JPWO2011059112A1 - 粒子含有細胞集合体 - Google Patents

粒子含有細胞集合体 Download PDF

Info

Publication number
JPWO2011059112A1
JPWO2011059112A1 JP2011540585A JP2011540585A JPWO2011059112A1 JP WO2011059112 A1 JPWO2011059112 A1 JP WO2011059112A1 JP 2011540585 A JP2011540585 A JP 2011540585A JP 2011540585 A JP2011540585 A JP 2011540585A JP WO2011059112 A1 JPWO2011059112 A1 JP WO2011059112A1
Authority
JP
Japan
Prior art keywords
particle
cells
particles
cell
cell aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011540585A
Other languages
English (en)
Inventor
田畑 泰彦
泰彦 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Publication of JPWO2011059112A1 publication Critical patent/JPWO2011059112A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • C12N5/0075General culture methods using substrates using microcarriers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/08Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer
    • C12N11/082Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C12N11/084Polymers containing vinyl alcohol units
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/08Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer
    • C12N11/082Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C12N11/087Acrylic polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/10Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a carbohydrate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/54Collagen; Gelatin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2537/00Supports and/or coatings for cell culture characterised by physical or chemical treatment
    • C12N2537/10Cross-linking

Abstract

本発明は、水溶性合成高分子、多糖およびタンパク質からなる群から選択される一または複数の水溶性合成高分子に化学架橋を形成させて得られるハイドロゲル粒子と細胞から構成される粒子含有細胞集合体およびその製造方法に関する。

Description

本発明は、細胞の生存率と生物機能の向上のために粒子を含む細胞集合体ならびにその培養方法に関する。
幹細胞生物医学研究の進歩によって、細胞の分化、その生物機能発現に関する基礎的知見が集積されてきている。加えて、種々の生体組織から成体(組織)幹細胞が採取され、また、胚性幹(ES)細胞、iPS細胞とともに、それらの細胞の研究、創薬および治療への応用が可能となってきている。これらの流れは幹細胞の増殖、分化やその生物機能の生物医学的な解明を進めるだけではなく、人為的に細胞の分化、生物機能を制御することによって、細胞組織化を実現したり、ヒト細胞の利用による創薬研究および細胞の移植治療効果の向上に対しても、大きく関与している。
一般に、体内においては、細胞は単独で存在していることはほとんどなく、細胞同士あるいは細胞外マトリクスと相互作用することによって生存し、その生物機能を発揮していることがわかっている。そのため、細胞の自己集合化あるいは組織化が人為的に可能となれば、細胞の機能に関する生物医学研究は発展し、細胞移植による治療効果も高まるであろう。体の最小単位は細胞であるが生物機能の単位は生体組織や臓器を見れば分かるが、細胞の集合体である(藤田尚男,藤田恒夫/著,標準組織学 各論,医学書院,1992)。これまでにも、肝細胞を自己集合化させて、細胞集合体(スフェロイド)を形成させることにより、細胞―細胞相互作用のない単独の肝細胞に比較して、肝機能が有意に高まることが報告されている(Landry J et al.,J Cell Biol,1985)。細胞単独の培養に比べて、集合化細胞の培養によって、細胞からのフィブロネクチン産生が有意に高められること(Glimelius B et al.,APMIS,1988)、また、ES細胞も、その集合体である胚様体(EB)形成により分化が進むこともわかっている(Smith AG et al.,Nature,1988)。このような背景から、細胞の自己集合化は、細胞生物学および細胞移植の観点から重要な技術である。
これまでに、培養基材(Mori R et al.,J Biosci Bioeng,106(3),237−242,2008)や培養方法(Kurosawa H,J Biosci Bioeng,104(4),294−299,2007)の工夫によって、細胞の自己集合化を促すことが知られており、予想通り、集合化による細胞の増殖、分化、生物機能発現が高まっている。しかしながら、細胞が増殖するにつれて細胞集合体のサイズが大きくなり、その結果、細胞集合体内部への栄養、酸素の供給と集合体内部からの老廃物の除去が不十分となり、培養の継続が不可能となることが問題となっていた。このため、細胞の相互作用に基づく細胞機能発現、分化、組織化などの検討に必要不可欠な長期間の培養ができず、幹細胞の生物医学研究の進展の妨げとなっていた。加えて、細胞に遺伝子操作を行い、それをマイクロキャリア粒子上で培養することで、生理活性タンパク質などの有用産物の産生を促すマイクロキャリア培養が進められている。しかしながら、マイクロキャリア培養法では、細胞はマイクロキャリア表面でのみ増殖することができるため、増殖できる細胞数に限界がある。これにより有用物質の産生効率が低いことが問題となっている。そこで近年、この問題を解決する1つの方法として細胞集合体を用いた培養法が検討されている。この方法は、マイクロキャリア法に比較して、細胞数を高めることができ、大切な有用物質の産生能も高まっている(Nam J.H.,et al.Biotech Prog.23(3).652−660.2007)。しかしながら、この場合も細胞集合体サイズの増大とともに集合体内部の細胞が弱り、有用物質の産生能が低下することが問題となっていた。
in vitroにおける細胞の集合化技術、次に、この技術を2種類の細胞に応用して細胞の組織化を促す技術は、現在の発生学、細胞生物学が目指す1つの将来の方向性である。細胞集合化はその1つの鍵となる技術である。このような背景から、細胞の集合体サイズが増加しても、培養を続けるための工夫や方法論の開発が望まれていた。
Mori R et al.,J Biosci Bioeng,106(3),237−242,2008 Kurosawa H,J Biosci Bioeng,104(4),294−299,2007 Nam J.H.,et al.Biotech Prog.23(3).652−660.2007
本発明の目的は、長期間安定して培養を継続することができる細胞の集合体を作成する方法、ならびにそのための材料を提供することである。
本発明者は、この問題を解決するために鋭意検討を重ねた結果、生体吸収性粒子とともに細胞を培養すると、粒子を含む細胞集合体が得られることを見いだした。本発明にしたがって作製した粒子含有細胞集合体では、細胞集合体内部と外部との物質拡散、交換が容易になり、このことにより、集合化細胞の長期培養が可能となり、細胞機能の向上と分化促進ができる。この技術により、細胞集合体を用いた細胞の生物医学研究や、薬の代謝や毒性を細胞で調べる創薬研究が進展する。また、細胞集合体を用いた有用物質の産生能を向上させることが期待できる。また肝、膵、腎細胞などの機能を持つ細胞を免疫隔離の目的でハイドロゲルでカプセル化して用いるハイブリッド人工臓器に対しても、この粒子を利用した細胞集合体技術を適用することができる。この場合にはカプセル化することが内部の細胞への栄養、酵素の拡散供給を制限し、また老廃物の拡散除去が悪くなり、細胞の環境を悪化させる。この問題を解決するために、それらの細胞と粒子とからなる細胞集合体を作り、その細胞機能を高めることが有効である。これにより治療効果の向上が可能となる。
すなわち、本発明は、培養細胞とゼラチンハイドロゲル粒子から構成される粒子含有細胞集合体を提供する。本発明の1つの好ましい態様においては、ゼラチンハイドロゲル粒子は細胞増殖因子を含む。本発明はまた、細胞をゼラチンハイドロゲル粒子を含む培養液中で培養することを特徴とする、粒子含有細胞集合体の製造方法を提供する。
粒子を含んだ細胞集合体では、粒子の存在によって細胞集合体内部への栄養、酸素の供給と細胞集合体内部からの老廃物の除去の効率が高まり、細胞状態がよくなる。その結果として、細胞―細胞間の相互作用が効率よく、体内の状態に近い様式で行われ、細胞の長期培養が達成できると考えられる。長期培養により細胞の分化、機能発現がより高められ研究の展開が大いに期待される。
本明細書は本願の優先権の基礎である日本国特許出願2009−260192号、2010−050399号の明細書および/または図面に記載される内容を包含する。
図1は、細胞を単独で、またはゼラチンハイドロゲル粒子とともに培養したときの生細胞数を示す。
図2は、細胞数と粒子数との比を変化させて細胞集合体を形成させたときの粒子含有集合体中の生細胞数を示す。
図3は、粒子含有細胞集合体へのBrdUの取り込みを示す。BrdUの免疫染色(左);ヘマトキシリンによる同一切片の対比染色(右)。
図4は、粒子含有細胞集合体および粒子を含んでいない細胞集合体の硫酸化グリコサミノグリカン(sGAG)の産生を示す。■:粒子を含んだ細胞集合体;□:粒子を含んでいない細胞集合体。
図5は、粒子を含む細胞集合体の断面の核染色画像を示す。
図6は、播種細胞数/添加粒子数の比率を変化させて培養したときの細胞集合体中の生細胞数を示す。,p<0.05;微粒子を含まない凝集体に対して有意差あり。,p<0.05;添加微粒子数1×10の凝集体に対して有意差あり。,p<0.05;添加微粒子数1×10の凝集体に対して有意差あり。
図7は、粒子サイズを変化させて培養したときの細胞集合体中の生細胞数を示す。,p<0.05;微粒子を含まない凝集体に対して有意差あり。,p<0.05;膨潤粒子径17.67±7.4μmの凝集体に対して有意差あり。,p<0.05;膨潤粒子径47.9±22.2μmの凝集体に対して有意差あり。
図8は、粒子を含む細胞集合体のグルコース消費量を示す。,p<0.05;微粒子を含まない凝集体に対して有意差あり。,p<0.05;膨潤粒子径17.67±7.4μmの凝集体に対して有意差あり。,p<0.05;膨潤粒子径47.9±22.2μmの凝集体に対して有意差あり。
図9は、粒子を含む細胞集合体のL−乳酸生産量/グルコース消費量比を示す。,p<0.05;微粒子を含まない凝集体に対して有意差あり。
本発明で使用されるゼラチンハイドロゲル粒子は、種々の化学的架橋剤を用いてゼラチン分子間に化学架橋を形成させて得られる微粒子状ゼラチンハイドロゲルである。ゼラチンは、動物や植物から採取したコラーゲンを、アルカリ加水分解、酸加水分解、および酵素分解等の種々の処理によって変性させて得ることができる。遺伝子組換え型コラーゲンの変性体であるゼラチンを用いてもよい。
ハイドロゲル粒子の架橋度およびサイズに関係なく、ハイドロゲル内には水を大量に含んでいるため、水溶性の栄養物、酵素、老廃物などが容易に拡散移動する。本発明に利用できる粒子は、上記のハイドロゲルの性質をもつものであれば、いずれの材料からなる粒子でも利用することができる。例えば、ポリアクリルアミド、ポリアクリル酸、ポリヒドロキシエチルメタアクリレート、ポリビニルアルコールなどの水溶性合成高分子、多糖、タンパク質などを化学架橋したハイドロゲルからなる粒子である。多糖としては、ヒアルロン酸やコンドロイチン硫酸などのグリコサミノグリカン、デンプン、グリコーゲン、アガロース、ペクチン、セルロース等が挙げられるが、これらに限定されない。また、タンパク質としては、コラーゲンおよびその加水分解物であるゼラチン、プロテオグリカン、フィブロネクチン、ビトロネクチン、ラミニン、エンタクチン、テネイシン、トロンボスポンジン、フォンビルブランド因子、オステオポンチン、フィブリノーゲン等が挙げられるが、これらに限定されない。好ましくは、細胞により分解される材料からなる粒子が本発明には適しており、さらに好ましくはゼラチンからなる粒子である。さらに細胞の培養や増殖を高めるために粒子表面にコラーゲン、フィブロネクチン、ビトロネクチン、ラミニン、グリコサミノグリカンなどの細胞接着性タンパク質およびペプチドなどをコーティングあるいは固定化したものを用いることもできる。
化学的架橋剤としては、EDC等の水溶性カルボジイミド、プロピレンオキサイド、ジエポキシ化合物、水酸基、カルボキシル基、アミノ基、チオール基、イミダゾール基などの間に化学結合を作る縮合剤を用いることができる。好ましいものは、グルタルアルデヒドである。また、ゼラチンは、熱処理、紫外線照射、電子線照射などによっても化学架橋することができる。また、これらの架橋処理を組み合わせて用いることもできる。
ゼラチンの架橋度は、所望の含水率、すなわちハイドロゲルの生体吸収性のレベルに応じて適宜選択することができる。ゼラチンハイドロゲルを調製する際のゼラチンと架橋剤の濃度の好ましい範囲は、ゼラチン濃度1〜20w/w%、架橋剤濃度0.01〜1w/w%である。架橋反応条件は特に制限はないが、例えば、0〜40℃、1〜48時間で行うことができる。一般に、ゼラチンおよび架橋剤の濃度、架橋時間が増大するとともにハイドロゲルの架橋度は増加し、ゼラチンハイドロゲルの生体吸収性は低くなる。あるいは、減圧下で高温で熱脱水架橋してもよい。熱脱水架橋は、例えば0.1Torr程度の減圧下で、80〜160℃、好ましくは120〜140℃で1〜48時間で行うことができる。
ゼラチンハイドロゲル粒子は、例えば、三口丸底フラスコに固定した攪拌用モーター(例えば、新東科学社製、スリーワンモーター、EYELA miniD.C.スターラー等)とテフロン(登録商標)用プロペラを取り付け、フラスコと一緒に固定した装置にゼラチン溶液を入れ、ここにオリーブ油等の油を加えて200〜600rpm程度の速度で攪拌し、W/O型エマルジョンとし、これに架橋剤水溶液を添加してゼラチン分子間に架橋を形成することにより作製することができる。あるいは、ゼラチン水溶液を予めオリーブ油中にて前乳化(例えば、ボルテックスミキサーAdvantec TME−21、ホモジナイザー、polytron PT10−35等を用いて)しておいたものをオリーブ油中に滴下し、微粒子化したW/O型エマルジョンを調製し、これに架橋剤水溶液を添加して架橋反応させてもよい。このようにして得られるゼラチンハイドロゲル粒子を遠心分離により回収した後、アセトン、酢酸エチル等で洗浄し、さらに2−プロパノール、エタノール等に浸漬して架橋反応を停止させる。得られたゼラチンハイドロゲル粒子は、2−プロパノール、Tween80を含む蒸留水、蒸留水等で順次洗浄した後、細胞培養に用いる。ゼラチンハイドロゲル粒子が凝集する場合には、例えば、界面活性剤などの添加あるいは超音波処理(冷却下、1分以内程度が好ましい)等を行ってもよい。
得られるゼラチンハイドロゲル粒子の平均粒径は、上述の粒子作製時におけるゼラチン濃度、ゼラチン水溶液とオリーブ油との体積比、および撹拌スピードなどにより変化する。一般には、粒径は500nm〜1000μmであり、目的に応じて適宜必要なサイズの粒子をふるい分けて使用すればよい。なお、本明細書において、「粒径」を「粒子サイズ」と記載する場合がある。「粒径」と「粒子サイズ」は相互互換的に使用される。さらに、前乳化することによって、粒子サイズが50nm−20μm以下の微粒子状のゼラチンハイドロゲル粒子を得ることができる。さらに、ゼラチンを水溶液状態から相分離を起こさせ、自己集合させることにより、50nm−1μmのサイズの粒子を得ることもできる。相分離は、第2成分の添加、水溶液のpH、イオン強度などの変化など、公知の技術によって達成される。本発明において好ましい粒子サイズは、約50nm−1000μmであり、特に約500nm−1000μmであり、より好ましくは約1μm−200μmであり、さらに好ましくは約10μm〜160μmである。
ゼラチンハイドロゲル粒子を調製する別法として以下の方法も挙げられる。上記の方法と同様の装置にオリーブ油を入れ、200〜600rpm程度の速度で攪拌し、ここにゼラチン水溶液を滴下してW/O型エマルジョンを調製し、これを冷却後、アセトン、酢酸エチル等を加えて攪拌し、遠心分離により未架橋ゼラチン粒子を回収する。回収したゼラチン粒子を、さらにアセトン、酢酸エチル等、次いで2−プロパノール、エタノール等で洗浄後、乾燥させる。この段階で、目的に応じて適宜必要なサイズの粒子をふるい分けてもよい。この乾燥ゼラチン粒子を0.1%Tween80を含む架橋剤水溶液に懸濁させ、緩やかに攪拌しながら架橋反応させ、使用した架橋剤に応じて0.1%Tween80を含む100mMグリシン水溶液又は0.1%Tween80を含む0.004N HC1等にて洗浄し、架橋反応を停止することによりゼラチンハイドロゲル粒子を調製することができる。本法で得られるゼラチンハイドロゲル粒子の平均粒径は上記の方法の場合と同様である。
本発明のゼラチンハイドロゲル粒子は、凍結乾燥し滅菌して使用することができる。凍結乾燥は、例えば、ゼラチンハイドロゲル粒子を蒸留水に入れ、液体窒素中で30分以上、又は−80℃で1時間以上凍結させた後に、凍結乾燥機で1〜3日間乾燥させることにより行うことができる。
本発明の粒子細胞集合体は、細胞を上述のようにして作製したゼラチンハイドロゲル粒子などのハイドロゲル粒子とともに、通常の細胞培養用の培地で培養することにより、形成することができる。本発明において用いられる細胞としては、通常の培養細胞であれば、いずれの細胞も用いることができ、株化された細胞であっても、初代培養細胞であってもよい。本発明の方法にしたがって培養しうる細胞の特に好ましい例は、幹細胞、例えば、骨髄未分化間葉幹細胞、造血幹細胞、血管幹細胞、神経幹細胞、小腸幹細胞、脂肪幹細胞、皮膚幹細胞、歯周組織幹細胞、毛様体幹細胞、角膜輪部幹細胞、内臓幹細胞等の組織幹細胞や、ES細胞、iPS細胞等の多能性幹細胞である。培地の組成物や培養温度等の培養条件は、通常その細胞の培養に用いられている条件を用いることができる。なお、本発明にしたがって粒子細胞集合体を培養する場合には、細胞が培養シャーレの表面に接着して増殖することを防ぐために、ポリビニルアルコール等でコーティングした培養シャーレあるいは低タンパク質吸着あるいは細胞の低付着の性質を持つ基材を用いて培養することが好ましい。粒子数と細胞数との比率は、粒子の直径や細胞の性質によっても異なるが、一般に粒子数/細胞数が、以下に限定されないが、例えば、0.1から30、好ましくは0.3から10、より好ましくは0.5から5である。
本発明にしたがう粒子細胞集合体は、培地を適宜交換しながら培養することにより、7日間から40日間またはそれ以上培養することができる。下記の実施例に示されるように、本発明の粒子細胞集合体においては、集合体表面のみならず内部に存在する細胞も生存・増殖することができる。粒子細胞集合体は、直径50μmから3000μmのサイズに増殖させることができ、場合により、5000μm程度の大きさまで成長させることが可能である。細胞の種類と培養方法によっても異なるが、28日間の培養で1500μm直径の集合体の形成が達成できる。これは、粒子が細胞集合体中に存在することによって、集合体内外の物質拡散が高まり、細胞への栄養、酸素の供給と老廃物排泄がよくなるためであると考えられる。
粒子のサイズにより細胞集合体と粒子との混合様式が異なる。100μm以上の粒子では、まず、細胞は粒子表面で増殖する。培養を続けると粒子の間に細胞集合体が形成される。20−100μmサイズの粒子では粒子間に細胞集合体が初期に形成され、時間とともに細胞集合体が粒子を取り込んでいくという現象が見られる。粒子サイズが5−20μmであれば、培養初期から粒子を含む細胞集合体が形成される。このようにいずれの粒子サイズも細胞集合体は形成されるが、その過程が異なるため細胞集合体の最終使用目的によって用いる粒子サイズを使い分けていくことができる。
本発明の1つの好ましい態様においては、上述のようにして得られたゼラチンハイドロゲル粒子などのハイドロゲル粒子に細胞増殖因子を取り込ませた後に、細胞をこの粒子とともに培養することができる。細胞増殖因子としては,細胞の増殖や分化を促す作用を有するタンパク質であればいずれのものを用いてもよく,例えば,塩基性線維芽細胞増殖因子(bFGF),酸性線維芽細胞増殖因子(aFGF),血小板由来増殖因子(PDGF),トランスフォーミング増殖因子β1(TGF−β1),血管内皮細胞増殖因子(VEGF)および結合組織増殖因子(CTGF)、あるいはアポトーシスを抑制する性質を持つタンパク質および上記の性質をもつペプチド等を挙げることができる。細胞増殖因子を含むゼラチンハイドロゲル粒子などのハイドロゲル粒子を用いることにより、細胞の増殖や分化を促進することができる。細胞増殖因子以外にも、細胞の増殖、分化を促す、あるいは代謝活性を高める、アポトーシスを抑制するなどの作用をもつ薬物(低分子量薬物、ペプチド薬物、核酸薬物など)を粒子に含ませ、使用することもできる。
以下に実施例により本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。
固定した攪拌用モーター(新東科学社製、スリーワンモーター)にテフロン(登録商標)製攪拌用プロペラを取り付け、1000ml丸底フラスコと一緒に固定した。フラスコにオリブ油375mlを加え、37℃、420rpmにて攪拌しながら等電点4.9のアルカリ処理ゼラチン水溶液(濃度約10%)10mlを滴下し、W/O型エマルジョンを調整した。10分間攪拌後、フラスコを4℃に冷却し、30分間攪拌した。冷却後、ここに100mlのアセトンを加え1時間攪拌した後、遠心分離によりゼラチンハイドロゲル粒子を回収した。回収したハイドロゲル粒子をアセトンにて洗浄し、さらに2−プロパノールにて洗浄することにより、未架橋のゼラチンハイドロゲル粒子を得た。このハイドロゲル粒子を乾燥させ、4℃で保存した。
乾燥した未架橋ゼラチンハイドロゲル粒子500mgを0.1%Tween80を含むグルタルアルデヒド(0.05%)水溶液100mlに懸濁させ、4℃、24時間緩やかに攪拌することにより、ゼラチンの架橋反応を行った。反応終了後、架橋ゼラチンハイドロゲル粒子を遠心分離により回収し、100mMグリシン水溶液にて37℃、1時間洗浄することにより架橋反応を停止した。反応停止後、架橋ゼラチンハイドロゲル粒子を蒸留水で3回洗浄した後に凍結乾燥を行い、乾燥架橋ゼラチンハイドロゲル粒子(平均直径10μm)を得た。この粒子を水で膨潤させると、含水率は約91.5%であった。
ラット骨髄より、常法により骨髄由来未分化間葉系幹細胞(MSC)を単離し、培養して増殖させた。次にMSCとゼラチンハイドロゲル粒子を種々の比率で混合し、37℃で14日間培養した。ダルベッコMEM培地に子牛血清を10vol%含んだ培養液を用いて細胞培養を行い、3日ごとに培地交換した。この時、細胞接着性を下げる目的で、1%ポリビニルアルコール(ユニチカ(株)社製、重合度1.800,ケン化度88.0%)水溶液を培養シャーレに流し込み、37℃で15分放置、リン酸緩衝溶液(PBS、pH7.4)で2回洗浄してポリビニルアルコールコーティングした培養シャーレを用いた。この培養シャーレを用いることにより、MSCはシャーレ表面には接着せず、混合した粒子上あるいは細胞同士の接着が促進された。
その結果、粒子が均一に含まれたMSC集合体が形成された。対照として、粒子のない場合には、粒子を含まない細胞集合体の形成が見られた。生細胞数をWST−8試薬を用いて定量し、播種細胞数に対する比を算出した。粒子を含んだMSC集合体は、粒子の入っていない細胞集合体に比べて生細胞数が有意に高く、細胞増殖が促進された(図1)。粒子が入っていない場合には、初期に細胞集合体が形成されたが、時間とともに集合体サイズが大きくなり、栄養と酵素の供給不足や老廃物の排泄の悪さから細胞が死滅したと考えられる。
MSCと粒子数との比を変化させて、同様に細胞集合体の作製を行った。その結果、粒子数/細胞数が0.3以上において、生細胞数が培養時間とともに高くなった(図2)。すなわち、粒子/細胞比が大きくなるとともに、細胞生存率が増加した。この結果は、粒子が細胞集合体中に存在することによって、集合体内外の物質拡散が高まり、細胞への栄養、酸素の供給と老廃物排泄がよくなったことが理由であると考えられる。
実施例2と同様にして、粒子数/細胞数比を0.5として粒子を含むMSC集合体を作製し、この集合体へのBrdUの取り込みを調べた。細胞培養6日目にBrdUを培地に添加し、7日目に細胞集合体を回収、凍結切片を作製した。集合体の中心を通る最大面積切片を抗BrdU抗体を用いて免疫染色した。染色されている部位はBrdUの核への取り込みが高いところであり、細胞が増殖していることを示している。その結果、集合体表面および内部の細胞へのBrdUの取り込みが認められ、内部に存在している細胞も増殖していることがわかった(図3)。これに対し、粒子を含まないMSC集合体を用いて同じ条件で培養して、細胞集合体を形成させ、BruUの取り込みを調べたところ、集合体表面近傍の細胞では取り込みが認められたが、内部細胞では取り込みは全く見られず、内部細胞は死滅していることがわかった。
実施例3と同じ条件で、粒子を含むMSC集合体を形成させた。次に、それを軟骨分化培地(1wt%トランスフェリンとインスリン、1mMピルビン酸、100mMアスコルビン酸―2−リン酸、100nMデキサメタゾン、10ng/mlのトランスホーミング増殖因子(TGF)β1を含む高グルコースDMEM培地、1%FCS含有)中で培養をすることにより、軟骨分化を誘導した。コントロールとして、粒子を含まないMSC集合体を用いた。軟骨分化を硫酸化グリコサミノグリカン(sGAG)の分泌量から評価した。sGAGの測定は以下のように行った。細胞を300μg/ml濃度のパパイン溶液(2mMジチオトレオールと1mM EDTAを含むpH6.5リン酸水溶液)中で溶解させる。この細胞溶解液(25μL)に1,9−ジメチルメチレンブルー(225μL)を加え、525nmの吸光度を測定する。コンドロイチン硫酸を用いて検量線を作成、それによりsGAGを定量する。その結果、粒子を含むMSC集合体においてsGAGの分泌が28日間にわたって検出された。一方、粒子を含まない集合体では、sGAG分泌は全く認められなかった。これらの結果は、粒子を含む細胞集合体では軟骨分化が効率よく起こったことを示している(図4)。これは集合体の内部においても、物質が拡散し、細胞の生存状態を良好に保ったためと考えられる。
実施例1で製造したゼラチンハイドロゲル粒子の乾燥物に、TGF−β1水溶液を滴下し、25℃、1時間放置することによりゼラチンハイドロゲル粒子内に含浸させた。細胞と混合して培養するゼラチンハイドロゲル粒子への含浸TGF−β1量は1ngである。この粒子を用いて、MSC集合体を形成し、実施例4と同様にして軟骨分化を誘導し、sGAG分泌により軟骨分化を調べた。その結果、TGF−β1含浸粒子を含む場合には軟骨分化が認められ、sGAG分泌量は有意に増加した。この分泌量は実施例4の粒子含有細胞集合体よりも高い値を示した。コントロールとして、粒子なし細胞集合体の培養液に同量(1ng)のTGF−β1を加えた実験を行ったが、この場合には軟骨分化は見られなかった。
TGF−β1含浸粒子を含むMSC集合体の軟骨分化培養後、細胞集合体をアルシアンブルーで染色した。その結果、集合体内部に均一にアルシアンブルー染色される軟骨基質の存在が確認された。一方、粒子を含まない集合体では細胞は死滅していた。これらの結果は、粒子の存在により細胞集合体の内部と外部との間の物質の拡散性が高まり、細胞の状態がよくなるとともに、粒子からのTGF−β1の局所供給によって軟骨分化がさらに促進されたことを示している。
実施例1と同様にゼラチンハイドロゲル粒子を作製した。ただし、粒子作製に熱脱水架橋(140℃、48時間、0.1Torr条件)を用いた。水膨潤時の粒子サイズは17.6μm±7.4μm(乾燥時粒子サイズ10μm)である。MSC数を1×10細胞/ウエル、粒子数を1×10個/ウエルとして、実施例1と同様にして培養し、培養7日後に観察を行った。粒子を含む細胞集合体の凍結切片を作製し、細胞核を染色した(細胞核染色用TO−PRO−3 蛍光色素、Invitrogen社製)。その後、切片を共焦点蛍光顕微鏡と光学顕微鏡にて観察した。図5に細胞集合体の断面の核染色画像を示す:(A)共焦点蛍光顕微鏡画像(赤染;細胞核)、(B)光学顕微鏡、(C)重ね合わせ)。その結果、集合体内部においても、生きた細胞れ、また細胞と粒子が均一に混合されていることがわかった。
架橋方法以外は実施例1と同様の方法でゼラチンハイドロゲル粒子を作製したが、ただし、粒子作製時の攪拌数を200、300、および450rpmと変化させた。アセトン、2−プロパノールで洗浄、乾燥させた後、それぞれの乾燥粒子をふるいで分け、乾燥時平均粒子径が10μm、26μm、および44μmの3種類の未架橋粒子を得た。これを140℃、48時間、0.1Torrの減圧下で熱脱水架橋を行うことでゼラチンを架橋し、ゼラチンハイドロゲル粒子を調製した。得られた粒子を蒸留水で膨潤させた時の粒子径は17.6±7.4μm、47.9±22.2μm、および106.8±17.8μmであり、含水率は92.0%であった。
この3種類のサイズの異なるゼラチンハイドロゲル粒子を用いて、実施例1と同様にMSCとともに培養、粒子を含むMSC集合体を作製した。図6は粒子サイズ106μmの粒子を用いて、播種細胞数を1×10細胞/ウエル、添加粒子数を1×10個/ウエル、1×10個/ウエルまたは1×10個/ウエルとして培養したときの生細胞数を示す。コントロールとして粒子を含んでいない集合体(粒子なし)、通常培養基材を用いた2次元平面培養(平面培養)を用いた。その結果、粒子を含まない細胞集合体では細胞は増殖せず、死んでいくことがわかった。これに比べて、粒子を含んだ細胞集合体では細胞の増殖が見られ、MSC/粒子比を選ぶことによって、平面培養よりもよく増殖することがわかった。
図7は用いる粒子サイズを変化させ、播種細胞数を1×10細胞/ウエル、添加粒子数を1×10個/ウエルとして培養したときの生細胞数を示す。コントロールとして粒子を含んでいない集合体(粒子なし)、通常培養基材を用いた2次元平面培養(平面培養)を用いた。その結果、粒子サイズに関係なく、いずれの場合にも、粒子を含まない細胞集合体に比べて、細胞の増殖は有意に増大していた。また、粒子サイズが106μm(乾燥時サイズ44μm)の時には、平面培養に比べて、有意に高い細胞増殖が見られた。
実施例7と同様の方法で培養実験を行った。培養にともなう細胞状態の指標としてグルコース消費量を選び、グルテストNeoスーパー(アークレイ(株)製)を用いて、細胞のグルコース消費量を定量した。細胞数は1×10個/ウエルで粒子数は1×10個/ウエルであり、用いた粒子サイズは17.6、47.9、および106.8μm(乾燥時の粒子サイズ10、26、および44μm)である。
その結果を図8に示す。いずれの場合にも、培養とともにグルコースが消費され、細胞が成長していることがわかる。用いた粒子のサイズに関係なく、粒子を含まない細胞集合体に比べて、粒子を含む細胞集合体のグルコース消費量は有意に高い値を示した。また、粒子サイズが106μmの時に、最も高い消費量であり、それは平面培養に比べて、有意に高く、細胞の成長状態がよいことを示している。
実施例7と同様の方法で培養実験を行った。細胞のエネルギー代謝の指標として、L−乳酸生産量/グルコース消費量比を算出した。この指標が低ければ、細胞で好気的にエネルギー代謝が進んでいることを示し、細胞の酸素状態がよいことを意味する。L−乳酸産生はE−キット(R−Biopharm AG社製)を用いて定量した。細胞数は1×10個/ウエルであり、粒子数は1×10個/ウエルであり、用いた粒子サイズは17.6、47.9、および106.8μm(乾燥時サイズ10、26、および44μm)である。
その結果を図9に示す。用いた粒子のサイズに関係なく、粒子を含む細胞集合体のL−乳酸産生量/グルコース消費量の比が、粒子を含まない細胞集合体に比べて有意に低下していた。さらに、この値は平面培養と同じレベルであった。このことは、粒子を含むことで細胞集合体内部の酸素状態がよくなり、その結果、細胞の好気的エネルギー代謝が高まったことを示している。その値は、酸素、栄養状態において、3次元の細胞集合体よりも優れていると考えられる平面培養と同じレベルであった。106μmサイズの粒子を含む細胞集合体の直径は、500μm(培養4日後)、600μm(培養7日後)であった。通常、酸素が拡散により供給される距離は100μmであるため、細胞集合体サイズが100μmより大きくなると細胞集合体内部は酸素欠乏状態となり、細胞が死滅することが知られている。しかしながら、粒子を含ませて細胞集合体を形成させることによって、集合体内部に栄養、酸素を効率よく供給できる環境を作ることができ、500および600μmという大きなサイズをもつ細胞集合体内部においても、細胞は死滅せず、好気的代謝が進行することが可能となった。
本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。

Claims (15)

  1. 水溶性合成高分子、多糖およびタンパク質からなる群から選択される一または複数の水溶性合成高分子に化学架橋を形成させて得られるハイドロゲル粒子と細胞から構成される粒子含有細胞集合体。
  2. 水溶性合成高分子が、ポリアクリルアミド、ポリアクリル酸、ポリヒドロキシエチルメタアクリレートおよびポリビニルアルコールからなる群から選択される、請求項1記載の粒子含有細胞集合体。
  3. 多糖が、グリコサミノグリカン、デンプン、グリコーゲン、アガロース、ペクチンおよびセルロースからなる群から選択される、請求項1または2記載の粒子含有細胞集合体。
  4. タンパク質が、コラーゲンおよびその加水分解物であるゼラチン、プロテオグリカン、フィブロネクチン、ビトロネクチン、ラミニン、エンタクチン、テネイシン、トロンボスポンジン、フォンビルブランド因子、オステオポンチン、ならびにフィブリノーゲンからなる群から選択される、請求項1〜3のいずれか1項記載の粒子含有細胞集合体。
  5. ゼラチンが分子間化学架橋を形成させて得られるゼラチンハイドロゲル粒子と細胞から構成される、請求項1〜4のいずれか1項記載の粒子含有細胞集合体。
  6. 前記ハイドロゲル粒子表面に細胞接着性タンパク質または細胞接着性ペプチドがコーティングまたは固定化されている、請求項1〜5のいずれか1項記載の粒子含有細胞集合体。
  7. 前記細胞接着性タンパク質および細胞接着性ペプチドが、コラーゲン、フィブロネクチン、ビトロネクチン、ラミニンおよびグリコサミノグリカンからなる群から選択される、請求項6記載の粒子含有細胞集合体。
  8. 前記ハイドロゲル粒子の粒径が、50nm−1000μmである、請求項1〜7のいずれか1項記載の粒子含有細胞集合体。
  9. 前記ハイドロゲル粒子の粒径が、100μm以上、20−100μm、または5−20μmのいずれかである、請求項8記載の粒子含有細胞集合体。
  10. 前記細胞1個に対して前記ハイドロゲル粒子が0.1−30個である、請求項1〜9のいずれか1項記載の粒子含有細胞集合体。
  11. 前記ハイドロゲル粒子0.1mgに対して細胞数が300から3000個の割合である、請求項1〜9のいずれか1項記載の粒子含有細胞集合体。
  12. 前記ハイドロゲル粒子が、細胞増殖因子を含む、請求項1〜11のいずれか1項記載の粒子含有細胞集合体。
  13. 前記ハイドロゲル粒子がゼラチンから成る場合、ゼラチンおよび架橋剤の濃度範囲が、ゼラチン濃度1〜20w/w%および架橋剤濃度0.01〜1w/w%である、請求項1〜12のいずれか1項記載の粒子含有細胞集合体。
  14. 細胞が幹細胞である、請求項1〜13のいずれか1項記載の粒子含有細胞集合体。
  15. 前記ハイドロゲル粒子を含む培養液中で、細胞を培養する、請求項1〜14のいずれか1項記載の粒子含有細胞集合体の製造方法。
JP2011540585A 2009-11-13 2010-11-12 粒子含有細胞集合体 Pending JPWO2011059112A1 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2009260192 2009-11-13
JP2009260192 2009-11-13
JP2010050399 2010-03-08
JP2010050399 2010-03-08
PCT/JP2010/070630 WO2011059112A1 (ja) 2009-11-13 2010-11-12 粒子含有細胞集合体

Publications (1)

Publication Number Publication Date
JPWO2011059112A1 true JPWO2011059112A1 (ja) 2013-04-04

Family

ID=43991761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011540585A Pending JPWO2011059112A1 (ja) 2009-11-13 2010-11-12 粒子含有細胞集合体

Country Status (5)

Country Link
US (1) US20120225483A1 (ja)
EP (1) EP2500425A4 (ja)
JP (1) JPWO2011059112A1 (ja)
CN (1) CN102597230A (ja)
WO (1) WO2011059112A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6339943B2 (ja) * 2012-03-13 2018-06-06 インスティテュート オブ ジェネティックス アンド ディベロップメンタル バイオロジー,チャイニーズ アカデミー オブ サイエンシズ 3次元培養による細胞の再プログラミング
JP2014226097A (ja) 2013-05-23 2014-12-08 株式会社日立ハイテクノロジーズ 細胞培養方法、粒子状培養担体、及び粒子包含細胞凝集体
CN104212758A (zh) * 2013-05-31 2014-12-17 复旦大学 一种构建遗传性状嵌合多细胞结构方法
JP5862915B2 (ja) * 2013-05-31 2016-02-16 iHeart Japan株式会社 ハイドロゲルを組み込んだ積層化細胞シート
JP6264765B2 (ja) * 2013-07-19 2018-01-24 大日本印刷株式会社 組織の作製方法
CN104436306B (zh) * 2014-11-11 2017-07-25 四川大学 一种细胞‑凝胶材料复合微球及其制备方法和应用
CN104528953B (zh) * 2015-01-10 2016-09-07 福州创源同方水务有限公司 一种用于污水处理的生物膜系统及其制备方法
JP2017131144A (ja) * 2016-01-27 2017-08-03 株式会社リコー 三次元細胞集合体作製用材料、三次元細胞集合体作製用組成物、三次元細胞集合体作製用セット、組成物収容容器、及び三次元細胞集合体の作製方法
JP2018019686A (ja) * 2016-07-20 2018-02-08 コニカミノルタ株式会社 ゼラチン粒子、ゼラチン粒子の製造方法、ゼラチン粒子内包細胞、ゼラチン粒子内包細胞の製造方法、および細胞構造体
KR20220048353A (ko) 2020-10-12 2022-04-19 씨제이제일제당 (주) 세포 배양용 영양물질을 포함하는 젤라틴 마이크로입자, 이의 제조방법 및 용도
CN114516974B (zh) * 2022-03-11 2023-06-20 陕西未来肉膳健康科技有限公司 一种多孔明胶微载体的制备方法及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5771391A (en) * 1980-08-27 1982-05-04 Monsanto Co Microcarrier cell culture
JPH04360677A (ja) * 1991-06-06 1992-12-14 Kurabo Ind Ltd 細胞浮遊培養法
JP3639593B2 (ja) * 1993-05-31 2005-04-20 科研製薬株式会社 塩基性線維芽細胞増殖因子含有架橋ゼラチンゲル製剤
JP2005529598A (ja) * 2002-06-11 2005-10-06 セルトリックス・エービー 多孔性ゼラチン材料、ゼラチン構造、その調製方法およびその使用
JP2007275056A (ja) * 2006-03-17 2007-10-25 Sanyo Chem Ind Ltd 細胞培養用担体
US20070264713A1 (en) * 2004-09-07 2007-11-15 Rheinische Friedrich-Wilhelms-Universität Scalable Process for Cultivating Undifferentiated Stem Cells in Suspension
JP2008511662A (ja) * 2004-08-30 2008-04-17 セレゲン,インコーポレーテッド 損傷組織の修復を促進するためのWntタンパク質を含む馴化培地

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0581A (ja) * 1991-06-21 1993-01-08 Koken Co Ltd 細胞培養担体及び培養方法
JPH07177874A (ja) * 1993-12-22 1995-07-18 Shimizu Kagaku Kk マイクロキャリア
FR2839260B1 (fr) * 2002-05-03 2005-02-25 Inst Nat Sante Rech Med Microparticules a base d'un materiau bicompatible et biodegradable, supportant des cellules et des substances biologiquement actives
JP2005027532A (ja) * 2003-07-09 2005-02-03 Fuji Xerox Co Ltd 細胞培養基材及びその製造方法、並びに細胞培養方法
JP2008174510A (ja) * 2007-01-19 2008-07-31 Kyushu Univ 多糖質微粒子及び多糖質微粒子の製造方法
DE102007020302B4 (de) * 2007-04-20 2012-03-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verbesserte dreidimensionale biokompatible Gerüststruktur, die Nanopartikel beinhaltet
JP2009260192A (ja) 2008-04-21 2009-11-05 Sumitomo Electric Ind Ltd 半導体光集積素子及びその製造方法
JP5328265B2 (ja) 2008-08-25 2013-10-30 キヤノン株式会社 テラヘルツ波発生素子、及びテラヘルツ波発生装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5771391A (en) * 1980-08-27 1982-05-04 Monsanto Co Microcarrier cell culture
JPH04360677A (ja) * 1991-06-06 1992-12-14 Kurabo Ind Ltd 細胞浮遊培養法
JP3639593B2 (ja) * 1993-05-31 2005-04-20 科研製薬株式会社 塩基性線維芽細胞増殖因子含有架橋ゼラチンゲル製剤
JP2005529598A (ja) * 2002-06-11 2005-10-06 セルトリックス・エービー 多孔性ゼラチン材料、ゼラチン構造、その調製方法およびその使用
JP2008511662A (ja) * 2004-08-30 2008-04-17 セレゲン,インコーポレーテッド 損傷組織の修復を促進するためのWntタンパク質を含む馴化培地
US20070264713A1 (en) * 2004-09-07 2007-11-15 Rheinische Friedrich-Wilhelms-Universität Scalable Process for Cultivating Undifferentiated Stem Cells in Suspension
JP2007275056A (ja) * 2006-03-17 2007-10-25 Sanyo Chem Ind Ltd 細胞培養用担体

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BIOMATERIALS, vol. 21, no. 22, JPN6014028805, 2000, pages 2253 - 2261, ISSN: 0002851340 *
J. BIOSCI. BIOENG., vol. 88, no. 6, JPN6014028800, 1999, pages 693 - 695, ISSN: 0002851337 *
TRANSPLANT. PROC., vol. 40, no. 10, JPN6014028802, 2008, pages 3623 - 3626, ISSN: 0002851338 *
小川敏弘ほか: "細胞増殖因子徐放化粒子状足場を用いた骨髄間葉系幹細胞の軟骨分化培養", 第57回高分子学会年次大会予稿集, vol. 57, no. 1, JPN6010071190, 8 May 2008 (2008-05-08), pages 1931, ISSN: 0002851339 *

Also Published As

Publication number Publication date
US20120225483A1 (en) 2012-09-06
WO2011059112A1 (ja) 2011-05-19
CN102597230A (zh) 2012-07-18
EP2500425A1 (en) 2012-09-19
EP2500425A4 (en) 2013-05-01

Similar Documents

Publication Publication Date Title
WO2011059112A1 (ja) 粒子含有細胞集合体
Zhang et al. Alginate/laponite hydrogel microspheres co-encapsulating dental pulp stem cells and VEGF for endodontic regeneration
Bidarra et al. Injectable alginate hydrogels for cell delivery in tissue engineering
Grigore et al. Behavior of encapsulated MG-63 cells in RGD and gelatine-modified alginate hydrogels
EP2633033B1 (en) Cell culture material based on microbial cellulose
Chung et al. Injectable cellular aggregates prepared from biodegradable porous microspheres for adipose tissue engineering
EP2021035B1 (en) Cell-matrix microspheres, methods for preparation and applications
Gong et al. Microcavitary hydrogel-mediating phase transfer cell culture for cartilage tissue engineering
Yao et al. Biomimetic injectable HUVEC‐adipocytes/collagen/alginate microsphere co‐cultures for adipose tissue engineering
Barnes et al. Collagen–poly (N-isopropylacrylamide) hydrogels with tunable properties
Griffon et al. A comparative study of seeding techniques and three‐dimensional matrices for mesenchymal cell attachment
Bai et al. Fabrication of engineered heart tissue grafts from alginate/collagen barium composite microbeads
Yao et al. Injectable cell/hydrogel microspheres induce the formation of fat lobule-like microtissues and vascularized adipose tissue regeneration
Yadav et al. In vitro chondrogenesis with lysozyme susceptible bacterial cellulose as a scaffold
Setayeshmehr et al. Chondrogenesis of human adipose-derived mesenchymal stromal cells on the [devitalized costal cartilage matrix/poly (vinyl alcohol)/fibrin] hybrid scaffolds
Kusuma et al. Transferable matrixes produced from decellularized extracellular matrix promote proliferation and osteogenic differentiation of mesenchymal stem cells and facilitate scale-up
Lin et al. Fibrous hydrogel scaffolds with cells embedded in the fibers as a potential tissue scaffold for skin repair
Li et al. Alginate/PEG based microcarriers with cleavable crosslinkage for expansion and non-invasive harvest of human umbilical cord blood mesenchymal stem cells
Confalonieri et al. An injectable recombinant collagen i peptide–based macroporous microcarrier allows superior expansion of c2c12 and human bone marrow-derived mesenchymal stromal cells and supports deposition of mineralized matrix
Korurer et al. Production of a composite hyaluronic acid/gelatin blood plasma gel for hydrogel‐based adipose tissue engineering applications
Jin et al. Dynamic cell culture on porous biopolymer microcarriers in a spinner flask for bone tissue engineering: a feasibility study
Narayan et al. Ectopic vascularized bone formation by human mesenchymal stem cell microtissues in a biocomposite scaffold
Ding et al. Perfusion seeding of collagen–chitosan sponges for dermal tissue engineering
Mitran et al. Dose-related effects of sericin on preadipocyte behavior within collagen/sericin hybrid scaffolds
Xia et al. The application of decellularized adipose tissue promotes wound healing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141104