B) is 10 parts by mass or more, the moisture absorption resistance and chemical resistance are improved, and when it is 80 parts by mass or less, the adhesiveness and flame retardancy are not reduced.

化学粗化可能な化合物(C)の含有量は、0.5〜5質量部とすることが好ましく、より好ましくは1〜4質量部である。化学粗化可能な化合物の含有量を0.5質量部以上とすることにより、絶縁樹脂層と導体層の接着強度が高くなり、5質量部以下とすることにより、配線間の絶縁信頼性が不十分になることがない。   It is preferable that content of the compound (C) which can be chemically roughened shall be 0.5-5 mass parts, More preferably, it is 1-4 mass parts. By setting the content of the compound capable of chemical roughening to 0.5 parts by mass or more, the adhesive strength between the insulating resin layer and the conductor layer is increased, and by setting the content to 5 parts by mass or less, the insulation reliability between wirings is increased. It will not be insufficient.

アミン化合物(D)の含有量は、0〜30質量部とすることが好ましく、5〜20質量部とすることがより好ましい。(D)成分を含有することにより、耐熱性、誘電特性が向上し、また、30質量部以下とすることにより、ゲル化、耐熱性の低下がない。   The content of the amine compound (D) is preferably 0 to 30 parts by mass, and more preferably 5 to 20 parts by mass. By containing the component (D), heat resistance and dielectric properties are improved, and when it is 30 parts by mass or less, gelation and heat resistance are not lowered.

熱可塑性樹脂(E)の含有量は、好ましくは0〜60質量部であり、より好ましくは2〜20質量部である。熱可塑性樹脂の含有量が少なすぎるとメッキ密着強度が低下する傾向にあり、多すぎると絶縁層の粗度が増大する傾向および熱膨張率が増大する傾向にある。
リン化合物の含有量は、樹脂成分中で、リン原子含有量が3質量%以下であることが好ましく、0.2〜3.0質量%であることがより好ましく、0.5〜3.0質量%が特に好ましい。リン原子含有率が低いと難燃性が不足するため、硬化剤(A)の含有量を高くすることで窒素原子含有率を高くし、難燃性を付与する必要がある。
Content of a thermoplastic resin (E) becomes like this. Preferably it is 0-60 mass parts, More preferably, it is 2-20 mass parts. If the content of the thermoplastic resin is too small, the plating adhesion strength tends to decrease, and if it is too large, the roughness of the insulating layer tends to increase and the coefficient of thermal expansion tends to increase.
The content of the phosphorus compound is preferably 3% by mass or less, more preferably 0.2 to 3.0% by mass, and more preferably 0.5 to 3.0% in the resin component. Mass% is particularly preferred. When the phosphorus atom content is low, the flame retardancy is insufficient. Therefore, it is necessary to increase the nitrogen atom content by increasing the content of the curing agent (A) to impart flame retardancy.

本発明の絶縁樹脂組成物では、絶縁樹脂層の熱膨張率を低下させるために無機充填材(H)を添加することが好ましい。無機充填材(H)の例としては、シリカ、マイカ、タルク、ガラス短繊維又は微粉末及び中空ガラス、三酸化アンチモン、炭酸カルシウム、石英粉末、水酸化アルミニウム、水酸化マグネシウム等が挙げられ、これらの中で誘電特性、耐熱性、難燃性の点からシリカ、水酸化アルミニウム、水酸化マグネシウムが好ましく、低熱膨張性であることからシリカ、水酸化アルミニウムがより好ましい。また、下層の配線層を埋めこむために、多層プリント配線板用の支持体付絶縁フィルムには、高い流動性が求められる。よって、無機充填材は球状であることが、流動性の観点から望ましい。   In the insulating resin composition of the present invention, it is preferable to add an inorganic filler (H) in order to reduce the thermal expansion coefficient of the insulating resin layer. Examples of the inorganic filler (H) include silica, mica, talc, short glass fiber or fine powder and hollow glass, antimony trioxide, calcium carbonate, quartz powder, aluminum hydroxide, magnesium hydroxide, and the like. Among these, silica, aluminum hydroxide, and magnesium hydroxide are preferable from the viewpoint of dielectric properties, heat resistance, and flame retardancy, and silica and aluminum hydroxide are more preferable because of low thermal expansion. Moreover, in order to embed a lower wiring layer, the insulating film with a support for a multilayer printed wiring board is required to have high fluidity. Therefore, it is desirable from the viewpoint of fluidity that the inorganic filler is spherical.

無機充填材(H)の含有量は、樹脂成分合計量100質量部に対し、10〜45質量部であることが好ましく、より好ましくは、20〜35質量部である。無機充填材を10質量部以上とすることにより硬化後の絶縁樹脂層の低熱膨張率が低下する。また、無機充填材を45質量部以下とすることにより、絶縁樹脂層がもろくなり、温度サイクル試験などでクラックが発生することがない。
これらの無機充填材は、分散性を高めるために、カップリング剤で処理することができ、ニーダー、ボールミル、ビーズミル、3本ロール等既知の混練方法により無機充填材を分散できる。
無機充填材の平均粒径は、配線の微細化が進むことを考慮すると、1μm以下が望ましく、0.5μm以下がより好ましい。1μm以下とすることにより、後述するデスミア工程後の表面凹凸が小さくなり、エッチング残りが発生することや、絶縁性が不十分となることがない。平均粒径はレーザ回折散乱粒度分布測定装置により測定することができる。
It is preferable that content of an inorganic filler (H) is 10-45 mass parts with respect to 100 mass parts of resin component total amount, More preferably, it is 20-35 mass parts. By making the inorganic filler 10 parts by mass or more, the low thermal expansion coefficient of the insulating resin layer after curing is lowered. Further, when the inorganic filler is 45 parts by mass or less, the insulating resin layer becomes brittle and cracks do not occur in a temperature cycle test or the like.
These inorganic fillers can be treated with a coupling agent in order to increase dispersibility, and the inorganic filler can be dispersed by a known kneading method such as a kneader, a ball mill, a bead mill, or a three roll.
The average particle diameter of the inorganic filler is preferably 1 μm or less, more preferably 0.5 μm or less, considering that the miniaturization of wiring is advanced. By setting the thickness to 1 μm or less, the surface unevenness after the desmear process described later is reduced, so that no etching residue occurs and the insulating property is not insufficient. The average particle diameter can be measured by a laser diffraction / scattering particle size distribution measuring apparatus.

さらに、本発明の絶縁樹脂組成物には、本発明の効果を阻害しない範囲で、必要に応じて他の成分を配合することができる。他の成分としては、例えば、有機リン系難燃剤、有機系窒素含有リン化合物、窒素化合物、シリコーン系難燃剤、金属水酸化物等の難燃剤、シリコンパウダー、ナイロンパウダー、フッ素パウダー等の有機充填材、オルベン、ベントン等の増粘剤、シリコーン系、フッ素系、高分子系の消泡剤又はレベリング剤、イミダゾール系、チアゾール系、トリアゾール系、シラン系カップリング剤等の密着性付与剤、ベンゾトリアゾール系等の紫外線吸収剤、ヒンダードフェノール系やスチレン化フェノール等の酸化防止剤、ベンゾフェノン類、ベンジルケタール類、チオキサントン系等の光重合開始剤、スチルベン誘導体等の蛍光増白剤、フタロシアニン・ブルー、フタロシアニン・グリーン、アイオジン・グリーン、ジスアゾイエロー、カーボンブラック等の着色剤等を挙げることができる。   Furthermore, in the insulating resin composition of the present invention, other components can be blended as necessary within a range not inhibiting the effects of the present invention. Examples of other components include organic phosphorus flame retardants, organic nitrogen-containing phosphorus compounds, nitrogen compounds, silicone flame retardants, flame retardants such as metal hydroxides, and organic fillings such as silicon powder, nylon powder, and fluorine powder. Materials, thickeners such as olben, benton, silicone, fluorine, polymer defoamers or leveling agents, imidazole, thiazole, triazole, silane coupling agents, etc. UV absorbers such as triazoles, antioxidants such as hindered phenols and styrenated phenols, photopolymerization initiators such as benzophenones, benzyl ketals, thioxanthones, fluorescent whitening agents such as stilbene derivatives, phthalocyanine blue , Phthalocyanine green, Iodine green, Disazo yellow, Carbon Coloring agents such as racks and the like.

なお、本発明の支持体付絶縁フィルム及びプリプレグに用いられる絶縁樹脂組成物には、希釈溶剤として有機溶剤を任意に使用することができる。該有機溶剤は特に限定されないが、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤、メチルセロソルブ等のアルコール系溶剤、テトラヒドロフラン等のエーテル系溶剤、トルエン、キシレン、メシチレン等の芳香族系溶剤等が挙げられ、1種又は2種以上を混合して使用できる。   In the insulating resin composition used for the insulating film with support and the prepreg of the present invention, an organic solvent can be arbitrarily used as a diluting solvent. The organic solvent is not particularly limited. For example, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, alcohol solvents such as methyl cellosolve, ether solvents such as tetrahydrofuran, aromatic solvents such as toluene, xylene, and mesitylene. Examples of the solvent include one type or a mixture of two or more types.

本発明の絶縁樹脂組成物は、多層プリント配線板の製造において、絶縁樹脂層を形成するために好適に使用することができる。本発明の絶縁樹脂組成物は、ワニス状態で回路基板に塗布して絶縁樹脂層を形成することもできるが、工業的には一般に、支持体付絶縁フィルム、プリプレグ等のシート状積層材料の形態で用いるのが好ましい。   The insulating resin composition of the present invention can be suitably used for forming an insulating resin layer in the production of a multilayer printed wiring board. Although the insulating resin composition of the present invention can be applied to a circuit board in a varnish state to form an insulating resin layer, it is generally industrially in the form of a sheet-like laminated material such as an insulating film with a support, a prepreg, etc. Is preferably used.

本発明の支持体付絶縁フィルムは、絶縁樹脂組成物の半硬化状態のフィルムが支持体表面に形成されているものである。(A)、(B)及び(C)成分を配合した絶縁樹脂組成物、又は更に(D)〜(G)成分、或いは更に(H)成分を加えた絶縁樹脂組成物を、支持体フィルムに塗布し、乾燥によってワニス中の溶剤を揮発させ、半硬化(Bステージ化)させて絶縁樹脂組成物層を形成することができる。ただし、この半硬化状態は、絶縁樹脂組成物を硬化する際に、絶縁樹脂層とそれを形成する回路パターン基板の接着力が確保される状態で、また、回路パターン基板の埋めこみ性(流動性)が確保される状態であることが望ましい。塗工方法(塗工機)としては、ダイコーター、コンマコータ、バーコータ、キスコータ、ロールコーター等が利用でき、絶縁樹脂層の厚みによって適宜使用される。乾燥方法としては、加熱、あるいは熱風吹きつけなどを用いることができる。   The insulating film with a support of the present invention is such that a semi-cured film of an insulating resin composition is formed on the surface of the support. An insulating resin composition containing the components (A), (B), and (C), or an insulating resin composition further containing the components (D) to (G) or the component (H) is added to the support film. The insulating resin composition layer can be formed by applying and drying to volatilize the solvent in the varnish and semi-curing (B-stage). However, this semi-cured state is a state in which the adhesive strength between the insulating resin layer and the circuit pattern substrate forming the insulating resin layer is ensured when the insulating resin composition is cured, and the embedding property (fluidity) of the circuit pattern substrate is ensured. ) Is desirable. As a coating method (coating machine), a die coater, a comma coater, a bar coater, a kiss coater, a roll coater or the like can be used, and it is appropriately used depending on the thickness of the insulating resin layer. As a drying method, heating, hot air blowing, or the like can be used.

絶縁樹脂組成物を支持体フィルムに塗布した後の乾燥条件は、特に限定されないが、該絶縁樹脂組成物層への有機溶剤の含有量が通常の10質量%以下、好ましくは5質量%以下となるように乾燥させる。ワニス中の有機溶剤量、有機溶剤の沸点によっても異なるが、例えば30〜60質量%の有機溶剤を含むワニスを50〜150℃で3〜10分程度乾燥させることにより、絶縁樹脂組成物層が形成される。乾燥条件は、予め簡単な実験により適宜、好適な乾燥条件を設定することが好ましい。   The drying conditions after applying the insulating resin composition to the support film are not particularly limited, but the content of the organic solvent in the insulating resin composition layer is usually 10% by mass or less, preferably 5% by mass or less. Let dry. Depending on the amount of the organic solvent in the varnish and the boiling point of the organic solvent, for example, by drying a varnish containing 30 to 60% by mass of the organic solvent at 50 to 150 ° C. for about 3 to 10 minutes, the insulating resin composition layer becomes It is formed. It is preferable to set suitable drying conditions as appropriate by simple experiments in advance.

支持体付絶縁フィルムにおいて形成される絶縁樹脂組成物層の厚さは、通常、回路基板が有する導体層の厚さ以上とする。導体層の厚さは5〜70μmであることが好ましく、プリント配線板の軽薄短小化のために、5〜50μmであることがより好ましく、5〜30μmであることが最も好ましい。   The thickness of the insulating resin composition layer formed in the insulating film with support is usually not less than the thickness of the conductor layer of the circuit board. The thickness of the conductor layer is preferably 5 to 70 μm, more preferably 5 to 50 μm, and most preferably 5 to 30 μm in order to reduce the thickness of the printed wiring board.

支持体付絶縁フィルムにおける支持体は、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミドなどからなるフィルム、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。なお、支持体及び後述する保護フィルムには、マット処理、コロナ処理の他、離型処理を施してもよい。   The support in the insulating film with the support is made of polyolefin such as polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”), polyester such as polyethylene naphthalate, polycarbonate, polyimide, and the like. Examples of the film include metal foil such as release paper, copper foil, and aluminum foil. In addition, you may give a mold release process to a support body and the protective film mentioned later other than a mat | matte process and a corona treatment.

支持体の厚さは特に限定されないが、10〜150μmが好ましく、より好ましくは25〜50μmである。絶縁樹脂組成物層の支持体が密着していない面には、支持体に準じた保護フィルムをさらに積層することができる。保護フィルムの厚さは、特に限定されるものではないが、例えば1〜40μmである。保護フィルムを積層することにより、異物混入を防止することができる。
支持体付絶縁フィルムは、ロール状に巻き取って貯蔵することもできる。
Although the thickness of a support body is not specifically limited, 10-150 micrometers is preferable, More preferably, it is 25-50 micrometers. A protective film according to the support can be further laminated on the surface of the insulating resin composition layer on which the support is not in close contact. Although the thickness of a protective film is not specifically limited, For example, it is 1-40 micrometers. By laminating the protective film, foreign matter can be prevented from being mixed.
The insulating film with a support can be wound and stored in a roll shape.

本発明の支持体付絶縁フィルムを用いて積層板を形成し、多層プリント配線板を製造する方法の形態としては、例えば、支持体付絶縁フィルムを、真空ラミネーターを用いて回路基板の片面又は両面にラミネートする。回路基板に用いられる基板としては、例えば、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等が挙げられる。なお、ここで回路基板とは、上記のような基板の片面又は両面にパターン加工された導体層(回路)が形成されたものをいう。また導体層と絶縁層とを交互に積層してなる積層板及び該積層板から製造される多層プリント配線板において、該多層プリント配線板の最外層の片面又は両面がパターン加工された導体層(回路)となっているものも、ここでいう回路基板に含まれる。なお導体層表面には、黒化処理等により予め粗化処理が施されていてもよい。   As a form of the method of forming a laminated board using the insulating film with a support of the present invention and producing a multilayer printed wiring board, for example, the insulating film with a support is used on one side or both sides of a circuit board using a vacuum laminator. Laminate. Examples of the substrate used for the circuit substrate include a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, a thermosetting polyphenylene ether substrate, and the like. In addition, a circuit board means here that the conductor layer (circuit) patterned was formed in the one or both surfaces of the above boards. Further, in a laminated board obtained by alternately laminating conductor layers and insulating layers, and a multilayer printed wiring board manufactured from the laminated board, a conductor layer in which one or both surfaces of the outermost layer of the multilayer printed wiring board are patterned ( Circuits) are also included in the circuit board here. The surface of the conductor layer may be subjected to a roughening process in advance by a blackening process or the like.

上記ラミネートにおいて、支持体付絶縁フィルムが保護フィルムを有している場合には該保護フィルムを除去した後、必要に応じて支持体付絶縁フィルム及び回路基板をプレヒートし、支持体付絶縁フィルムを加圧及び加熱しながら回路基板に圧着する。本発明の支持体付絶縁フィルムにおいては、真空ラミネート法により減圧下で回路基板にラミネートする方法が好適に用いられる。ラミネート条件は、特に限定されるものではないが、例えば、圧着温度(ラミネート温度)を好ましくは70〜140℃、圧着圧力を好ましくは0.1〜1.1MPaとし、空気圧20mmHg(26.7hPa)以下の減圧下でラミネートするのが好ましい。また、ラミネートの方法は、バッチ式であってもロールでの連続式であってもよい。   In the above laminate, when the insulating film with a support has a protective film, after removing the protective film, the insulating film with a support and the circuit board are preheated as necessary, Crimp to circuit board while pressing and heating. In the insulating film with a support of the present invention, a method of laminating on a circuit board under reduced pressure by a vacuum laminating method is suitably used. Lamination conditions are not particularly limited. For example, the pressure bonding temperature (laminating temperature) is preferably 70 to 140 ° C., the pressure bonding pressure is preferably 0.1 to 1.1 MPa, and the air pressure is 20 mmHg (26.7 hPa). Lamination is preferably performed under the following reduced pressure. The laminating method may be a batch method or a continuous method using a roll.

支持体付絶縁フィルムを回路基板にラミネートした後、室温付近に冷却してから、支持体を剥離する場合は剥離し、熱硬化することにより回路基板に絶縁樹脂層を形成することができる。熱硬化の条件は、絶縁樹脂組成物中の樹脂成分の種類、含有量などに応じて適宜選択すればよいが、好ましくは150℃〜220℃で20分〜180分、より好ましくは160℃〜200℃で30〜120分の範囲で選択される。   After laminating the insulating film with the support on the circuit board, after cooling to near room temperature, the support can be peeled off and then thermally cured to form an insulating resin layer on the circuit board. The thermosetting conditions may be appropriately selected according to the type and content of the resin component in the insulating resin composition, but are preferably 150 ° C. to 220 ° C. for 20 minutes to 180 minutes, more preferably 160 ° C. to It is selected in the range of 30 to 120 minutes at 200 ° C.

絶縁樹脂層を形成した後、硬化前に支持体を剥離しなかった場合は、ここで剥離する。次いで必要により、回路基板上に形成された絶縁層に穴開けを行ってビアホール、スルーホールを形成する。穴あけは、例えば、ドリル、レーザー、プラズマ等の公知の方法により、また必要によりこれらの方法を組み合わせて行うことができるが、炭酸ガスレーザー、YAGレーザー等のレーザーによる穴あけが最も一般的な方法である。   If the support is not peeled off after the insulating resin layer is formed, it is peeled off here. Next, if necessary, holes are formed in the insulating layer formed on the circuit board to form via holes and through holes. Drilling can be performed, for example, by a known method such as drilling, laser, or plasma, or by combining these methods as necessary. However, drilling by a laser such as a carbon dioxide gas laser or a YAG laser is the most common method. is there.

次いで、乾式メッキ又は湿式メッキにより絶縁樹脂層上に導体層を形成する。乾式メッキとしては、蒸着、スパッタリング、イオンプレーティング等の公知の方法を使用することができる。湿式メッキの場合は、まず、硬化した絶縁樹脂組成物層の表面を、過マンガン酸塩(過マンガン酸カリウム、過マンガン酸ナトリウム等)、重クロム酸塩、オゾン、過酸化水素/硫酸、硝酸等の酸化剤で粗化処理し、凸凹のアンカーを形成する。酸化剤としては、特に過マンガン酸カリウム、過マンガン酸ナトリウム等の水酸化ナトリウム水溶液(アルカリ性過マンガン酸水溶液)が好ましく用いられる。次いで、無電解メッキと電解メッキとを組み合わせた方法で導体層を形成する。また導体層とは逆パターンのメッキレジストを形成し、無電解メッキのみで導体層を形成することもできる。その後のパターン形成の方法として、例えば、公知のサブトラクティブ法、セミアディティブ法などを用いることができる。   Next, a conductor layer is formed on the insulating resin layer by dry plating or wet plating. As the dry plating, a known method such as vapor deposition, sputtering, or ion plating can be used. In the case of wet plating, first, the surface of the cured insulating resin composition layer is permanganate (potassium permanganate, sodium permanganate, etc.), dichromate, ozone, hydrogen peroxide / sulfuric acid, nitric acid. Roughening treatment is performed with an oxidizing agent such as to form an uneven anchor. As the oxidizing agent, an aqueous sodium hydroxide solution (alkaline permanganate aqueous solution) such as potassium permanganate and sodium permanganate is particularly preferably used. Next, a conductor layer is formed by a method combining electroless plating and electrolytic plating. Alternatively, a plating resist having a pattern opposite to that of the conductor layer can be formed, and the conductor layer can be formed only by electroless plating. As a subsequent pattern formation method, for example, a known subtractive method or semi-additive method can be used.

本発明のプリプレグは、絶縁樹脂組成物が繊維シート状補強基材に含浸されているものであり、本発明の絶縁樹脂組成物を繊維シート状補強基材にホットメルト法又はソルベント法により含浸した後、加熱してBステージ化することによる製造される。   The prepreg of the present invention is a fiber sheet-like reinforcing base impregnated with an insulating resin composition, and the fiber sheet-like reinforcing base is impregnated with a hot melt method or a solvent method. After that, it is manufactured by heating to B stage.

繊維シート状補強基材としては、例えば、各種の電気絶縁材料用積層板に用いられている周知のものが使用できる。その材質の例としては、Eガラス、Dガラス、Sガラス及びQガラス等の無機物繊維、ポリイミド、ポリエステル及びポリテトラフルオロエチレン等の有機繊維、並びにそれらの混合物等が挙げられる。これらの基材は、例えば、織布、不織布、ロービンク、チョップドストランドマット及びサーフェシングマット等の形状を有するが、材質及び形状は、目的とする成形物の用途や性能により選択され、必要により、単独又は2種類以上の材質及び形状を組み合わせることができる。基材の厚さは、特に制限されず、例えば、約0.03〜0.5mmを使用することができ、シランカップリング剤等で表面処理したもの又は機械的に開繊処理を施したものが、耐熱性や耐湿性、加工性の面から好適である。   As the fiber sheet reinforcing substrate, for example, known materials used for various types of laminated sheets for electrical insulating materials can be used. Examples of the material include inorganic fibers such as E glass, D glass, S glass, and Q glass, organic fibers such as polyimide, polyester, and polytetrafluoroethylene, and mixtures thereof. These base materials have, for example, shapes such as woven fabric, non-woven fabric, robink, chopped strand mat, and surfacing mat, but the material and shape are selected depending on the intended use and performance of the molded product, and if necessary, A single material or two or more materials and shapes can be combined. The thickness of the base material is not particularly limited, and for example, about 0.03 to 0.5 mm can be used, and the surface is treated with a silane coupling agent or the like or mechanically subjected to a fiber opening treatment. However, it is suitable from the aspects of heat resistance, moisture resistance, and workability.

上記のホットメルト法は、樹脂を有機溶剤に溶解することなく、該樹脂との剥離性の良い塗工紙に一旦コーティングし、それをシート状補強基材にラミネートする、あるいは樹脂を、有機溶剤に溶解することなく、ダイコーターによりシート状補強基材に直接塗工するなどして、プリプレグを製造する方法である。またソルベント法は、支持体付絶縁フィルムと同様にして樹脂を有機溶剤に溶解して樹脂ワニスを調製し、このワニスにシート状補強基材を浸漬し、樹脂ワニスをシート状補強基材に含浸させ、その後乾燥させる方法である。   The above hot-melt method is a method in which the resin is once coated on a coated paper having good releasability from the resin without dissolving the resin in the organic solvent, and then laminated on the sheet-like reinforcing substrate, or the resin is added to the organic solvent. In this method, the prepreg is produced by, for example, coating directly on a sheet-like reinforcing substrate with a die coater without being dissolved in the substrate. In the solvent method, the resin is dissolved in an organic solvent in the same manner as the insulating film with a support to prepare a resin varnish, the sheet-like reinforcing base material is immersed in the varnish, and the sheet-like reinforcing base material is impregnated with the resin varnish. And then drying.

次に、上記のようにして製造したプリプレグを用いて積層板を製造する方法として、例えば、回路基板に本発明のプリプレグを1枚あるいは必要により数枚重ね、離型フィルムを介して金属プレートで挟み、加圧・加熱条件下でプレス積層する。加圧・加熱条件は、好ましくは、圧力が0.5〜4MPa、温度が120〜200℃で20〜100分である。また支持体付絶縁フィルムと同様に、プリプレグを真空ラミネート法により回路基板にラミネートした後、加熱硬化することも可能である。得られた積層板は、その後、上記で記載した方法と同様にして、硬化したプリプレグ表面を粗化した後、導体層をメッキにより形成して多層プリント配線板を製造することができる。   Next, as a method for producing a laminate using the prepreg produced as described above, for example, one or several prepregs of the present invention are laminated on a circuit board, and a metal plate is interposed through a release film. Press and laminate under pressure and heating conditions. The pressurizing / heating conditions are preferably a pressure of 0.5 to 4 MPa and a temperature of 120 to 200 ° C. for 20 to 100 minutes. Similarly to the insulating film with support, the prepreg can be laminated on a circuit board by a vacuum laminating method and then cured by heating. The obtained laminate can then be used to produce a multilayer printed wiring board by roughening the cured prepreg surface in the same manner as described above, and then forming a conductor layer by plating.

次に、下記の実施例により本発明を更に詳しく説明するが、本発明はこれらの記載に限定されるものではない。
なお、各実施例及び比較例で得られた支持体付絶縁フィルムの絶縁樹脂層と銅張積層板は、以下の方法により性能を測定・評価した。
Next, the present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these descriptions.
In addition, the performance of the insulating resin layer and the copper-clad laminate of the insulating film with support obtained in each Example and Comparative Example was measured and evaluated by the following method.

(1)ガラス転移温度(Tg)及び熱膨張率
支持体付絶縁フィルムの絶縁樹脂層を、銅箔〔F3−WS−18,商品名,古河サーキットフォイル(株)社製〕に向かい合わせてラミネートし、PETフィルムを剥離し、180℃で90分間硬化した。その後、銅箔を全面エッチングして、硬化後の絶縁樹脂層の熱膨張係数を評価する試料を作製した。
得られたシート状の硬化物を、長さ20mm、幅3mmに切断し、TMA試験装置(デュポン社製、TMA2940)を用いて、昇温速度10℃/分、測定長15mm、加重5g、引張加重法で連続して2回測定した。2回目の測定におけるガラス転移温度(Tg)、30〜120℃までの平均線熱膨張率を算出した。
(1) Glass transition temperature (Tg) and coefficient of thermal expansion The insulating resin layer of the insulating film with support is laminated facing the copper foil [F3-WS-18, trade name, manufactured by Furukawa Circuit Foil Co., Ltd.]. The PET film was peeled off and cured at 180 ° C. for 90 minutes. Thereafter, the entire surface of the copper foil was etched to prepare a sample for evaluating the thermal expansion coefficient of the cured insulating resin layer.
The obtained sheet-like cured product was cut into a length of 20 mm and a width of 3 mm, and using a TMA test apparatus (manufactured by DuPont, TMA2940), the heating rate was 10 ° C./min, the measurement length was 15 mm, the load was 5 g, and the tension was The measurement was performed twice in succession by the weight method. The glass transition temperature (Tg) in the second measurement and the average linear thermal expansion coefficient from 30 to 120 ° C. were calculated.

(2)銅箔接着性(メッキ密着強度)
ガラス布基材エポキシ樹脂両面銅張積層板〔日立化成工業(株)製、商品名:MCL−E−679F、銅箔厚さ:12μm〕の両面をメック(株)製「CZ8100」(商品名)を用いて粗化処理を行った。
支持体付絶縁フィルムを、上記で粗化処理を行った回路基板の両面にラミネートした。ラミネートは30秒間減圧して気圧を13hPa以下とし、その後30秒間、圧力0.5MPaでプレスすることにより行った。
ラミネートされた支持体付絶縁フィルムからPETフィルムを剥離し、180℃、60分の硬化条件で絶縁樹脂組成物層を硬化して、絶縁樹脂層を形成した。
次いで、積層板をデスミア処理液に浸漬することによって、絶縁樹脂層表面に微細な凹凸を形成した。セミアディティブ工法によるメッキを行い、積層板を銅エッチング液に浸漬することにより3mm幅のメッキ銅箔を形成して評価基板を作製し、オートグラフ(島津製作所製AG−100C)を用いてメッキ密着強度を測定した。
(2) Copper foil adhesion (plating adhesion strength)
“CZ8100” (trade name) manufactured by MEC Co., Ltd. on both sides of a glass cloth base epoxy resin double-sided copper-clad laminate [manufactured by Hitachi Chemical Co., Ltd., trade name: MCL-E-679F, copper foil thickness: 12 μm] ) Was used for roughening treatment.
The insulating film with a support was laminated on both surfaces of the circuit board that had been roughened as described above. Lamination was performed by reducing the pressure for 30 seconds to a pressure of 13 hPa or less, and then pressing at a pressure of 0.5 MPa for 30 seconds.
The PET film was peeled from the laminated insulating film with a support, and the insulating resin composition layer was cured under curing conditions at 180 ° C. for 60 minutes to form an insulating resin layer.
Next, fine irregularities were formed on the surface of the insulating resin layer by immersing the laminate in a desmear treatment liquid. A semi-additive method is used for plating, and a laminated copper plate is dipped in a copper etching solution to form a 3 mm-wide plated copper foil to produce an evaluation substrate, which is plated and adhered using an autograph (AG-100C manufactured by Shimadzu Corporation). The strength was measured.

(3)はんだ耐熱性
銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた5cm角の評価基板を作製し、平山製作所(株)製プレッシャー・クッカー試験装置を用いて、121℃、2atmの条件で4時間までプレッシャー・クッカー処理を行った後、温度288℃のはんだ浴に、評価基板を20秒間浸漬した後、外観を観察することによりはんだ耐熱性を評価した。
(3) Solder heat resistance A 5 cm square evaluation board from which the copper foil has been removed by immersing a copper clad laminate in a copper etching solution is prepared and 121 ° C. using a pressure cooker test apparatus manufactured by Hirayama Seisakusho. After performing the pressure-cooker treatment for up to 4 hours under the condition of 2 atm, the evaluation substrate was immersed in a solder bath at a temperature of 288 ° C. for 20 seconds, and then the solder heat resistance was evaluated by observing the appearance.

(4)銅付き耐熱性(T−288)
銅張積層板から5mm角の評価基板を作製し、TMA試験装置(デュポン社製、TMA2940)を用い、圧縮法により288℃で評価基板の膨れが発生するまでの時間を測定することにより評価した。
(4) Heat resistance with copper (T-288)
An evaluation board of 5 mm square was produced from a copper clad laminate, and evaluation was performed by measuring the time until the evaluation board swells at 288 ° C. by a compression method using a TMA test apparatus (manufactured by DuPont, TMA2940). .

(5)吸湿性(吸水率)
銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた評価基板を作製し、平山製作所(株)製プレッシャー・クッカー試験装置を用いて、121℃、2atmの条件で4時間までプレッシャー・クッカー処理を行った後、評価基板の吸水率を測定した。
(5) Hygroscopicity (water absorption rate)
A copper-clad laminate was immersed in a copper etching solution to produce an evaluation substrate from which the copper foil was removed, and pressure was applied for up to 4 hours under the conditions of 121 ° C. and 2 atm using a pressure cooker test apparatus manufactured by Hirayama Seisakusho. -After the cooker treatment, the water absorption rate of the evaluation substrate was measured.

(6)難燃性の評価
銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた評価基板から、長さ127mm、幅12.7mmに切り出した試験片を作製し、UL94の試験法(V法)に準じて評価した。
(6) Flame Retardancy Evaluation A test piece cut out to 127 mm in length and 12.7 mm in width was prepared from an evaluation board from which a copper foil was removed by immersing a copper-clad laminate in a copper etching solution, and tested for UL94. Evaluation was made according to the method (Method V).

製造例1:硬化剤(A−1)の製造
温度計、攪拌装置、還流冷却管付き水分定量器の付いた加熱及び冷却可能な容積2リットルの反応容器に、ビス(4−マレイミドフェニル)メタン:358.00gと、m−アミノフェノール:54.50g、及びプロピレングリコールモノメチルエーテル:412.50gを入れ、還流させながら5時間反応させて硬化剤(A−1)の溶液を得た。
Production Example 1: Production of Curing Agent (A-1) Bis (4-maleimidophenyl) methane was added to a reaction vessel having a volume of 2 liters that can be heated and cooled, equipped with a thermometer, a stirrer, and a moisture meter with a reflux condenser. : 358.00 g, m-aminophenol: 54.50 g, and propylene glycol monomethyl ether: 412.50 g were added and reacted for 5 hours while refluxing to obtain a solution of the curing agent (A-1).

製造例2:硬化剤(A−2)の製造
温度計、攪拌装置、還流冷却管付き水分定量器の付いた加熱及び冷却可能な容積2リットルの反応容器に、ビス(4−マレイミドフェニル)メタン:358.00gと、p−アミノフェノール:54.50g、及びプロピレングリコールモノメチルエーテル:412.50gを入れ、還流させながら5時間反応させて硬化剤(A−2)の溶液を得た。
Production Example 2: Production of curing agent (A-2) Bis (4-maleimidophenyl) methane was added to a reaction vessel having a volume of 2 liters capable of being heated and cooled, equipped with a thermometer, a stirrer, and a moisture meter with a reflux condenser. : 358.00 g, p-aminophenol: 54.50 g, and propylene glycol monomethyl ether: 412.50 g were added and reacted for 5 hours while refluxing to obtain a solution of the curing agent (A-2).

製造例3:硬化剤(A−3)の製造
温度計、攪拌装置、還流冷却管付き水分定量器の付いた加熱及び冷却可能な容積2リットルの反応容器に、ビス(4−マレイミドフェニル)メタン:358.00gと、p−アミノ安息香酸:68.50g、及びジメチルアセトアミド:426.50gを入れ、140℃で5時間反応させて硬化剤(A−3)の溶液を得た。
Production Example 3: Production of Curing Agent (A-3) Bis (4-maleimidophenyl) methane was placed in a reaction vessel with a volume of 2 liters that can be heated and cooled, equipped with a thermometer, a stirrer, and a moisture meter with a reflux condenser. : 358.00 g, p-aminobenzoic acid: 68.50 g, and dimethylacetamide: 426.50 g were added and reacted at 140 ° C. for 5 hours to obtain a solution of the curing agent (A-3).

製造例4:硬化剤(A−4)の製造
温度計、攪拌装置、還流冷却管付き水分定量器の付いた加熱及び冷却可能な容積2リットルの反応容器に、N,N'−(1,3−フェニレン)ビスマレイミド:268.00gと、m−アミノフェノール:54.50g、及びジメチルアセトアミド:322.50gを入れ、140℃で5時間反応させて硬化剤(A−4)の溶液を得た。
Production Example 4: Production of Curing Agent (A-4) In a reaction vessel with a volume of 2 liters that can be heated and cooled, equipped with a thermometer, a stirrer, and a moisture meter with a reflux condenser, N, N ′-(1, 3-Phenylene) bismaleimide: 268.00 g, m-aminophenol: 54.50 g, and dimethylacetamide: 322.50 g were added and reacted at 140 ° C. for 5 hours to obtain a solution of the curing agent (A-4). It was.

製造例5:硬化剤(A−5)の製造
温度計、攪拌装置、還流冷却管付き水分定量器の付いた加熱及び冷却可能な容積2リットルの反応容器に、ビス(4−マレイミドフェニル)スルホン:408.00gと、p−アミノフェノール:54.50g、及びジメチルアセトアミド:462.50gを入れ、100℃で2時間反応させて硬化剤(A−5)の溶液を得た。
Production Example 5: Production of curing agent (A-5) Bis (4-maleimidophenyl) sulfone was placed in a reaction vessel having a volume of 2 liters capable of being heated and cooled, equipped with a thermometer, a stirrer, and a moisture meter with a reflux condenser. : 408.00 g, p-aminophenol: 54.50 g, and dimethylacetamide: 462.50 g were added and reacted at 100 ° C. for 2 hours to obtain a solution of the curing agent (A-5).

製造例6:硬化剤(A−6)の製造
温度計、攪拌装置、還流冷却管付き水分定量器の付いた加熱及び冷却可能な容積2リットルの反応容器に、ビス(4−マレイミドフェニル)エーテル:360.00gと、p−アミノフェノール:54.50g、及びジメチルアセトアミド:414.50gを入れ、100℃で2時間反応させて硬化剤(A−6)の溶液を得た。
Production Example 6: Production of curing agent (A-6) Bis (4-maleimidophenyl) ether was added to a 2 liter reaction vessel with a thermometer, a stirrer, and a moisture meter with a reflux condenser and capable of heating and cooling. : 360.00 g, p-aminophenol: 54.50 g, and dimethylacetamide: 414.50 g were added and reacted at 100 ° C. for 2 hours to obtain a solution of the curing agent (A-6).

比較製造例1:硬化剤(A−7)の製造
蒸気加熱装置を付けた容積1リットルのニーダーに、ビス(4−マレイミドフェニル)メタン:358.00gとm−アミノフェノール:54.50gを入れ、135〜140℃で15分間加熱混練した後冷却し、粉砕してN−置換マレイミド基と酸性置換基を有する硬化剤(A−7)の粉末を得た。
Comparative production example 1: Production of curing agent (A-7) Bis (4-maleimidophenyl) methane: 358.00 g and m-aminophenol: 54.50 g were placed in a 1 liter kneader equipped with a steam heating device. The mixture was heated and kneaded at 135 to 140 ° C. for 15 minutes, cooled, and pulverized to obtain a hardener (A-7) powder having an N-substituted maleimide group and an acidic substituent.

比較製造例2:硬化剤(A−8)の製造
蒸気加熱装置を付けた容積1リットルのニーダーに、ビス(4−マレイミドフェニル)メタン:358.00gとm−アミノ安息香酸:68.50gを入れ、135〜140℃で15分間加熱混練した後冷却し、粉砕してN−置換マレイミド基と酸性置換基を有する硬化剤(A−8)の粉末を得た。
Comparative Production Example 2: Production of Curing Agent (A-8) Bis (4-maleimidophenyl) methane: 358.00 g and m-aminobenzoic acid: 68.50 g were added to a 1 liter kneader equipped with a steam heating device. The mixture was heated and kneaded at 135 to 140 ° C. for 15 minutes, cooled, and pulverized to obtain a powder of a curing agent (A-8) having an N-substituted maleimide group and an acidic substituent.

(実施例1〜12、比較例1〜6)
(A)硬化剤として、製造例1〜6及び比較製造例1〜2で得られた硬化剤の溶液、
(B)エポキシ樹脂として、2官能ナフタレン型エポキシ樹脂〔大日本インキ化学工業(株)製、商品名、HP−4032D〕、ビフェニルアラルキル型エポキシ樹脂〔日本化薬(株)製、商品名:NC−3000−H〕、
(C)化学粗化可能な化合物として、架橋アクリロニトリルブタジエンゴム(NBR)粒子〔JSR(株)製、商品名:XER−91〕、コアシェル型ゴム粒子〔商品名、ローム・アンド・ハーム(株)製、商品名:XEL−2655〕及びポリビニルアセタール樹脂〔積水化学(株)製、商品名:KS−23Z〕を使用した。
(D)1分子中に少なくとも2個の1級アミノ基を有するアミン化合物として、4,4'−ジアミノジフェニルメタン〔三井化学ポリウレタン(株)、商品名:MDA−220〕、2,2'−ビス[4−(4−アミノフェノキシ)フェニル]プロパン〔和歌山精化工業(株)、商品名:BAPP〕、
(E)熱可塑性樹脂として、ビニル型フェノキシ樹脂〔ジャパンエポキシレジン(株)製、商品名:YL6954〕
(F)難燃性を付与するリン化合物として、リン含有フェノール樹脂〔三光化学(株)製、商品名:HCA−HQ、リン含有量9.6質量%〕、
(G)エポキシ樹脂硬化剤として、アミノトリアジンノボラック樹脂〔大日本インキ化学工業(株)製、商品名:LA−3018〕、硬化促進剤として、イミダゾール誘導体〔第一工業製薬(株)、商品名:G8009L〕、
(H)無機充填材として、溶融シリカ〔アドマテック(株)製、商品名:SC1050〕を使用し、
また、希釈溶剤にメチルエチルケトンを使用して第1表〜第3表に示した配合割合(質量部)で混合して樹脂分(樹脂成分の合計)65質量%の均一な絶縁樹脂組成物ワニスを作製した。
(Examples 1-12, Comparative Examples 1-6)
(A) As a curing agent, a solution of the curing agent obtained in Production Examples 1 to 6 and Comparative Production Examples 1 and 2,
(B) As an epoxy resin, a bifunctional naphthalene type epoxy resin [Dainippon Ink Chemical Co., Ltd., trade name, HP-4032D], biphenylaralkyl type epoxy resin [Nippon Kayaku Co., Ltd., trade name: NC -3000-H],
(C) Cross-linked acrylonitrile butadiene rubber (NBR) particles [manufactured by JSR Corporation, trade name: XER-91], core-shell rubber particles [trade name, Rohm and Harm Co., Ltd.] Product name: XEL-2655] and polyvinyl acetal resin [product name: KS-23Z] manufactured by Sekisui Chemical Co., Ltd. were used.
(D) As an amine compound having at least two primary amino groups in one molecule, 4,4′-diaminodiphenylmethane [Mitsui Chemical Polyurethane Co., Ltd., trade name: MDA-220], 2,2′-bis [4- (4-aminophenoxy) phenyl] propane [Wakayama Seika Kogyo Co., Ltd., trade name: BAPP],
(E) As a thermoplastic resin, a vinyl-type phenoxy resin [manufactured by Japan Epoxy Resin Co., Ltd., trade name: YL6954]
(F) As a phosphorus compound imparting flame retardancy, a phosphorus-containing phenol resin [manufactured by Sanko Chemical Co., Ltd., trade name: HCA-HQ, phosphorus content 9.6% by mass],
(G) Aminotriazine novolak resin [manufactured by Dainippon Ink & Chemicals, Inc., trade name: LA-3018] as an epoxy resin curing agent, and an imidazole derivative [Daiichi Kogyo Seiyaku Co., Ltd., trade name] as a curing accelerator. : G8009L],
(H) As an inorganic filler, fused silica [manufactured by Admatech Co., Ltd., trade name: SC1050] is used,
In addition, a uniform insulating resin composition varnish having a resin content (total of resin components) of 65% by mass using methyl ethyl ketone as a diluent solvent and mixing at a blending ratio (parts by mass) shown in Tables 1 to 3 is used. Produced.

次に、絶縁樹脂組成物ワニスをポリエチレンテレフタレートフィルム(厚さ38μm、以下PETフィルムと称す)上に、乾燥後の絶縁樹脂組成物層の厚みが40μmとなるようにダイコーターにて均一に塗布し、100℃で6分間乾燥した。次いで、絶縁樹脂組成物層の表面に厚さ15μmのポリプロピレンフィルムを貼り合わせながらロール状に巻き取った。得られたロール状のフィルムを幅507mmにスリットし、507×336mmサイズのシート状の支持体付絶縁フィルムを製造した。
また、絶縁樹脂組成物ワニスを厚さ0.1mmのEガラスクロスに含浸塗工し、160℃で10分加熱乾燥して樹脂含有量50質量%のプリプレグを得た。次に、このプリプレグを4枚重ね、18μmの電解銅箔を上下に配置し、圧力2.5MPa、温度185℃で90分間プレスを行って、銅張積層板を得た。
このようにして作製した支持体付絶縁フィルムの絶縁樹脂層及び銅張積層板について、前記の方法によりにより性能を測定・評価した。結果を第1表〜第3表に示す。
Next, the insulating resin composition varnish was uniformly coated on a polyethylene terephthalate film (thickness 38 μm, hereinafter referred to as PET film) with a die coater so that the thickness of the insulating resin composition layer after drying was 40 μm. And dried at 100 ° C. for 6 minutes. Subsequently, it wound up in roll shape, bonding the 15-micrometer-thick polypropylene film on the surface of the insulating resin composition layer. The obtained roll-shaped film was slit to a width of 507 mm to produce a sheet-like insulating film with a support having a size of 507 × 336 mm.
Moreover, the insulating resin composition varnish was impregnated and applied to an E glass cloth having a thickness of 0.1 mm and dried by heating at 160 ° C. for 10 minutes to obtain a prepreg having a resin content of 50 mass%. Next, four prepregs were stacked, 18 μm electrolytic copper foils were placed one above the other, and pressed at a pressure of 2.5 MPa and a temperature of 185 ° C. for 90 minutes to obtain a copper clad laminate.
With respect to the insulating resin layer and the copper-clad laminate of the insulating film with support thus produced, the performance was measured and evaluated by the method described above. The results are shown in Tables 1 to 3.

Figure 0005589292
Figure 0005589292

Figure 0005589292
Figure 0005589292

Figure 0005589292
Figure 0005589292

第1表〜第3表から明らかなように、本発明に係る実施例の絶縁樹脂組成物では、熱膨張率が35〜40ppm/℃と低熱膨張性を有し、ガラス転移温度(Tg)が200〜240℃と高く耐熱性が良好であり、メッキ密着強度も比較例に比べ著しく高い。
また、実施例の絶縁樹脂組成物から得られる銅張積層板は、はんだ耐熱性、銅付き耐熱性(T−288)、耐湿性及び難燃性の全てにバランスが取れており、高信頼性を有する。
一方、比較例の熱硬化性樹脂組成物では、はんだ耐熱性、銅付き耐熱性(T−288)、耐湿性及び難燃性のいずれかの特性に劣っており、信頼性が低い。
As is apparent from Tables 1 to 3, the insulating resin compositions of the examples according to the present invention have a low thermal expansion coefficient of 35 to 40 ppm / ° C. and a glass transition temperature (Tg). It has a high heat resistance of 200 to 240 ° C., and the plating adhesion strength is significantly higher than that of the comparative example.
In addition, the copper clad laminate obtained from the insulating resin composition of the examples is balanced in all of solder heat resistance, heat resistance with copper (T-288), moisture resistance and flame resistance, and has high reliability. Have
On the other hand, the thermosetting resin composition of the comparative example is inferior in any one of solder heat resistance, heat resistance with copper (T-288), moisture resistance and flame resistance, and has low reliability.

Claims (11)

1分子中に少なくとも2個のN−置換マレイミド基を有するマレイミド化合物(a)と、一般式(I)に示す酸性置換基を有するアミン化合物(b)を有機溶媒中で反応させて製造される、N−置換マレイミド基と酸性置換基を有する硬化剤(A)、1分子中に少なくとも2個のエポキシ基を有するエポキシ樹脂(B)及び化学粗化可能な化合物(C)を含有する多層プリント配線板用熱硬化性絶縁樹脂組成物であって、
化学粗化可能な化合物(C)が、架橋ゴム粒子(ただし、官能基を有するアクリル系ゴムを除く)またはポリビニルアセタール樹脂であることを特徴とする多層プリント配線板用熱硬化性絶縁樹脂組成物。
Figure 0005589292
(R1は各々独立に、酸性置換基である水酸基、カルボキシル基又はスルホン酸基を示し、R2は各々独立に水素原子、炭素数1〜5の脂肪族炭化水素基、又はハロゲン原子を示し、xは1〜5の整数、yは0〜4の整数で、且つxとyの和は5である。)
It is produced by reacting a maleimide compound (a) having at least two N-substituted maleimide groups in one molecule and an amine compound (b) having an acidic substituent represented by the general formula (I) in an organic solvent. the multilayer printed containing a curing agent having a N- substituted maleimide group and an acidic substituent (a), epoxy resin (B) and chemical roughening compounds having at least two epoxy groups in a molecule (C) A thermosetting insulating resin composition for wiring boards ,
The thermosetting insulating resin composition for multilayer printed wiring boards, wherein the chemical roughening compound (C) is a crosslinked rubber particle (excluding an acrylic rubber having a functional group) or a polyvinyl acetal resin. .
Figure 0005589292
(R 1 independently represents a hydroxyl group, carboxyl group or sulfonic acid group which is an acidic substituent, and R 2 independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms, or a halogen atom. X is an integer of 1 to 5, y is an integer of 0 to 4, and the sum of x and y is 5.)
架橋ゴム粒子が、コアシェル型ゴム粒子、架橋アクリロニトリルブタジエンゴム粒子及び架橋スチレンブタジエンゴム粒子からなる群から選択される少なくとも一種である請求項1に記載の多層プリント配線板用熱硬化性絶縁樹脂組成物。 The thermosetting insulating resin composition for multilayer printed wiring boards according to claim 1, wherein the crosslinked rubber particles are at least one selected from the group consisting of core-shell type rubber particles, crosslinked acrylonitrile butadiene rubber particles and crosslinked styrene butadiene rubber particles. . さらに、1分子中に少なくとも2個の1級アミノ基を有するアミン化合物(D)を含有する請求項1又は2に記載の多層プリント配線板用熱硬化性絶縁樹脂組成物。 Furthermore, the thermosetting insulating resin composition for multilayer printed wiring boards of Claim 1 or 2 containing the amine compound (D) which has an at least 2 primary amino group in 1 molecule. さらに、熱可塑性樹脂(E)(ただし、架橋ゴム粒子(ただし、官能基を有するアクリル系ゴムを除く)およびポリビニルアセタール樹脂を除く)を含有する請求項1〜3のいずれかに記載の多層プリント配線板用熱硬化性絶縁樹脂組成物。 The multilayer print according to any one of claims 1 to 3, further comprising a thermoplastic resin (E) (however, excluding crosslinked rubber particles (excluding acrylic rubber having a functional group) and polyvinyl acetal resin). A thermosetting insulating resin composition for wiring boards . さらに、難燃性を付与するリン化合物(F)を含有する請求項1〜4のいずれかに記載の多層プリント配線板用熱硬化性絶縁樹脂組成物。 Furthermore, the thermosetting insulating resin composition for multilayer printed wiring boards in any one of Claims 1-4 containing the phosphorus compound (F) which provides a flame retardance. さらに前記エポキシ樹脂の硬化剤(ただし、硬化剤(A)を除く)及び/又は硬化促進剤(G)を含有する請求項1〜5のいずれかに記載の多層プリント配線板用熱硬化性絶縁樹脂組成物。 The thermosetting insulation for multilayer printed wiring boards according to any one of claims 1 to 5, further comprising a curing agent (excluding the curing agent (A)) and / or a curing accelerator (G) of the epoxy resin. Resin composition. 固形物換算の(A)、(B)及び(D)〜(G)成分の合計量100質量部に対し、10〜45質量部の無機充填材(H)を含有する請求項1〜6のいずれかに記載の多層プリント配線板用熱硬化性絶縁樹脂組成物。 The amount of the inorganic filler (H) is 10 to 45 parts by mass with respect to 100 parts by mass of the total amount of the components (A), (B) and (D) to (G) in terms of solid matter. The thermosetting insulating resin composition for multilayer printed wiring boards according to any one of the above. 請求項1〜7のいずれかに記載の多層プリント配線板用熱硬化性絶縁樹脂組成物の半硬化状態のフィルムが支持体表面に形成されていることを特徴とする支持体付絶縁フィルム。 A semi-cured film of the thermosetting insulating resin composition for a multilayer printed wiring board according to any one of claims 1 to 7 is formed on the surface of the support. 請求項1〜7のいずれかに記載の多層プリント配線板用熱硬化性絶縁樹脂組成物が繊維から成るシート状補強基材中に含浸されていることを特徴とするプリプレグ。 A prepreg, wherein the thermosetting insulating resin composition for a multilayer printed wiring board according to any one of claims 1 to 7 is impregnated in a sheet-like reinforcing base material comprising fibers. 絶縁樹脂層が、(1)請求項1〜7のいずれかに記載の多層プリント配線板用熱硬化性絶縁樹脂組成物、(2)請求項8に記載の支持体付絶縁フィルム、(3)請求項9に記載のプリプレグのいずれかを用いて形成されたものであることを特徴とする積層板。 The insulating resin layer is (1) a thermosetting insulating resin composition for multilayer printed wiring boards according to any one of claims 1 to 7, (2) an insulating film with a support according to claim 8, (3) A laminated board formed using any one of the prepregs according to claim 9. 請求項10に記載の積層板を用いて製造されてなることを特徴とする多層プリント配線板。   A multilayer printed wiring board manufactured using the laminated board according to claim 10.
JP2009080409A 2009-03-27 2009-03-27 Thermosetting insulating resin composition, and insulating film with support, prepreg, laminate and multilayer printed wiring board using the same Active JP5589292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009080409A JP5589292B2 (en) 2009-03-27 2009-03-27 Thermosetting insulating resin composition, and insulating film with support, prepreg, laminate and multilayer printed wiring board using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009080409A JP5589292B2 (en) 2009-03-27 2009-03-27 Thermosetting insulating resin composition, and insulating film with support, prepreg, laminate and multilayer printed wiring board using the same

Publications (2)

Publication Number Publication Date
JP2010229356A JP2010229356A (en) 2010-10-14
JP5589292B2 true JP5589292B2 (en) 2014-09-17

Family

ID=43045463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009080409A Active JP5589292B2 (en) 2009-03-27 2009-03-27 Thermosetting insulating resin composition, and insulating film with support, prepreg, laminate and multilayer printed wiring board using the same

Country Status (1)

Country Link
JP (1) JP5589292B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105647118B (en) * 2011-01-18 2020-06-26 日立化成株式会社 Resin composition, and prepreg, laminate, and printed wiring board using same
JP6065438B2 (en) * 2012-07-25 2017-01-25 日立化成株式会社 Prepreg, laminated board using the same, and multilayer printed wiring board
JP6308713B2 (en) * 2012-08-07 2018-04-11 味の素株式会社 Resin composition
TWI694109B (en) * 2013-06-12 2020-05-21 日商味之素股份有限公司 Resin composition
JP6838939B2 (en) * 2016-11-10 2021-03-03 デンカ株式会社 Insulating resin composition for metal base plate circuit board and its manufacturing method, its insulating resin cured product, and metal base plate circuit board using it
JP6694833B2 (en) * 2017-01-10 2020-05-20 味の素株式会社 Resin composition
JP6801608B2 (en) * 2017-08-21 2020-12-16 味の素株式会社 Resin composition
KR102257926B1 (en) * 2018-09-20 2021-05-28 주식회사 엘지화학 Multilayered printed circuit board, method for manufacturing the same, and semiconductor device using the same
JP7263069B2 (en) * 2019-03-15 2023-04-24 味の素株式会社 resin composition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572328A (en) * 1980-06-05 1982-01-07 Toshiba Chem Corp Composition for adhesive
JPH0778165B2 (en) * 1986-06-27 1995-08-23 東芝ケミカル株式会社 Heat-resistant resin composition for molding
JPH0632969A (en) * 1992-07-14 1994-02-08 Toshiba Chem Corp Heat-resistant resin composition for molding
JP2000017148A (en) * 1998-07-01 2000-01-18 Ajinomoto Co Inc Thermosetting resin composition and interlaminar adhesive film for printed wiring board using the same
JP5298462B2 (en) * 2006-06-06 2013-09-25 日立化成株式会社 Method for producing curing agent having acidic substituent and unsaturated maleimide group, thermosetting resin composition, prepreg and laminate
JP5266685B2 (en) * 2006-09-29 2013-08-21 日立化成株式会社 Thermosetting resin composition, prepreg and laminate using the same
JP2010209140A (en) * 2009-03-06 2010-09-24 Kyocera Chemical Corp Prepreg, metal-clad laminate and printed circuit board

Also Published As

Publication number Publication date
JP2010229356A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
JP5625422B2 (en) Thermosetting insulating resin composition, and insulating film with support, prepreg, laminate and multilayer printed wiring board using the same
KR102142753B1 (en) Thermosetting resin composition, and prepreg, insulating film with support, laminate plate, and printed wiring board, each obtained using same
JP5589292B2 (en) Thermosetting insulating resin composition, and insulating film with support, prepreg, laminate and multilayer printed wiring board using the same
JP5407679B2 (en) Thermosetting insulating resin composition, and insulating film with support, prepreg, laminate and multilayer printed wiring board using the same
JP5195582B2 (en) Thermosetting insulating resin composition, and insulating film with support, prepreg, laminate and multilayer printed wiring board using the same
JP5293598B2 (en) Resin composition, prepreg, laminate, multilayer printed wiring board, and semiconductor device
JP5381438B2 (en) Thermosetting insulating resin composition, and prepreg, film with resin, laminated board, and multilayer printed wiring board using the same
WO2012099133A1 (en) Modified silicone compound, and thermosetting resin composition, prepreg, laminate plate and printed wiring board using same
JP6443657B2 (en) Thermosetting insulating resin composition, and insulating film with support, prepreg, laminate and multilayer printed wiring board using the same
TW201906726A (en) Laminated body, laminated board, multi-layer laminated board, printed wiring board, and production method for laminated board
JP2007070418A (en) Adhesive sheet, metal foil-clad laminated sheet and built-up type multilayered printed wiring board
JP6427959B2 (en) Thermosetting resin composition, prepreg, film with resin, laminate, multilayer printed wiring board, and semiconductor package
JP5914988B2 (en) Prepreg, laminate and printed wiring board using thermosetting resin composition
JP5540611B2 (en) Thermosetting insulating resin composition, and insulating film with support, prepreg, laminate and printed wiring board using the same
JP6519307B2 (en) Thermosetting insulating resin composition, and insulating film with support using the same, prepreg, laminate and multilayer printed wiring board
JP5407678B2 (en) Thermosetting insulating resin composition, and insulating film with support, prepreg, laminate and multilayer printed wiring board using the same
JP6152246B2 (en) Pre-preg for printed wiring board, laminated board and printed wiring board
JP2022164680A (en) Prepreg, method for manufacturing the same, laminate, printed wiring board and semiconductor package
KR20180067715A (en) Varnish, prepreg, film with resin, metal foil-clad laminate, and printed circuit board
JP7305975B2 (en) Resin composition, carrier-attached resin film, prepreg, laminate, printed wiring board, and semiconductor device using the same
JP6164318B2 (en) Pre-preg for printed wiring board, laminated board and printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140310

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140714

R151 Written notification of patent or utility model registration

Ref document number: 5589292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350