JPWO2010126116A1 - 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム及び光導波路 - Google Patents

光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム及び光導波路 Download PDF

Info

Publication number
JPWO2010126116A1
JPWO2010126116A1 JP2011511459A JP2011511459A JPWO2010126116A1 JP WO2010126116 A1 JPWO2010126116 A1 JP WO2010126116A1 JP 2011511459 A JP2011511459 A JP 2011511459A JP 2011511459 A JP2011511459 A JP 2011511459A JP WO2010126116 A1 JPWO2010126116 A1 JP WO2010126116A1
Authority
JP
Japan
Prior art keywords
optical waveguide
group
meth
acrylate
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011511459A
Other languages
English (en)
Other versions
JP5585578B2 (ja
Inventor
竜也 牧野
竜也 牧野
俊彦 高崎
俊彦 高崎
雅美 落合
雅美 落合
敦之 高橋
敦之 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corporation
Showa Denko Materials Co Ltd
Original Assignee
Resonac Corporation
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Resonac Corporation, Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Resonac Corporation
Priority to JP2011511459A priority Critical patent/JP5585578B2/ja
Publication of JPWO2010126116A1 publication Critical patent/JPWO2010126116A1/ja
Application granted granted Critical
Publication of JP5585578B2 publication Critical patent/JP5585578B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1221Basic optical elements, e.g. light-guiding paths made from organic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • C08F283/065Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals on to unsaturated polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • C08F290/142Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1438Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing oxygen
    • C08G59/1455Monocarboxylic acids, anhydrides, halides, or low-molecular-weight esters thereof
    • C08G59/1461Unsaturated monoacids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/138Integrated optical circuits characterised by the manufacturing method by using polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/46Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing halogen
    • C08G2650/48Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing halogen containing fluorine, e.g. perfluropolyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/05Polymer mixtures characterised by other features containing polymer components which can react with one another

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Emergency Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optical Integrated Circuits (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Polyethers (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

【課題】透明性、耐熱性、強靭性に優れ、高精度な厚膜形成が可能であり、しかも生産性の高い光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム、及び透明性、環境信頼性、耐熱性に優れた光導波路を提供すること。【解決手段】(A)側鎖にエチレン性不飽和基を有し、主鎖に芳香環を有するポリヒドロキシポリエーテル、(B)エチレン性不飽和基を有する重合性化合物、及び(C)ラジカル重合開始剤を含んでなる光導波路形成用樹脂組成物、光導波路形成用樹脂フィル及び該光導波路形成用樹脂フィルムを用いてコア部を形成した光導波路である。

Description

本発明は、光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム及び光導波路に関する。
電子素子間や配線基板間の高速・高密度信号伝送において、従来の電気配線による伝送では、信号の相互干渉や減衰が障壁となり、高速・高密度化の限界が見え始めている。これを打ち破るため電子素子間や配線基板間を光で接続する技術、いわゆる光インターコネクション技術の開発が進められている。光伝送路としては、加工の容易さ、低コスト、配線の自由度が高く、かつ高密度化が可能な点からポリマー光導波路が注目を集めている。
ポリマー光導波路の形態としては、光電気混載基板への適用を想定したガラスエポキシ樹脂などの硬い支持基板上に作製するリジッドタイプや、ボード同士の接続を想定した硬い支持基板を持たないフレキシブルタイプが好適と考えられている。
ポリマー光導波路には、適用される機器の使用環境や部品実装などの観点から、高透明性(低光伝搬損失)と共に高耐熱性も要求されるが、このような光導波路材料としては、エポキシ樹脂、(メタ)アクリルポリマーなどを用いたものが提案されている(特許文献1〜4参照)。
しかしながら、従来、環境信頼性の評価、例えば、高温高湿放置試験や温度サイクル試験後の光伝搬損失などに関しての検討はなされてはおらず、要求を満たすものがなかった。
たとえば、特許文献1に記載のエポキシ樹脂は、波長850nmにおいて透明性に優れ、200〜280℃程度の耐熱性を有しているものの、上記の環境信頼性の評価に関する記述はなく、検討されていない。
また、特許文献2に記載の(メタ)アクリルポリマーは、フィルム状の光導波路材料であり、かつ波長850nmにおいて光伝搬損失0.3dB/cmの透明性を有するものの、環境信頼性の評価、例えば、高温高湿放置試験や温度サイクル試験後の光伝搬損失などの具体的な試験結果に関する記述はなく、検討されていない。同様に、耐熱性の評価、例えば、はんだリフロー試験後の光伝搬損失などの具体的な試験結果に関する記述もない。
また、特許文献3及び4に記載の(メタ)アクリルポリマーは、フィルム状の光導波路材料であり、波長850nmにおいて光伝搬損失0.5dB/cm以下の透明性を有し、かつ高温高湿放置試験後の光伝搬損失も良好であるものの、耐熱性の評価、例えば、はんだリフロー試験後の光伝搬損失などの具体的な試験結果に関する記述はなく、検討されていない。
また、特許文献5に記載のポリヒドロキシポリエーテルは、側鎖にエチレン性不飽和基を有しておらず、これを用いたフィルム状の光導波路材料は、透明性及び耐熱性に優れているが、低屈曲性の評価、例えば、破断伸び率に関する記述はなく、検討されていない。
特開平6−228274号公報 特開2003−195080号公報 特開2006−146162号公報 特開2008−33239号公報 国際公開2006−038691号公報
本発明は、上記した従来技術の問題に鑑み、透明性、耐熱性、強靭性に優れ、高精度な厚膜形成が可能であり、しかも生産性の高い光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム及び透明性、環境信頼性、耐熱性に優れた光導波路を提供することを目的とする。
本発明者らは鋭意検討を重ねた結果、特定の構造を有するポリヒドロキシポリエーテル、重合性化合物、及びラジカル重合開始剤を含んでなる光導波路形成用樹脂組成物を用いて光導波路を製造することにより、上記問題を解決しうることを見出した。
すなわち、本発明は、(A)側鎖にエチレン性不飽和基を有し、主鎖に芳香環を有するポリヒドロキシポリエーテル、(B)エチレン性不飽和基を有する重合性化合物、及び(C)ラジカル重合開始剤を含んでなる光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム及び該光導波路形成用樹脂組成物又は該光導波路形成用樹脂フィルムを用いてコア部を形成した、透明性、環境信頼性、耐熱性に優れた光導波路を提供するものである。
本発明によれば、透明性、耐熱性、強靭性に優れ、高精度な厚膜形成が可能であり、特に、光導波路製造用として有効であって、光導波路を生産するに際して、極めて生産性の高い光導波路形成用樹脂フィルムに有用な光導波路形成用樹脂組成物を提供することができる。また、光導波路形成用樹脂組成物及び光導波路形成用樹脂フィルムを用いて光導波路を形成することにより、透明性、環境信頼性、耐熱性に優れた光導波路を提供することができる。
本発明の光導波路の形態を説明する断面図である。 本発明で実施したリフロー試験におけるリフロー炉内の温度プロファイルを示すグラフである。
(光導波路形成用樹脂組成物)
本発明の光導波路形成用樹脂組成物は、(A)側鎖にエチレン性不飽和基を有し、主鎖に芳香環を有するポリヒドロキシポリエーテル、(B)エチレン性不飽和基を有する重合性化合物、及び(C)ラジカル重合開始剤を含んでなるものである。以下、(A)成分を(A)ポリヒドロキシポリエーテルと略記することがある。
((A)側鎖にエチレン性不飽和基を有し、主鎖に芳香環を有するポリヒドロキシポリエーテル)
本発明に用いられる(A)側鎖にエチレン性不飽和基を有し、主鎖に芳香環を有するポリヒドロキシポリエーテルとは、2官能フェノール及び2官能エポキシ樹脂、2官能フェノール及びエピクロロヒドリン、又は2官能フェノール及び2官能オキセタン化合物をモノマーとし、これらを重合後、水酸基の反応性を利用して、側鎖にエチレン性不飽和基を導入したポリマーをいう。また、これらのモノマーを重合し、ポリヒドロキシポリエーテルとした後に、水酸基をエチレンオキシド、プロピレンオキシド、カプロラクトンなどで変性し、側鎖末端の水酸基の反応性を利用して、エチレン性不飽和基を導入したポリマーも含まれる。さらに、ポリヒドロキシポリエーテルの水酸基の反応性を利用して、一旦カルボキシル基などを導入し、これにエチレン性不飽和基を導入したポリマーも含まれる。
ポリヒドロキシポリエーテルの側鎖にエチレン性不飽和基を導入することにより、硬化時に(B)成分のエチレン性不飽和基を有する重合性化合物と架橋することが可能となり、得られる硬化物の透明性を損なうことなく、耐熱性を向上させることができる。
また、上記モノマーに由来する構造単位(下記一般式(2))が存在することにより、(B)成分のエチレン性不飽和基を有する重合性化合物と架橋しすぎない。以上の観点から、下記一般式(1)及び(2)で表される構造単位を有するポリヒドロキシポリエーテルが好ましい。
Figure 2010126116
Figure 2010126116
式(1)における、R1は、水素原子又は炭素数1〜20の有機基を示す。炭素数1〜20の有機基としては、例えば、アルキル基、シクロアルキル基、アリール基、アラルキル基、カルボニル基(−CO−Rを意味する。但しRは炭化水素基である)、エステル基(−CO−O−R又は−O−CO−Rを意味する。但しRは炭化水素基である)、カルバモイル基などの1価の有機基が挙げられ、それらは、さらに水酸基、ハロゲン原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、カルボニル基、ホルミル基、エステル基、アミド基、アルコキシ基、アリーロキシ基、アルキルチオ基、アリールチオ基、アミノ基、シリル基、シリロキシ基などで置換されていてもよい。これらのうち、透明性、及び耐熱性の点から、アルキル基、シクロアルキル基、アリール基、及びアラルキル基が好ましい。
次に、X1は、2価の基であれば、特に制限はなく、例えば、下記一般式で表されるヒドロキノン、レゾルシノール、カテコール、1,4−ナフタレンジオール、1,5−ナフタレンジオール、1,6−ナフタレンジオール、1,7−ナフタレンジオールなどの単核2官能フェノール、これらの有機基置換体、及び含フッ素有機基置換体由来の基;2,2’−ビフェノール、4,4’−ビフェノール、ビスフェノールA、テトラブロモビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、ビスフェノールZ、フルオレン型ビスフェノールなどの多核2官能フェノール、これらの有機基置換体、及びビスフェノールAFなどの含フッ素有機基置換体由来の基といった芳香環を含有する2価の基が挙げられる。これらの中で、透明性及び耐熱性の観点から上記多核2官能フェノール、これらの有機基置換体、及びビスフェノールAFなどの含フッ素有機基置換体由来の基が好ましい。これらの基は単独で又は2種類以上を組み合わせて用いることができ、さらに耐熱性を損なわない程度にアルキレン基、シクロアルキレン基、ポリエーテル基、ポリシロキサン基、カルボニル基、エステル基、アミド基、ウレタン基などの芳香環を含有しない2価の基を併用してもよい。
Figure 2010126116
上記式におけるR2〜R18は、各々独立に水素原子、フッ素原子及び炭素数1〜20の有機基のいずれかを示す。炭素数1〜20の有機基としては、上述のR1の具体例として記載されたものと同様のものを好適に挙げることができる。
また、Z1は、単結合、酸素原子、硫黄原子、−CH2−、−C(CH32−、−CF2−、−C(CF32−、−SO2−、
Figure 2010126116
のいずれかの2価の基を示す。aは、2〜10の整数を示す。
また、式(1)におけるY1は、単結合又は炭素数1〜20の2価の有機基を示し、Y2は、炭素数1〜20の2価の有機基を示す。
ここで、炭素数1〜20の2価の有機基としては、例えば、アルキレン基、シクロアルキレン基、フェニレン基、ポリエーテル基、ポリシロキサン基、カルボニル基、エステル基、アミド基、ウレタン基などを含む2価の有機基が挙げられ、それらは、さらにハロゲン原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、カルボニル基、ホルミル基、エステル基、アミド基、アルコキシ基、アリーロキシ基、アルキルチオ基、アリールチオ基、シリル基、シリロキシ基などで置換されていてもよい。
一般式(1)で表される構造単位は、透明性及び耐熱性を発現し、さらに強靭性を付与して伸び率を向上できるという観点から、ウレタン基及び(メタ)アクリロイル基を有する下記一般式(3)で表されることが、さらに好ましい。なお、(メタ)アクリロイル基とはメタクリロイル基及び/又はアクリロイル基を示す。
Figure 2010126116
式中、R36は、水素原子又はメチル基を示す。また、Y4は、炭素数1〜18の2価の有機基であれば特に制限はなく、例えば、アルキレン基、シクロアルキレン基、フェニレン基、ポリエーテル基、ポリシロキサン基、カルボニル基、エステル基、アミド基などを含む2価の有機基が挙げられ、それらは、さらにハロゲン原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、カルボニル基、ホルミル基、エステル基、アミド基、アルコキシ基、アリーロキシ基、アルキルチオ基、アリールチオ基、シリル基、シリロキシ基などで置換されていてもよい。
次に、上記式(2)におけるX2は、X1と同様に、2価の基であれば、特に制限はなく、例えば、下記一般式で表されるヒドロキノン、レゾルシノール、カテコール、1,4−ナフタレンジオール、1,5−ナフタレンジオール、1,6−ナフタレンジオール、1,7−ナフタレンジオールなどの単核2官能フェノール、これらの有機基置換体、及び含フッ素有機基置換体由来の基;2,2’−ビフェノール、4,4’−ビフェノール、ビスフェノールA、テトラブロモビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、ビスフェノールZ、フルオレン型ビスフェノールなどの多核2官能フェノール、これらの有機基置換体、及びビスフェノールAFなどの含フッ素有機基置換体由来の基といった芳香環を含有する2価の基が挙げられる。これらの中で、透明性及び耐熱性の観点から上記多核2官能フェノール、これらの有機基置換体、及びビスフェノールAFなどの含フッ素有機基置換体由来の基が好ましい。これらの基は単独で又は2種類以上を組み合わせて用いることができ、さらに耐熱性を損なわない程度にアルキレン基、シクロアルキレン基、ポリエーテル基、ポリシロキサン基、カルボニル基、エステル基、アミド基、ウレタン基などの芳香環を含有しない2価の基を併用してもよい。
Figure 2010126116
上記式における、R19〜R35は、各々独立に水素原子、フッ素原子及び炭素数1〜20の有機基のいずれかを示す。炭素数1〜20の有機基としては、上述のR1の具体例として記載されたものと同様のものを好適に用いることができる。
また、Z2は、単結合、酸素原子、硫黄原子、−CH2−、−C(CH32−、−CF2−、−C(CF32−、−SO2−、
Figure 2010126116
のいずれかの2価の基を示す。bは、2〜10の整数を示す。
また、式(2)におけるY3は、単結合又は炭素数1〜20の2価の有機基を示す。ここで、炭素数1〜20の2価の有機基としては、上述のY1及びY2の具体例として記載されたものと同様のものを好適に用いることができる。
本発明の(A)ポリヒドロキシポリエーテルが、上記一般式(1)及び一般式(2)で表わされる構造単位を有する場合の、一般式(1)で表される構造単位の含有率は、3〜70モル%であることが好ましい。3モル%以上であれば硬化時に(B)成分のエチレン性不飽和基を有する重合性化合物と十分に架橋することにより、得られる硬化物の耐熱性が良好であり、70モル%以下であれば架橋密度が高くなりすぎず、得られる硬化物が脆くなることがない。以上の観点から、5〜60モル%であることがさらに好ましく、10〜50モル%であることが特に好ましい。
また、一般式(2)で表される構造単位の含有率は、30〜97モル%であることが好ましい。30モル%以上であれば硬化時に(B)成分のエチレン性不飽和基を有する重合性化合物と架橋しすぎないことにより、得られる硬化物が脆くなることがなく、97モル%以下であれば十分に架橋することにより、得られる硬化物の耐熱性が良好である。以上の観点から、40〜95モル%であることがさらに好ましく、50〜90モル%であることが特に好ましい。
(A)成分としては、主鎖にビスフェノールA及びビスフェノールF由来の骨格を有するポリヒドロキシポリエーテルの側鎖にエチレン性不飽和基を導入したものが特に好ましい。ここで、主鎖にビスフェノールA及びビスフェノールF由来の骨格を有するポリヒドロキシポリエーテルは、例えば、フェノキシ樹脂として東都化成株式会社から商品名「フェノトートYP−70」が商業的に入手可能である。
(A)側鎖にエチレン性不飽和基を有し、主鎖に芳香環を有するポリヒドロキシポリエーテルは、その合成方法に特に制限はなく、例えば、主鎖に芳香環を有するポリヒドロキシポリエーテルを溶媒に溶解させ、ポリヒドロキシポリエーテルの水酸基にエチレン性不飽和イソシアネートを付加させることにより得ることができる。また、ポリヒドロキシポリエーテルの水酸基に多塩基酸無水物を付加反応させて、カルボン酸変性ポリヒドロキシポリエーテルとした後に、カルボキシル基に、エチレン性不飽和基含有エポキシド、エチレン性不飽和基含有オキセタン、エチレン性不飽和イソシアネート、エチレン性不飽和基含有アルコールを付加させることにより得ることができる。これらの化合物の使用量は、一般式(1)及び(2)で表される構造単位の含有率が上記範囲となるように調整される。
上記合成に用いるエチレン性不飽和イソシアネートとしては、特に制限はなく、例えば、(メタ)アクリロイルオキシメチルイソシアネート、2−(メタ)アクリロイルオキシエチルイソシアネート、2−(メタ)アクリロイルオキシエトキシエチルイソシアネート、1,1−ビス((メタ)アクリロイルオキシメチル)エチルイソシアネートなどが挙げられる。
これらの中でも、透明性及び耐熱性の観点から、(メタ)アクリロイルオキシメチルイソシアネート、2−(メタ)アクリロイルオキシエチルイソシアネート、2−(メタ)アクリロイルオキシエトキシエチルイソシアネートが好ましい。
これらの化合物は、単独で又は2種類以上を組み合わせて用いることができる。
また、多塩基酸無水物としては、特に制限はなく、例えば、無水コハク酸、無水グルタル酸、無水イタコン酸、無水マレイン酸、無水シトラコン酸、無水フタル酸、無水テトラヒドロフタル酸、無水ヘキサヒドロフタル酸、無水トリメリト酸、無水ヘキサヒドロトリメリト酸などが挙げられる。
これらの中でも、透明性及び耐熱性の観点から、無水コハク酸、無水グルタル酸、無水テトラヒドロフタル酸、無水ヘキサヒドロフタル酸、無水ヘキサヒドロトリメリト酸が好ましい。
これらの化合物は、単独で又は2種類以上を組み合わせて用いることができる。
エチレン性不飽和基含有エポキシドとしては、特に制限はなく、例えば、グリシジル(メタ)アクリレート、α−エチルグリシジル(メタ)アクリレート、α−n−プロピルグリシジル(メタ)アクリレート、α−n−ブチルグリシジル(メタ)アクリレート、2−メチルグリシジル(メタ)アクリレート、2−エチルグリシジル(メタ)アクリレート、2−プロピルグリシジル(メタ)アクリレート、3,4−エポキシブチル(メタ)アクリレート、6,7−エポキシヘプチル(メタ)アクリレート、α−エチル−6,7−エポキシヘプチル(メタ)アクリレート、3,4−エポキシシクロヘキシルメチル(メタ)アクリレート、o−ビニルベンジルグリシジルエーテル、m−ビニルベンジルグリシジルエーテル、p−ビニルベンジルグリシジルエーテルなどが挙げられる。
これらの中でも、透明性及び耐熱性の観点から、グリシジル(メタ)アクリレート、3,4−エポキシブチル(メタ)アクリレート、3,4−エポキシヘプチル(メタ)アクリレート、6,7−エポキシシクロヘキシルメチル(メタ)アクリレートが好ましい。
これらの化合物は、単独で又は2種類以上を組み合わせて用いることができる。
エチレン性不飽和基含有オキセタンとしては、特に制限はなく、例えば、(2−エチル−2−オキセタニル)メチル(メタ)アクリレート、(2−メチル−2−オキセタニル)メチル(メタ)アクリレート、2−(2−エチル−2−オキセタニル)エチル(メタ)アクリレート、2−(2−メチル−2−オキセタニル)エチル(メタ)アクリレート、3−(2−エチル−2−オキセタニル)プロピル(メタ)アクリレート、3−(2−メチル−2−オキセタニル)プロピル(メタ)アクリレートなどが挙げられる。
これらの中でも、透明性及び耐熱性の観点から、(2−エチル−2−オキセタニル)メチル(メタ)アクリレート、(2−メチル−2−オキセタニル)メチル(メタ)アクリレート、2−(2−エチル−2−オキセタニル)エチル(メタ)アクリレート、2−(2−メチル−2−オキセタニル)エチル(メタ)アクリレートが好ましい。
これらの化合物は、単独で又は2種類以上を組み合わせて用いることができる。
エチレン性不飽和基含有アルコールとしては、特に制限はなく、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシプロピル−3−フェノキシ(メタ)アクリレート、3−クロロ−2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレートなどが挙げられる。
これらの中でも、透明性及び耐熱性の観点から、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシプロピル−3−フェノキシ(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレートが好ましい。
これらの化合物は、単独で又は2種類以上を組み合わせて用いることができる。
反応溶媒として用いる有機溶剤としては、主鎖に芳香環を有するポリヒドロキシポリエーテルを溶解し得る非プロトン性の溶媒であれば特に制限はなく、例えば、トルエン、キシレン、メシチレン、クメン、p−シメンなどの芳香族炭化水素;ジエチルエーテル、tert−ブチルメチルエーテル、シクロペンチルメチルエーテル、ジブチルエーテルなどの鎖状エーテル;テトラヒドロフラン、1,4−ジオキサンなどの環状エーテル;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン;酢酸メチル、酢酸エチル、酢酸ブチル、γ−ブチロラクトンなどのエステル;エチレンカーボネート、プロピレンカーボネートなどの炭酸エステル;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテルなどの多価アルコールアルキルエーテル;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテートなどの多価アルコールアルキルエーテルアセテート;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドンなどのアミドなどが挙げられる。
これらの有機溶剤は、単独で又は2種類以上を組み合わせて用いることができる。
(A)側鎖にエチレン性不飽和基を有し、主鎖に芳香環を有するポリヒドロキシポリエーテルの重量平均分子量は、1.0×103〜1.0×106であることが好ましい。1.0×103以上であると分子量が大きいため樹脂組成物とした場合の強度が十分で、1.0×106以下であると、後述する現像により感光性樹脂組成物の層を選択的に除去してパターンを形成する工程において、公知の各種現像液により現像可能となり、また(B)成分のエチレン性不飽和基を有する重合性化合物との相溶性が良好である。以上の観点から3.0×103〜5.0×105とすることがさらに好ましく、5.0×103〜3.0×105であることが特に好ましい。
なお、本発明の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC、キャリア溶媒:テトラヒドロフラン)で測定し、標準ポリスチレン換算した値である。
(A)成分の側鎖にエチレン性不飽和基を有し、主鎖に芳香環を有するポリヒドロキシポリエーテルの配合量は、(A)成分及び(B)成分のエチレン性不飽和基を有する重合性化合物の総量に対して、10〜90質量%であることが好ましい。10質量%以上であると、(B)成分のエチレン性不飽和基を有する重合性化合物及び(C)成分のラジカル重合開始剤を含んでなる光導波路形成用樹脂組成物をフィルム化することが容易となり、90質量%以下であると、硬化時に(B)成分のエチレン性不飽和基を有する重合性化合物と十分に架橋することにより、耐現像液性が不足することがない。以上の観点から、(A)成分の配合量は、15〜80質量%であることがさらに好ましく、20〜70質量%であることが特に好ましい。
((B)エチレン性不飽和基を有する重合性化合物)
本発明において、(B)成分としてエチレン性不飽和基を有する重合性化合物を用いることにより、硬化時に(A)成分の側鎖にエチレン性不飽和基を有し、主鎖に芳香環を有するポリヒドロキシポリエーテルと架橋することが可能となり、得られる硬化物の透明性を損なうことなく耐熱性を向上させることができる。
(B)成分のエチレン性不飽和基を有する重合性化合物は、(A)成分以外のものであれば、特に制限はなく、例えば、(メタ)アクリレート、ビニルエーテル、ビニルエステル、ビニルアミド、アリール化ビニル、ビニルピリジン、ハロゲン化ビニル、ハロゲン化ビニリデンなどが挙げられる。
これらの中でも、透明性及び耐熱性の観点から、(メタ)アクリレートやアリール化ビニルが好ましい。(メタ)アクリレートとしては、単官能のもの、2官能のもの、又は3官能以上のもののいずれも用いることができる。
単官能(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、sec−ブチル(メタ)アクリレート、tert−ブチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチルヘプチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、ベヘニル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−クロロ−2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、エトキシポリプロピレングリコール(メタ)アクリレート、モノ(2-(メタ)アクリロイルオキシエチル)スクシネートなどの脂肪族(メタ)アクリレート、これらのエトキシ化体、これらのプロポキシ化体、これらのエトキシ化プロポキシ化体、及びこれらのカプロラクトン変性体;シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、モノ(2-(メタ)アクリロイルオキシエチル)テトラヒドロフタレート、モノ(2-(メタ)アクリロイルオキシエチル)ヘキサヒドロフタレートなどの脂環式(メタ)アクリレート、これらのエトキシ化体、これらのプロポキシ化体、これらのエトキシ化プロポキシ化体、及びこれらのカプロラクトン変性体;フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、o−ビフェニル(メタ)アクリレート、1−ナフチル(メタ)アクリレート、2−ナフチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、p−クミルフェノキシエチル(メタ)アクリレート、o−フェニルフェノキシエチル(メタ)アクリレート、1−ナフトキシエチル(メタ)アクリレート、2−ナフトキシエチル(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、フェノキシポリプロピレングリコール(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、2−ヒドロキシ−3−(o−フェニルフェノキシ)プロピル(メタ)アクリレート、2−ヒドロキシ−3−(1−ナフトキシ)プロピル(メタ)アクリレート、2−ヒドロキシ−3−(2−ナフトキシ)プロピル(メタ)アクリレートなどの芳香族(メタ)アクリレート、これらのエトキシ化体、これらのプロポキシ化体、これらのエトキシ化プロポキシ化体、及びこれらのカプロラクトン変性体;2−テトラヒドロフルフリル(メタ)アクリレート、N−(メタ)アクリロイルオキシエチルテトラヒドロフタルイミド、N−(メタ)アクリロイルオキシエチルヘキサヒドロフタルイミド、イソシアヌル酸モノ(メタ)アクリレート、2−(メタ)アクリロイルオキシエチル−N−カルバゾールなどの複素環式(メタ)アクリレート、これらのエトキシ化体、これらのプロポキシ化体、これらのエトキシ化プロポキシ化体、及びこれらのカプロラクトン変性体などが挙げられる。
これらの中でも、透明性及び耐熱性の観点から、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、イソボルニル(メタ)アクリレートなどの脂環式(メタ)アクリレート、これらのエトキシ化体、これらのプロポキシ化体、これらのエトキシ化プロポキシ化体、及びこれらのカプロラクトン変性体;ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、p−クミルフェノキシエチル(メタ)アクリレート、o−フェニルフェノキシエチル(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、フェノキシポリプロピレングリコール(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、2−ヒドロキシ−3−(o−フェニルフェノキシ)プロピル(メタ)アクリレートなどの芳香族(メタ)アクリレート、これらのエトキシ化体、これらのプロポキシ化体、これらのエトキシ化プロポキシ化体、及びこれらのカプロラクトン変性体;N−(メタ)アクリロイルオキシエチルテトラヒドロフタルイミド、N−(メタ)アクリロイルオキシエチルヘキサヒドロフタルイミド、イソシアヌル酸モノ(メタ)アクリレート、2−(メタ)アクリロイルオキシエチル−N−カルバゾールなどの複素環式(メタ)アクリレートなどの複素環式(メタ)アクリレート、これらのエトキシ化体、これらのプロポキシ化体、これらのエトキシ化プロポキシ化体、及びこれらのカプロラクトン変性体が好ましく、下記一般式(4)で表される芳香族モノ(メタ)アクリレートがさらに好ましい。
ここで、(メタ)アクリレートのエトキシ化体、プロポキシ化体、エトキシ化プロポキシ化体とは、原料となるアルコール又はフェノール類[例えば、モノ(メタ)アクリレート;CH2=CH(R1)−COO−R2(R1は水素原子又はメチル基、R2は一価の有機基)の場合は、HO−R2で示されるもの]の代わりに、前記アルコール又はフェノール類に、それぞれ、1以上のエチレンオキシドを付加した構造のアルコール、1以上のプロピレンオキシドを付加した構造のアルコール、又は1以上のエチレンオキシド及びプロピレンオキシドを付加した構造のアルコールを、原料に用いて得られる(メタ)アクリレートを示す(例えば、エトキシ化体の場合はCH2=CH(R1)−COO−(CH2CH2O)n−R2(nは1以上の整数)で示される)。例えば、フェノキシエチル(メタ)アクリレートのエトキシ化体とは、フェノキシエチルアルコールにエチレンオキシドを付加したアルコールと、アクリル酸又はメタクリル酸とを反応させて得られる(メタ)アクリレートを意味する。また、カプロラクトン変性体とは、(メタ)アクリレートの原料となるアルコールをカプロラクトンで変性した変性アルコールを原料とする(メタ)アクリレートを示す(例えば、モノ(メタ)アクリレートのε−カプロラクトン変性体の場合、CH2=CH(R1)−COO−((CH25COO)n−R2(n、R1、R2は前記と同様))で示される)。
Figure 2010126116
式中、R37は、水素原子又はメチル基を示す。R38は、下記式で示されるいずれかの1価の基を示す。
Figure 2010126116
ここで、R39〜R52は、各々独立に水素原子、フッ素原子及び炭素数1〜20の有機基のいずれかを示す。なお、炭素数1〜20の有機基としては、上述のR1の具体例として記載されたものと同様のものを好適に挙げることができる。
また、Z3は、単結合、酸素原子、硫黄原子、−CH2−、−C(CH32−、−CF2−、−C(CF32−、−SO2−、
Figure 2010126116
のいずれかの2価の基を示す。cは、2〜10の整数を示す。
また、式(4)における、W1は、酸素原子、硫黄原子、−OCH2−、−SCH2−、−O(CH2CH2O)d−、−O[CH2CH(CH3)O]e−、−O[(CH25CO2f−及び−OCH2CH(OH)CH2O−のいずれかの2価の基を含み、d〜fは1〜10の整数を示す。
2官能(メタ)アクリレートとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,3−プロパンジオールジ(メタ)アクリレート、2−メチル−1,3−プロパンジオールジ(メタ)アクリレート、2−ブチル−2−エチル−1,3−プロパンジオールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、3−メチル−1,5−ペンタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、1,10−デカンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレートなどの脂肪族(メタ)アクリレート、これらのエトキシ化体、これらのプロポキシ化体、これらのエトキシ化プロポキシ化体、及びこれらのカプロラクトン変性体;エチレングリコール型エポキシジ(メタ)アクリレート、ジエチレングリコール型エポキシジ(メタ)アクリレート、ポリエチレングリコール型エポキシジ(メタ)アクリレート、プロピレングリコール型エポキシジ(メタ)アクリレート、ジプロピレングリコール型エポキシジ(メタ)アクリレート、ポリプロピレングリコール型エポキシジ(メタ)アクリレート、1,3−プロパンジオール型エポキシジ(メタ)アクリレート、2−メチル−1,3−プロパンジオール型エポキシジ(メタ)アクリレート、2−ブチル−2−エチル−1,3−プロパンジオール型エポキシジ(メタ)アクリレート、1,4−ブタンジオール型エポキシジ(メタ)アクリレート、ネオペンチルグリコール型エポキシジ(メタ)アクリレート、3−メチル−1,5−ペンタンジオール型エポキシジ(メタ)アクリレート、1,6−ヘキサンジオール型エポキシジ(メタ)アクリレート、1,9−ノナンジオール型エポキシジ(メタ)アクリレート、1,10−デカンジオール型エポキシジ(メタ)アクリレートなどの脂肪族エポキシ(メタ)アクリレート;シクロヘキサンジメタノールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、水添ビスフェノールAジ(メタ)アクリレート、水添ビスフェノールFジ(メタ)アクリレートなどの脂環式(メタ)アクリレート、これらのエトキシ化体、これらのプロポキシ化体、これらのエトキシ化プロポキシ化体、及びこれらのカプロラクトン変性体;シクロヘキサンジメタノール型エポキシジ(メタ)アクリレート、トリシクロデカンジメタノール型エポキシジ(メタ)アクリレート、水添ビスフェノールA型エポキシジ(メタ)アクリレート、水添ビスフェノールF型エポキシジ(メタ)アクリレートなどの脂環式エポキシ(メタ)アクリレート;ヒドロキノンジ(メタ)アクリレート、レゾルシノールジ(メタ)アクリレート、カテコールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、ビスフェノールFジ(メタ)アクリレート、ビスフェノールAFジ(メタ)アクリレート、ビフェノールジ(メタ)アクリレート、フルオレン型ジ(メタ)アクリレートなどの芳香族(メタ)アクリレート、これらのエトキシ化体、これらのプロポキシ化体、これらのエトキシ化プロポキシ化体、及びこれらのカプロラクトン変性体;ヒドロキノン型エポキシジ(メタ)アクリレート、レゾルシノール型エポキシジ(メタ)アクリレート、カテコール型エポキシジ(メタ)アクリレート、ビスフェノールA型エポキシジ(メタ)アクリレート、ビスフェノールF型エポキシジ(メタ)アクリレート、ビスフェノールAF型エポキシジ(メタ)アクリレート、ビフェノール型エポキシジ(メタ)アクリレート、フルオレン型エポキシジ(メタ)アクリレートなどの芳香族エポキシ(メタ)アクリレート;イソシアヌル酸ジ(メタ)アクリレートなどの複素環式(メタ)アクリレート、これらのエトキシ化体、これらのプロポキシ化体、これらのエトキシ化プロポキシ化体、及びこれらのカプロラクトン変性体;イソシアヌル酸モノアリル型エポキシジ(メタ)アクリレートなどの複素環式(メタ)アクリレートなどが挙げられる。
これらの中でも、透明性及び耐熱性の観点から、上記脂環式(メタ)アクリレート、これらのエトキシ化体、これらのプロポキシ化体、これらのエトキシ化プロポキシ化体、及びこれらのカプロラクトン変性体;上記脂環式エポキシ(メタ)アクリレート;ビスフェノールAジ(メタ)アクリレート、ビスフェノールFジ(メタ)アクリレート、ビスフェノールAFジ(メタ)アクリレート、ビフェノールジ(メタ)アクリレート、フルオレン型ジ(メタ)アクリレートなどの芳香族(メタ)アクリレート、これらのエトキシ化体、これらのプロポキシ化体、これらのエトキシ化プロポキシ化体、及びこれらのカプロラクトン変性体;ビスフェノールA型エポキシジ(メタ)アクリレート、ビスフェノールF型エポキシジ(メタ)アクリレート、ビスフェノールAF型エポキシジ(メタ)アクリレート、ビフェノール型エポキシジ(メタ)アクリレート、フルオレン型エポキシジ(メタ)アクリレートなどの芳香族エポキシ(メタ)アクリレート;上記複素環式(メタ)アクリレート、これらのエトキシ化体、これらのプロポキシ化体、これらのエトキシ化プロポキシ化体、及びこれらのカプロラクトン変性体;上記複素環式(メタ)アクリレートが好ましく、下記一般式(5)で表される芳香族(メタ)アクリレート及び下記一般式(6)で表される芳香族エポキシ(メタ)アクリレートがさらに好ましい。
そして、一般式(5)で表される芳香族(メタ)アクリレート及び一般式(6)で表される芳香族エポキシ(メタ)アクリレートを併用することが特に好ましい。
一般式(5)で表される芳香族(メタ)アクリレートとしては、Z4が−C(CH32−及びフルオレン骨格のものが好ましく、例えば、新中村化学工業株式会社から商品名「NKエステル A−BPEF」、日立化成工業株式会社から商品名「ファンクリル FA−321A」が商業的に入手可能である。
また、一般式(6)で表される芳香族エポキシ(メタ)アクリレートを2種以上組み合わせて使用することが極めて好ましい。
一般式(6)で表される芳香族エポキシ(メタ)アクリレートとしては、Z5が−C(CH32−が好ましく、例えば、新中村化学工業株式会社から商品名「NKオリゴ EA−5222」、「NKオリゴ EA−1020」が商業的に入手可能である。
なお、エトキシ化体、プロポキシ化体、エトキシ化プロポキシ化体、カプロラクトン変性体とは、前記と同様の意味である。
Figure 2010126116
式中、R53及びR54は、各々独立に水素原子又はメチル基を示す。R55〜R60は、各々独立に水素原子、フッ素原子及び炭素数1〜20の有機基のいずれかを示す。なお、炭素数1〜20の有機基としては、上述のR1の具体例として記載されたものと同様のものを好適に挙げることができる。
また、Z4は、単結合、酸素原子、硫黄原子、−CH2−、−C(CH32−、−CF2−、−C(CF32−、−SO2−、
Figure 2010126116
のいずれかの2価の基を示す。gは2〜10の整数を示す。
また、前記式(5)における、W2及びW3は、各々独立に酸素原子、硫黄原子、−OCH2−、−SCH2−、−O(CH2CH2O)h−、−O[CH2CH(CH3)O]i−及び−O[(CH25CO2j−のいずれかの2価の基を含む。h〜jは、各々独立に1〜10の整数を示す。)
Figure 2010126116
式中、kは、1〜10の整数を示す。R61及びR62は、各々独立に水素原子又はメチル基を示す。R63〜R68は、各々独立に水素原子、フッ素原子及び炭素数1〜20の有機基のいずれかを示す。なお、炭素数1〜20の有機基としては、上述のR1の具体例として記載されたものと同様のものを好適に挙げることができる。
また、Z5は、単結合、酸素原子、硫黄原子、−CH2−、−C(CH32−、−CF2−、−C(CF32−、−SO2−、
Figure 2010126116
のいずれかの2価の基を示す。lは、2〜10の整数を示す。
前記式(6)における、W4及びW5は、各々独立に酸素原子、−O(CH2CH2O)m−、−O[CH2CH(CH3)O]n−及び−O[(CH25CO2o−のいずれかの2価の基を含み、m〜oは、各々独立に1〜10の整数を示す。
3官能以上の(メタ)アクリレートとして、例えばトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどの脂肪族(メタ)アクリレート、これらのエトキシ化体、これらのプロポキシ化体、これらのエトキシ化プロポキシ化体、及びこれらのカプロラクトン変性体;フェノールノボラック型エポキシ(メタ)アクリレート、クレゾールノボラック型エポキシポリ(メタ)アクリレートなどの芳香族エポキシ(メタ)アクリレート;イソシアヌル酸トリ(メタ)アクリレートなどの複素環式(メタ)アクリレート、これらのエトキシ化体、これらのプロポキシ化体、これらのエトキシ化プロポキシ化体、及びこれらのカプロラクトン変性体;イソシアヌル酸型エポキシ(メタ)アクリレートなどの複素環式(メタ)エポキシアクリレートなどが挙げられる。なお、エトキシ化体、プロポキシ化体、エトキシ化プロポキシ化体、カプロラクトン変性体とは、前記と同様の意味である。
これらの中でも、透明性及び耐熱性の観点から、上記芳香族エポキシ(メタ)アクリレート;上記複素環式(メタ)アクリレート;上記イソシアヌル酸型エポキシ(メタ)アクリレートが好ましい。
以上の(メタ)アクリレートは、単独又は2種類以上組み合わせて用いることができ、さらにその他の重合性化合物と組み合わせて用いることもできる。
(B)エチレン性不飽和基を有する重合性化合物の配合量は、前記(A)成分と(B)成分の総量に対して、10〜90質量%であることが好ましい。10質量%以上であると、硬化時に(A)側鎖にエチレン性不飽和基を有し、主鎖に芳香環を有するポリヒドロキシポリエーテルと十分に架橋することにより、耐現像液性が不足することがなく、90質量%以下であると、(A)ポリヒドロキシポリエーテル及び(C)ラジカル重合開始剤を含んでなる光導波路形成用樹脂組成物をフィルム化することが容易となる。以上の観点から、(B)成分の配合量は、20〜85質量%であることがさらに好ましく、30〜80質量%であることが特に好ましい。
((C)ラジカル重合開始剤)
(C)ラジカル重合開始剤としては、加熱又は紫外線、可視光線などの活性光線の照射によってラジカル重合を開始させるものであれば特に制限はなく、例えば、熱ラジカル重合開始剤、光ラジカル重合開始剤などが挙げられる。
熱ラジカル重合開始剤としては、特に制限はなく、例えば、国際公開WO2007/105795号公報の段落[0083]に記載されたケトンパーオキシド、パーオキシケタール、ヒドロパーオキシド、ジアルキルパーオキシド、ジアシルパーオキシド、パーオキシカーボネート、パーオキシエステル、アゾ化合物が挙げられる。
これらの中でも、硬化性、透明性、及び耐熱性の観点から、上記ジアシルパーオキシド;上記パーオキシエステル;上記アゾ化合物が好ましい。
光ラジカル重合開始剤としては、特に制限はなく、例えば、国際公開WO2007/105795号公報の段落[0084]に記載されたベンゾインケタール、α−ヒドロキシケトン、グリオキシエステル、α−アミノケトン、オキシムエステル、ホスフィンオキシド、2,4,5−トリアリールイミダゾール二量体、ベンゾフェノン化合物、キノン化合物、ベンゾインエーテル、ベンゾイン化合物、ベンジル化合物、アクリジン化合物の他、N−フェニルグリシン及びクマリンなどが挙げられる。
また、前記2,4,5−トリアリールイミダゾール二量体において、2つのトリアリールイミダゾール部位のアリール基の置換基は、同一で対称な化合物を与えてもよく、相違して非対称な化合物を与えてもよい。
これらの中で、硬化性及び透明性の観点から、上記α−ヒドロキシケトン;上記グリオキシエステル;上記オキシムエステル;上記ホスフィンオキシドが好ましい。
また、上記α−ヒドロキシケトンの1種である1−[4−(2−ヒドロキシエトキシ)フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オンが特に好ましく、チバ・ジャパン株式会社からイルガキュア2959として商業的に入手可能である。
上記ホスフィンオキシドの1種であるビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキシドが特に好ましく、チバ・ジャパン株式会社からイルガキュア819として商業的に入手可能である。
以上のラジカル重合開始剤(熱ラジカル重合開始剤及び光ラジカル重合開始剤など)は、単独で又は2種類以上組み合わせて用いることができ、さらに適切な増感剤と組み合わせて用いることもできる。
(C)ラジカル重合開始剤の配合量は、(A)成分及び(B)成分の総量100質量部に対して、0.01〜10質量部であることが好ましい。0.01質量部以上であると、硬化が十分であり、10質量部以下であると、十分な光透過性が得られる。以上の観点から、(C)成分の配合量は0.05〜7質量部であることがさらに好ましく、0.1〜5質量部であることが特に好ましい。
(その他成分)
また、必要に応じて本発明の光導波路形成用樹脂組成物中には、酸化防止剤、黄変防止剤、紫外線吸収剤、可視光吸収剤、着色剤、可塑剤、安定剤、充填剤などのいわゆる添加剤を本発明の効果に悪影響を与えない範囲で添加してもよい。
(有機溶剤)
本発明の光導波路形成用樹脂組成物は、好適な有機溶剤を用いて希釈し、光導波路形成用樹脂ワニスとして使用してもよい。ここで用いる有機溶剤としては、該樹脂組成物を溶解し得るものであれば特に制限はなく、例えば、トルエン、キシレン、メシチレン、クメン、p−シメンなどの芳香族炭化水素;ジエチルエーテル、tert−ブチルメチルエーテル、シクロペンチルメチルエーテル、ジブチルエーテルなどの鎖状エーテル;テトラヒドロフラン、1,4−ジオキサンなどの環状エーテル;メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコールなどのアルコール;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、4−ヒドロキシ−4−メチル−2−ペンタノンなどのケトン;酢酸メチル、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、γ−ブチロラクトンなどのエステル;エチレンカーボネート、プロピレンカーボネートなどの炭酸エステル;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテルなどの多価アルコールアルキルエーテル;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテートなどの多価アルコールアルキルエーテルアセテート;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドンなどのアミドなどが挙げられる。
これらの有機溶剤は、単独で又は2種類以上を組み合わせて用いることができる。また、樹脂ワニス中の固形分濃度は、通常10〜80質量%であることが好ましい。
(光導波路形成用樹脂組成物の調合)
光導波路形成用樹脂組成物を調合する際は、撹拌により混合することが好ましい。撹拌方法としては、特に制限はないが、撹拌効率の観点からプロペラを用いた撹拌などが好ましい。撹拌する際のプロペラの回転速度には、特に制限はないが、10〜1,000rpmであることが好ましい。10rpm以上であると、各成分が十分に混合され、1,000rpm以下であると、プロペラの回転による気泡の巻き込みが少なくなる。以上の観点から、プロペラの回転速度は50〜800rpmであることがさらに好ましく、100〜500rpmであることが特に好ましい。
また、撹拌時間には、特に制限はないが、1〜24時間であることが好ましい。撹拌時間が1時間以上であると、各成分が十分に混合され、24時間以下であると、調合時間を短縮することができ、生産性が向上する。
調合した光導波路形成用樹脂組成物は、孔径50μm以下のフィルタを用いて濾過するのが好ましい。孔径50μm以下のフィルタを用いることで、大きな異物などが除去されて塗布時にはじきなどを生じることがなく、また、光の散乱が抑制されて透明性が損なわれることがない。以上の観点から、孔径30μm以下のフィルタを用いて濾過するのがさらに好ましく、孔径10μm以下のフィルタを用いて濾過するのが特に好ましい。
また、調合した光導波路形成用樹脂組成物は、減圧下で脱泡することが好ましい。脱泡方法には、特に制限はなく、例えば、真空ポンプとベルジャー、真空装置付き脱泡装置を用いる方法などが挙げられる。減圧時の圧力には、特に制限はないが、樹脂組成物に含まれる低沸点成分が沸騰しない圧力が好ましい。減圧脱泡時間には、特に制限はないが、3〜60分であることが好ましい。3分以上であれば、樹脂組成物内に溶解した気泡を取り除くことができ、60分以下であれば、樹脂組成物に含まれる有機溶剤が揮発することがなく、かつ脱泡時間を短縮することができ、生産性を向上させることができる。
(光導波路形成用樹脂フィルム)
本発明の光導波路形成用樹脂フィルムは、前記光導波路形成用樹脂組成物を用いてなり、前記(A)〜(C)成分を含有する光導波路形成用樹脂組成物を好適な支持フィルムに塗布することにより容易に製造することができる。また、前記光導波路形成用樹脂組成物が前記有機溶剤で希釈された光導波路形成用樹脂ワニスである場合、樹脂ワニスを支持フィルムに塗布し、有機溶剤を除去することにより、光導波路形成用樹脂フィルムを製造することができる。
支持フィルムとしては、特に制限はなく、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル;ポリエチレン、ポリプロピレンなどのポリオレフィン;ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルスルフィド、ポリエーテルスルホン、ポリエーテルケトン、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリアリレート、ポリスルホン、液晶ポリマーなどが挙げられる。これらの中で、柔軟性及び強靭性の観点から、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリアリレート、ポリスルホンであることが好ましい。
なお、樹脂層との剥離性向上の観点から、シリコーン系化合物、含フッ素化合物などにより離型処理が施されたフィルムを必要に応じて用いてもよい。
支持フィルムの厚みは、目的とする柔軟性により適宜変えてよいが、3〜250μmであることが好ましい。3μm以上であると、フィルム強度が十分であり、250μm以下であると、十分な柔軟性が得られる。以上の観点から、支持フィルムの厚みは、5〜200μmであることがさらに好ましく、7〜150μmであることが特に好ましい。
支持フィルム上に光導波路形成用樹脂組成物を塗布して製造した光導波路形成用樹脂フィルムは、必要に応じて保護フィルムを樹脂層上に貼り付け、支持フィルム、樹脂層、及び保護フィルムからなる3層構造としてもよい。
保護フィルムは、特に制限はないが、柔軟性及び強靭性の観点から、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル;ポリエチレン、ポリプロピレンなどのポリオレフィンなどが好ましい。なお、樹脂層との剥離性向上の観点から、シリコーン系化合物、含フッ素化合物などにより離型処理が施されたフィルムを必要に応じて用いてもよい。
保護フィルムの厚みは、目的とする柔軟性により適宜変えてよいが、10〜250μmであることが好ましい。10μm以上であると、フィルム強度が十分であり、250μm以下であると、十分な柔軟性が得られる。以上の観点から、保護フィルムの厚みは15〜200μmであることがさらに好ましく、20〜150μmであることが特に好ましい。
本発明の光導波路形成用樹脂フィルムの樹脂層の厚みも、特に制限はないが、乾燥後の厚みで、通常は5〜500μmであることが好ましい。5μm以上であると、厚みが十分であるため樹脂フィルム又は樹脂フィルムの硬化物の強度が十分であり、一方、500μm以下であると、乾燥が十分に行えるため樹脂フィルム中の残留溶剤量が増えることなく、樹脂フィルムの硬化物を加熱したときに発泡することがない。
このようにして得られた光導波路形成用樹脂フィルムは、例えばロール状に巻き取ることによって容易に保存することができる。また、ロール状のフィルムを好適なサイズに切り出して、シート状にして保存することもできる。
(光導波路形成用樹脂フィルム)
以下、本発明の光導波路形成用樹脂フィルムを最も好適な用途である光導波路形成用樹脂フィルムとして用いた場合の適用例について説明する。
なお、コア部形成用樹脂フィルムの製造過程で用いる支持フィルムとしては、コアパターン形成に用いる露光用活性光線が透過するものであれば特に制限はなく、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル;ポリエチレン、ポリプロピレンなどのポリオレフィン;ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルスルフィド、ポリエーテルスルホン、ポリエーテルケトン、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリアリレート、ポリスルホン、液晶ポリマーなどが挙げられる。
これらの中で、露光用活性光線の透過率、柔軟性、及び強靭性の観点から、上記ポリエステル;上記ポリオレフィンであることが好ましい。さらに、露光用活性光線の透過率向上及びコアパターンの側壁荒れ低減の観点から、高透明タイプな支持フィルムを用いることがさらに好ましい。このような高透明タイプな支持フィルムとして、例えば、東洋紡績株式会社製「コスモシャインA1517」、「コスモシャインA4100」などが挙げられる。
なお、樹脂層との剥離性向上の観点から、シリコーン系化合物、含フッ素化合物などにより離型処理が施されたフィルムを必要に応じて用いてもよい。
コア部形成用樹脂フィルムの支持フィルムの厚みは、5〜50μmであることが好ましい。5μm以上であると、支持体としての強度が十分であり、50μm以下であると、コアパターン形成時にフォトマスクとコア部形成用樹脂層のギャップが大きくならず、パターン解像度が良好である。以上の観点から、支持フィルムの厚みは10〜40μmであることがさらに好ましく、15〜30μmであることが特に好ましい。
(光導波路)
以下、本発明の光導波路について説明する。
図1の(a)に光導波路の断面図を示す。光導波路1は基材5上に形成され、高屈折率であるコア部形成用樹脂組成物からなるコア部2、並びに低屈折率であるクラッド層形成用樹脂組成物からなる下部クラッド層4及び上部クラッド層3で構成されている。
本発明の光導波路形成用樹脂組成物及び光導波路形成用樹脂フィルムは、光導波路1の下部クラッド層4、コア部2、及び上部クラッド層3のうち、少なくとも1つに用いることが好ましい。
光導波路形成用樹脂フィルムを用いることによって、各層の平坦性、クラッドとコアの層間密着性、及び光導波路コアパターン形成時の解像度(細線又は狭線間対応性)をより向上させることができ、平坦性に優れ、線幅や線間の小さい微細パターンの形成が可能となる。
光導波路1において、基材5の材質としては、特に制限はなく、例えば、ガラスエポキシ樹脂基板、セラミック基板、ガラス基板、シリコン基板、プラスチック基板、金属基板、樹脂層付き基板、金属層付き基板、プラスチックフィルム、樹脂層付きプラスチックフィルム、金属層付きプラスチックフィルムなどが挙げられる。
光導波路1は、基材5として柔軟性及び強靭性のある基材、例えば前記光導波路形成用樹脂フィルムの支持フィルムを基材として用いることで、フレキシブル光導波路としてもよく、このとき基材5を光導波路1の保護フィルムとして機能させてもよい。保護フィルムを配置することにより、保護フィルムの柔軟性及び強靭性を光導波路1に付与することが可能となる。さらに、光導波路1が汚れや傷を受けなくなるため、取り扱いやすさが向上する。
以上の観点から、図1の(b)のように上部クラッド層3の外側に保護フィルムとして基材5が配置されていたり、図1の(c)のように下部クラッド層4及び上部クラッド層3の両方の外側に保護フィルムとして基材5が配置されていたりしてもよい。
なお、光導波路1に柔軟性や強靭性が十分に備わっているならば、図1の(d)のように、保護フィルム5が配置されていなくてもよい。
下部クラッド層4の厚みは、特に制限はないが、2〜200μmであることが好ましい。2μm以上であると、伝搬光をコア内部に閉じ込めるのが容易となり、200μm以下であると、光導波路1全体の厚みが大きすぎることがない。なお、下部クラッド層4の厚みとは、コア部2と下部クラッド層4との境界から下部クラッド層4の下面までの値である。
下部クラッド層形成用樹脂フィルムの厚みについては、特に制限はなく、硬化後の下部クラッド層4の厚みが上記の範囲となるように厚みが調整される。
コア部2の高さは、特に制限はないが、10〜150μmであることが好ましい。コア部の高さが10μm以上であると、光導波路形成後の受発光素子又は光ファイバとの結合において位置合わせトレランスが小さくなることがなく、150μm以下であると、光導波路形成後の受発光素子又は光ファイバとの結合において、結合効率が小さくなることがない。以上の観点から、コア部の高さは、15〜130μmであることがさらに好ましく、20〜120μmであることが特に好ましい。なお、コア部形成用樹脂フィルムの厚みについては、特に制限はなく、硬化後のコア部の高さが上記の範囲となるように厚みが調整される。
上部クラッド層3の厚みは、コア部2を埋め込むことができる範囲であれば特に制限はないが、乾燥後の厚みで12〜500μmであることが好ましい。上部クラッド層3の厚みとして、最初に形成される下部クラッド層4の厚みと同一であっても異なってもよいが、コア部2を埋め込むという観点から、下部クラッド層4の厚みよりも厚くすることが好ましい。なお、上部クラッド層3の厚みとは、コア部2と下部クラッド層4との境界から上部クラッド層3の上面までの値である。
本発明の光導波路において、光伝搬損失は0.3dB/cm以下であることが好ましい。0.3dB/cm以下であると、光の損失が小さくなり、伝送信号の強度が十分である。以上の観点から、光伝搬損失は0.2dB/cm以下であることがさらに好ましく、0.1dB/cm以下であることが特に好ましい。
本発明の光導波路において、温度85℃、湿度85%の高温高湿放置試験を1000時間実施後の光伝搬損失は、0.3dB/cm以下であることが好ましい。0.3dB/cm以下であると、光の損失が小さくなり、伝送信号の強度が十分である。以上の観点から、光伝搬損失は0.2dB/cm以下であることがさらに好ましく、0.1dB/cm以下であることが特に好ましい。
なお、温度85℃、湿度85%の高温高湿放置試験とはJPCA規格(JPCA−PE02−05−01S)に準じた条件で実施する高温高湿放置試験のことを意味する。
本発明の光導波路において、温度−55℃と125℃の間の温度サイクル試験を1000サイクル実施後の光伝搬損失は、0.3dB/cm以下であることが好ましい。0.3dB/cm以下であると、光の損失が小さくなり、伝送信号の強度が十分である。以上の観点から、光伝搬損失は0.2dB/cm以下であることがさらに好ましく、0.1dB/cm以下であることが特に好ましい。
なお、温度−55℃と125℃の間の温度サイクル試験とはJPCA規格(JPCA−PE02−05−01S)に準じた条件で実施する温度サイクル試験のことを意味する。
本発明の光導波路において、最高温度265℃のリフロー試験を3回実施後の光伝搬損失は、0.3dB/cm以下であることが好ましい。0.3dB/cm以下であると、光の損失が小さくなり、伝送信号の強度が十分であれば同時に、リフロープロセスによる部品実装が行えるために、適用範囲が広くなる。以上の観点から、光伝搬損失は0.2dB/cm以下であることがさらに好ましく、0.1dB/cm以下であることが特に好ましい。
なお、最高温度265℃のリフロー試験とはJEDEC規格(JEDEC JESD22A113E)に準じた条件で実施する鉛フリーはんだリフロー試験のことを意味する。
本発明の光導波路は、透明性、信頼性、及び耐熱性に優れており、光モジュールの光伝送路として用いてもよい。光モジュールの形態として、例えば、光導波路の両端に光ファイバを接続した光ファイバ付き光導波路、光導波路の両端にコネクタを接続したコネクタ付き光導波路、光導波路とプリント配線板と複合化した光電気複合基板、光導波路と光信号と電気信号を相互に変換する光/電気変換素子を組み合わせた光電気変換モジュール、光導波路と波長分割フィルタを組み合わせた波長合分波器などが挙げられる。
なお、光電気複合基板において、複合化するプリント配線板として、特に制限はなく、例えば、ガラスエポキシ基板、セラミック基板などのリジッド基板;ポリイミド基板、ポリエチレンテレフタレート基板などのフレキシブル基板などが挙げられる。
(光導波路の製造方法)
以下、本発明の光導波路形成用樹脂組成物及び/又は光導波路形成用樹脂フィルムを用いて光導波路1を形成するための製造方法について説明する。
本発明の光導波路1を製造する方法としては、特に制限はなく、例えば、光導波路形成用樹脂組成物及び/又は光導波路形成用樹脂フィルムを用いて、基材上に光導波路形成用樹脂層を形成して製造する方法などが挙げられる。
本発明に用いられる基材としては、特に制限はなく、ガラスエポキシ樹脂基板、セラミック基板、ガラス基板、シリコン基板、プラスチック基板、金属基板、樹脂層付き基板、金属層付き基板、プラスチックフィルム、樹脂層付きプラスチックフィルム、金属層付きプラスチックフィルムなどが挙げられる。
光導波路形成用樹脂層を形成する方法としては、特に制限はなく、例えば、光導波路形成用樹脂組成物を用いて、スピンコート法、ディップコート法、スプレー法、バーコート法、ロールコート法、カーテンコート法、グラビアコート法、スクリーンコート法、インクジェットコート法などにより塗布する方法などが挙げられる。
光導波路形成用樹脂組成物が、前記有機溶剤で希釈されて光導波路形成用樹脂ワニスとなっている場合、必要に応じて樹脂層を形成後に、乾燥する工程を入れてもよい。乾燥方法としては、特に制限はなく、例えば、加熱乾燥、減圧乾燥などが挙げられる。また、必要に応じてこれらを併用してもよい。
光導波路形成用樹脂層を形成するその他の方法としては、光導波路形成用樹脂組成物を用いた光導波路形成用樹脂フィルムを用いて、積層法により形成する方法が挙げられる。
これらの中で、平坦性に優れ、線幅や線間の小さい微細パターンを有する光導波路が形成可能という観点から、光導波路形成用樹脂フィルムを用いて積層法により製造する方法が好ましい。
以下、光導波路形成用樹脂フィルムを下部クラッド層、コア部、及び上部クラッド層に用いて光導波路1を形成するための製造方法について説明するが、本発明はこれに何ら制限されるものではない。
まず、第1の工程として下部クラッド層形成用樹脂フィルムを基材5上に積層する。第1の工程における積層方法として、特に制限はなく、例えば、ロールラミネータ又は平板型ラミネータを用いて加熱しながら圧着することにより積層する方法などが挙げられる。なお、本発明における平板型ラミネータとは、積層材料を一対の平板の間に挟み、平板を加圧することにより圧着させるラミネータのことを指し、例えば、真空加圧式ラミネータを好適に用いることができる。ラミネート温度は、特に制限はないが、20〜130℃であることが好ましく、ラミネート圧力は、特に制限はないが、0.1〜1.0MPaであることが好ましい。下部クラッド層形成用樹脂フィルムに保護フィルムが存在する場合、保護フィルムを除去した後に積層する。
真空加圧式ラミネータを用いて積層する場合、ロールラミネータを用いて、あらかじめ下部クラッド層形成用樹脂フィルムを基材5上に仮貼りしておいてもよい。ここで、密着性及び追従性向上の観点から、圧着しながら仮貼りすることが好ましく、圧着する際、ヒートロールを有するラミネータを用いて加熱しながら行っても良い。ラミネート温度は、20〜130℃であることが好ましい。20℃以上であれば下部クラッド層形成用樹脂フィルムと基材5との密着性が向上し、130℃以下であれば樹脂層がロールラミネート時に流動しすぎることがなく、必要とする膜厚が得られる。以上の観点から、40〜100℃であることがさらに好ましい。ラミネート圧力は、特に制限はないが、0.2〜0.9MPaであることが好ましく、ラミネート速度は、特に制限はないが、0.1〜3m/minであることが好ましい。
基材5上に積層された下部クラッド層形成用樹脂層を光及び/又は熱により硬化し、下部クラッド層4を形成する。なお、下部クラッド層形成用樹脂フィルムの支持フィルムの除去は、硬化前及び硬化後のどちらで行ってもよい。
下部クラッド層形成用樹脂層を光により硬化する際の活性光線の照射量は、特に制限はないが、0.1〜5J/cm2とすることが好ましい。また、活性光線が基材を透過する場合、効率的に硬化させるために、両面から同時に活性光線を照射可能な両面露光機を使用することができる。また、加熱をしながら活性光線を照射してもよい。なお、光硬化前後の処理として、必要に応じて50〜200℃の加熱処理を行ってもよい。
下部クラッド層形成用樹脂層を熱により硬化する際の加熱温度は、特に制限はないが、50〜200℃とすることが好ましい。
下部クラッド層形成用樹脂フィルムの支持フィルムを、光導波路1の保護フィルム5として機能させる場合、下部クラッド層形成用樹脂フィルムを積層することなく、光及び/又は熱により前記と同様な条件で硬化し、下部クラッド層4を形成してもよい。
なお、下部クラッド層形成用樹脂フィルムの保護フィルムは、硬化前に除去しても、硬化後に除去してもよい。
第2の工程として、第1の工程と同様な方法で、下部クラッド層4上にコア部形成用樹脂フィルムを積層する。ここで、コア部形成用樹脂層は下部クラッド層形成用樹脂層より高屈折率であるように設計され、活性光線によりコア部2(コアパターン)を形成し得る感光性樹脂組成物からなることが好ましい。
第3の工程として、コア部2を露光する。コア部2を露光する方法としては、特に制限はなく、例えば、アートワークと呼ばれるネガ型フォトマスクを通して活性光線を画像状に照射する方法、レーザ直接描画を用いてネガ型フォトマスクを通さずに直接活性光線を画像上に照射する方法などが挙げられる。
活性光線の光源としては、特に制限はなく、例えば、超高圧水銀ランプ、高圧水銀ランプ、水銀蒸気アークランプ、メタルハライドランプ、キセノンランプ、カーボンアークランプなどの紫外線を有効に放射する光源;写真用フラッド電球、太陽ランプなどの可視光線を有効に放射する光源などが挙げられる。
コア部2を露光する際の活性光線の照射量は、0.01〜10J/cm2であることが好ましい。0.01J/cm2以上であると、硬化反応が十分に進行し、現像によりコア部2が流失することがない。一方、10J/cm2以下であると、露光量過多によりコア部2が太ることがなく、微細なパターンが形成でき好適である。以上の観点から、活性光線の照射量は、0.03〜5J/cm2であることがさらに好ましく、0.05〜3J/cm2であることが特に好ましい。
コア部2の露光は、コア部形成用樹脂フィルムの支持フィルムを介して行っても、支持フィルムを除去してから行ってもよい。
また、露光後に、コア部2の解像度及び密着性向上の観点から、必要に応じて露光後加熱を行ってもよい。紫外線照射から露光後加熱までの時間は、10分以内であることが好ましいが、この条件には特に制限はない。露光後加熱温度は40〜160℃であることが好ましく、時間は30秒〜10分であることが好ましいが、これらの条件には特に制限はない。
第4の工程として、コア部形成用樹脂フィルムの支持フィルムを介して露光した場合、これを除去し、コア部形成用樹脂層の組成に適した現像液を用いて現像する。
現像方法としては、特に制限はなく、例えば、スプレー法、ディップ法、パドル法、スピン法、ブラッシング法、スクラッピング法などが挙げられる。また、必要に応じてこれらの現像方法を併用してもよい。
現像液としては、特に制限はなく、例えば、有機溶剤、有機溶剤と水からなる準水系現像液などの有機溶剤系現像液;アルカリ性水溶液、アルカリ性水溶液と1種類以上の有機溶剤からなるアルカリ性準水系現像液などのアルカリ性現像液などが挙げられる。
また、現像温度は、コア部形成用樹脂層の現像性に合わせて調節される。
有機溶剤としては、特に制限はなく、例えば、前述の光導波路形成用樹脂組成物の希釈に用いる有機溶剤と同様のものを用いることができる。
これらの有機溶剤は、単独で又は2種類以上を組み合わせて使用することができる。また、有機溶剤中には、表面活性剤、消泡剤などを混入させてもよい。
準水系現像液として、1種類以上の有機溶剤と水からなるものであれば特に制限はない。
有機溶剤の濃度は、通常、2〜90質量%であることが好ましい。また、準水系現像液中には、界面活性剤、消泡剤などを少量混入させてもよい。
アルカリ性水溶液の塩基として、特に制限はないが、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物;炭酸リチウム、炭酸ナトリウム、炭酸カリウムなどのアルカリ金属炭酸塩;炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウムなどのアルカリ金属重炭酸塩;リン酸カリウム、リン酸ナトリウムなどのアルカリ金属リン酸塩;ピロリン酸ナトリウム、ピロリン酸カリウムなどのアルカリ金属ピロリン酸塩;四ホウ酸ナトリウム、メタケイ酸ナトリウムなどのナトリウム塩;炭酸アンモニウム、炭酸水素アンモニウムなどのアンモニウム塩;水酸化テトラメチルアンモニウム、トリエタノールアミン、エチレンジアミン、ジエチレントリアミン、2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオール、1,3−ジアミノプロパノール−2−モルホリンなどの有機塩基などが挙げられる。
これらの塩基は、単独で又は2種類以上を組み合わせて使用することができる。
現像に用いるアルカリ性水溶液のpHは9〜14であることが好ましい。また、アルカリ性水溶液中には、界面活性剤、消泡剤などを混入させてもよい。
アルカリ性準水系現像液として、アルカリ性水溶液と1種類以上の前記有機溶剤からなるものであれば特に制限はない。アルカリ性準水系現像液のpHは、現像が十分にできる範囲でできるだけ小さくすることが好ましく、pH8〜13であることが好ましく、pH9〜12であることがさらに好ましい。
有機溶剤の濃度は、通常、2〜90質量%であることが好ましい。また、アルカリ性準水系現像液中には、界面活性剤、消泡剤などを少量混入させてもよい。
現像後の処理として、必要に応じて前記有機溶剤、前記有機溶剤と水からなる準水系洗浄液、又は水を用いて洗浄してもよい。
洗浄方法として、特に制限はないが、例えば、スプレー法、ディップ法、パドル法、スピン法、ブラッシング法、スクラッピング法などが挙げられる。また、必要に応じてこれらの洗浄方法を併用してもよい。
前記有機溶剤は、単独で又は2種類以上を組み合わせて用いることができる。準水系洗浄液において、有機溶剤の濃度は通常、2〜90質量%とすることが好ましい。また、洗浄温度はコア部形成用樹脂層の現像性に合わせて調節される。
現像又は洗浄後の処理として、コア部2の硬化性及び密着性向上の観点から、必要に応じて露光及び/又は加熱を行ってもよい。加熱温度は、特に制限はないが、40〜200℃であることが好ましく、活性光線の照射量は、特に制限はないが、0.01〜10J/cm2であることが好ましい。
第5の工程として、第1及び第2の工程と同様の方法で、下部クラッド層4及びコア部2上に上部クラッド層形成用樹脂フィルムを積層する。ここで、上部クラッド層形成用樹脂層は、コア部形成用樹脂層よりも低屈折率になるように設計されている。また、上部クラッド形成用樹脂層の厚みは、コア部2の高さより大きくすることが好ましい。
次いで、第1の工程と同様な方法で上部クラッド層形成用樹脂層を光及び/又は熱により硬化し、上部クラッド層3を形成する。
上部クラッド層形成用樹脂層を光により硬化する際の活性光線の照射量は、特に制限はないが、0.1〜30J/cm2とすることが好ましい。また、活性光線が基材を透過する場合、効率的に硬化させるために、両面から同時に活性光線を照射可能な両面露光機を使用することができる。また、必要に応じて加熱をしながら活性光線を照射してもよく、光硬化前後の処理として加熱処理を行ってもよい。活性光線照射中及び/又は照射後の加熱温度は、特に制限はないが、50〜200℃であることが好ましい。
上部クラッド層形成用樹脂層を熱により硬化する際の加熱温度は、特に制限はないが、50〜200℃であることが好ましい。
なお、上部クラッド層形成用樹脂フィルムの支持フィルムの除去が必要な場合、硬化前に除去しても、硬化後に除去してもよい。
以上の工程で、光導波路1を作製することができる。
以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例になんら限定されるものではない。
合成例1
[側鎖にエチレン性不飽和基を有し、主鎖に芳香環を有するポリヒドロキシポリエーテルA−1の作製]
撹拌機、冷却管、ガス導入管、滴下ろうと及び温度計を備えたフラスコに、主鎖にビスフェノールA及びビスフェノールF由来の骨格を有するポリヒドロキシポリエーテル(東都化成株式会社製「フェノトートYP−70」、重量平均分子量5.0×104〜6.0×104、カタログ値)150質量部及びシクロヘキサノン191質量部を加え、窒素ガスを導入しながら、100℃で撹拌し、ポリヒドロキシポリエーテルを溶解させた。室温に冷却後、ヒドロキノンモノメチルエーテル0.09質量部、ジブチルスズジラウレート0.07質量部を加え、空気ガスを導入しながら、2−メタクリロイルオキシエチルイソシアネート17質量部及びシクロヘキサノン14質量部の混合物を50℃で30分かけて滴下した。その後、50℃で5時間撹拌を続けて、側鎖にエチレン性不飽和基を有し、主鎖にビスフェノールA及びビスフェノールF由来の骨格を有するポリヒドロキシポリエーテルA−1溶液(固形分45質量%)を得た。
[重量平均分子量の測定]
A−1の重量平均分子量(標準ポリスチレン換算)をGPC(東ソー株式会社製SD−8022/DP−8020/RI−8020)を用いて測定した結果、43,100であった。なお、カラムは日立化成工業株式会社製 Gelpack GL−A150−S/GL−A160−Sを使用した。
合成例2
[側鎖にエチレン性不飽和基を有し、主鎖に芳香環を有するポリヒドロキシポリエーテルA−2の作製]
撹拌機、冷却管、ガス導入管、滴下ろうと及び温度計を備えたフラスコに、主鎖にビスフェノールA及びビスフェノールF由来の骨格を有するポリヒドロキシポリエーテル(東都化成株式会社製 フェノトートYP−70)150質量部及びシクロヘキサノン187質量部を加え、窒素ガスを導入しながら、100℃で撹拌し、ポリヒドロキシポリエーテルを溶解させた。室温に冷却後、ヒドロキノンモノメチルエーテル0.04質量部、ジブチルスズジラウレート0.04質量部を加え、空気ガスを導入しながら、2−メタクリロイルオキシエチルイソシアネート9質量部及びシクロヘキサノン7質量部の混合物を50℃で30分かけて滴下した。その後、50℃で5時間撹拌を続けて、側鎖にエチレン性不飽和基を有し、主鎖にビスフェノールA及びビスフェノールF由来の骨格を有するポリヒドロキシポリエーテルA−2溶液(固形分45質量%)を得た。
合成例1と同様な方法で、A−2の重量平均分子量を測定した結果、42,100であった。
合成例3
[ウレタンアクリレートUA−1の作製]
撹拌機、冷却管、ガス導入管、滴下ろうと及び温度計を備えたフラスコに、ポリテトラメチレングリコール104質量部、ジエチレングリコール0.2質量部、カプロラクトン変性2−ヒドロキシエチルアクリレート(ダイセル化学工業株式会社製 プラクセルFA2D)55質量部、ヒドロキノンモノメチルエーテル0.1質量部、ジブチルスズジラウレート0.06質量部を加え、空気ガスを導入しながら、イソホロンジイソシアネート44質量部を70℃で2時間かけて滴下した。その後、70℃で5時間撹拌を続けて、ウレタンアクリレートUA−1を得た。
合成例1と同様な方法で、UA−1の重量平均分子量を測定した結果、10,000であった。
合成例4
[(メタ)アクリルポリマーP−1の作製]
撹拌機、冷却管、ガス導入管、滴下ろうと及び温度計を備えたフラスコに、メチルエチルケトン94質量部を秤量し、窒素ガスを導入しながら、ジシクロペンタニルメタクリレート15質量部、ベンジルメタクリレート62質量部、メチルメタクリレート12質量部、2-ヒドロキシエチルメタクリレート14質量部、2,2'−アゾビス(2,4−ジメチルバレロニトリル)0.8質量部、及びメチルエチルケトン63質量部の混合物を55℃で3時間かけて滴下した。55℃で5時間撹拌した後、さらに80℃で2時間撹拌を続けた。
室温に冷却後、ジブチルスズジラウレート0.06質量部を加え、空気ガスを導入しながら、2−メタクリロイルオキシエチルイソシアネート16質量部及びメチルエチルケトン10質量部の混合物を50℃で30分かけて滴下した。その後、50℃で3時間撹拌を続けて、(メタ)アクリルポリマーP−1溶液(固形分42質量%)を得た。
合成例1と同様な方法で、P−1の重量平均分子量を測定した結果、54,000であった。
実施例1
[コア部形成用樹脂組成物COV−1の調合]
(A)成分として、前記A−1溶液(固形分45質量%)67質量部(固形分30質量部)、(B)成分として、エトキシ化ビスフェノールAジアクリレート(日立化成工業株式会社製 ファンクリルFA−321A)30質量部、エトキシ化フルオレン型ビスフェノールジアクリレートのプロピレングリコールモノメチルエーテルアセテート溶液(新中村化学工業株式会社製 NKエステルA−BPEF/PGMAC70、固形分70質量%)29質量部(固形分20質量部)、ビスフェノールA型エポキシジアクリレート(新中村化学工業株式会社製 NKオリゴEA−1020)20質量部、(C)成分として、1−[4−(2−ヒドロキシエトキシ)フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン(チバ・ジャパン株式会社製 イルガキュア2959)1質量部、ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキシド(チバ・ジャパン株式会社製 イルガキュア819)1質量部、及び希釈溶剤としてプロピレングリコールモノメチルエーテルアセテート22質量部を攪拌しながら混合した。孔径2μmのポリフロンフィルタ(アドバンテック東洋株式会社製 PF020)を用いて加圧濾過後、減圧脱泡し、コア部形成用樹脂組成物COV−1を得た。
[コア部形成用樹脂フィルムCOF−1の作製]
コア部形成用樹脂組成物COV−1を、PETフィルム(東洋紡績株式会社製 コスモシャインA1517、厚み16μm)の非処理面上に、塗工機(株式会社ヒラノテクシード製 マルチコーターTM−MC)を用いて塗布し、100℃で20分乾燥後、保護フィルムとして表面離型処理PETフィルム(帝人デュポンフィルム株式会社製 ピューレックスA31、厚み25μm)を貼付け、コア部形成用樹脂フィルムCOF−1を得た。このとき樹脂層の厚みは、塗工機のギャップを調節することで任意に調整可能であるが、本実施例では硬化後の膜厚が、コア部形成用樹脂フィルムでは70μm、引張り試験用硬化フィルムでは50μmとなるように調節した。
[引張り試験用硬化フィルムの作製]
ロールラミネータ(日立化成テクノプラント株式会社製 HLM−1500)を用いて、保護フィルム(A31)を除去したコア部形成用樹脂フィルムCOF−1を、保護フィルム(A31)を除去したコア部形成用樹脂フィルムCOF−1に、圧力0.4MPa、温度50℃、速度0.4m/minの条件で積層した。次いで、紫外線露光機(大日本スクリーン株式会社製 MAP−1200−L)を用いて、紫外線(波長365nm)を2000mJ/cm2照射した。支持フィルム(A1517)を除去した後、160℃で1時間加熱処理して、厚み100μmの硬化フィルムを得た。
[引張り試験]
得られた硬化フィルムを幅10mm、長さ70mmに切り出し、引張り試験機(株式会社オリエンテック製 RTM−100)を用いて、温度25℃、引張り速度5mm/minで、JIS K 7127に準拠して引張り試験(つかみ具間距離50mm)を行った。
(1)引張り弾性率
引張り弾性率は、引張り応力−ひずみ曲線の初めの直線部分を用いて、以下に示す式により算出した。
引張り弾性率(MPa)=直線上の2点間の応力の差(N)÷硬化フィルムの元の平均断面積(mm2)÷同じ2点間のひずみの差
(2)破断伸び率
破断伸び率は、以下に示す式により算出した。
破断伸び率(%)=(破断時のつかみ具間距離(mm)−初期のつかみ具間距離(mm))÷初期のつかみ具間距離(mm)×100
[クラッド層形成用樹脂組成物CLV−1の調合]
エポキシ基含有アクリルゴムのシクロヘキサノン溶液(ナガセケムテックス株式会社製 HTR−860P−3、重量平均分子量80万、固形分12質量%)500質量部(固形分60質量部)、合成例3にて作製したUA−1 20質量部、ジペンタエリスリトールヘキサアクリレート(共栄社化学株式会社製 ライトアクリレートDPE−6A)20質量部、1−[4−(2−ヒドロキシエトキシ)フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン(チバ・ジャパン株式会社製 イルガキュア2959)1質量部、及びビス(2,4,6−トリメチルベンゾイル)フェニルフォスフィンオキサイド(チバ・ジャパン株式会社製 イルガキュア819)1質量部を攪拌しながら混合した。孔径2μmのポリフロンフィルタ(アドバンテック東洋株式会社製 PF020)を用いて加圧濾過後、減圧脱泡し、クラッド層形成用樹脂組成物CLV−1を得た。
[クラッド層形成用樹脂フィルムCLF−1の作製]
クラッド層形成用樹脂組成物CLV−1を、PETフィルム(東洋紡績株式会社製 コスモシャインA4100、厚み50μm)の非処理面上に、前記塗工機を用いて塗布し、100℃で20分乾燥後、保護フィルムとして表面離型処理PETフィルム(帝人デュポンフィルム株式会社製 ピューレックスA31、厚み25μm)を貼付け、クラッド層形成用樹脂フィルムCLF−1を得た。このとき樹脂層の厚みは、塗工機のギャップを調節することで任意に調整可能であるが、本実施例では硬化後の膜厚が、下部クラッド層形成用樹脂フィルムでは20μm、及び上部クラッド層形成用樹脂フィルムでは80μmとなるように調節した。
[フレキシブル光導波路の作製]
前記紫外線露光機を用いて、下部クラッド層形成用樹脂フィルムCLF−1に紫外線(波長365nm)を4000mJ/cm2照射した後、保護フィルム(ピューレックスA31)を除去して、下部クラッド層を形成した。
続いて、前記ロールラミネータを用いて、保護フィルム(ピューレックスA31)を除去したコア部形成用樹脂フィルムCOF−1を、下部クラッド層上に、圧力0.4MPa、温度50℃、速度0.4m/minの条件で積層した。次いで、幅80μmのネガ型フォトマスクを介し、上記紫外線露光機を用いて、紫外線(波長365nm)を1000mJ/cm2照射し、次いで80℃で5分間露光後加熱を行った。支持フィルム(コスモシャインA1517)を除去し、現像液(プロピレングリコールモノメチルエーテルアセテート/N,N−ジメチルアセトアミド=70/30質量比)を用いて、コア部を現像した後、プロピレングリコールモノメチルエーテル、次いで2−プロパノールを用いて洗浄し、80℃で10分、100℃で10分加熱乾燥した。
次に、真空加圧式ラミネータ(株式会社名機製作所製 MVLP−500/600)を用いて、保護フィルム(ピューレックスA31)を除去した上部クラッド層形成用樹脂フィルムCLF−1を、コア部及び下部クラッド層上に、圧力0.4MPa、温度120℃及び加圧時間30秒の条件で積層した。紫外線(波長365nm)を4000mJ/cm2照射し、160℃で1時間加熱処理して上部クラッド層を形成した。続いて、クラッド層形成用樹脂フィルムCLF−1の支持フィルム(コスモシャインA4100)を除去し、フレキシブル光導波路を得た。その後、ダイシングソー(株式会社ディスコ製 DAD−341)を用いて、幅3mm、長さ100mmのフレキシブル光導波路を切り出した。
[光伝搬損失測定]
得られた光導波路の光伝搬損失を、光源に波長850nmの光を中心波長とするVCSEL(EXFO社製 FLS−300−01−VCL)、受光センサ(株式会社アドバンテスト製 Q82214)、入射ファイバ(GI−50/125マルチモードファイバ、NA=0.20)及び出射ファイバ(SI−114/125、NA=0.22)を用いて、カットバック法(測定導波路長10、5、3、2cm)により測定し、以下の基準で評価した。
◎…0.1dB/cm以下
○…0.1dB/cmより大きく、0.2dB/cm以下
△…0.2dB/cmより大きく、0.3dB/cm以下
×…0.3dB/cmより大きい
[高温高湿放置試験]
得られた光導波路を、高温高湿試験機(エスペック株式会社製 PL−2KT)を用いて、JPCA規格(JPCA−PE02−05−01S)に準じた条件で温度85℃、湿度85%の高温高湿放置試験を1000時間実施した。
高温高湿放置試験実施後の光導波路の光伝搬損失を、前記と同様の光源、受光素子、入射ファイバ及び出射ファイバを用いて測定し、以下の基準で評価した。
◎…0.1dB/cm以下
○…0.1dB/cmより大きく、0.2dB/cm以下
△…0.2dB/cmより大きく、0.3dB/cm以下
×…0.3dB/cmより大きい
[温度サイクル試験]
得られた光導波路を、温度サイクル試験機(楠本化成株式会社製 ETAC WINTECH NT1010)を用いて、JPCA規格(JPCA−PE02−05−01S)に準じた条件で温度−55℃と125℃の間の温度サイクル試験を1000サイクル実施した。詳細な温度サイクル試験条件を表1に示す。
Figure 2010126116
温度サイクル試験実施後の光導波路の光伝搬損失を前記と同様の光源、受光素子、入射ファイバ及び出射ファイバを用いて測定し、以下の基準で評価した。
◎…0.1dB/cm以下
○…0.1dB/cmより大きく、0.2dB/cm以下
△…0.2dB/cmより大きく、0.3dB/cm以下
×…0.3dB/cmより大きい
[リフロー試験]
得られた光導波路を、リフロー試験機(古河電気工業株式会社製 サラマンダXNA−645PC)を用いて、IPC/JEDEC J−STD−020Bに準じた条件で最高温度265℃のリフロー試験を窒素雰囲気下で3回実施した。詳細なリフロー条件を表2、リフロー炉内の温度プロファイルを図2に示す。
Figure 2010126116
リフロー試験実施後の光導波路の光伝搬損失を前記と同様の光源、受光素子、入射ファイバ及び出射ファイバを用いて測定し、以下の基準で評価した。
◎…0.1dB/cm以下
○…0.1dB/cmより大きく、0.2dB/cm以下
△…0.2dB/cmより大きく、0.3dB/cm以下
×…0.3dB/cmより大きい
実施例2〜5、及び比較例1
表3に示す配合比に従って、コア部形成用樹脂組成物COV−2〜6を調合し、実施例1と同様な方法で、コア部形成用樹脂フィルムCOF−2〜6を作製した。
続いて、これらのコア部形成用樹脂フィルムCOF−2〜6を用いて、実施例1と同様な方法で、フレキシブル光導波路を作製した。
Figure 2010126116
*1:合成例1で作製した側鎖にエチレン性不飽和基を有し、主鎖に芳香環を有するポリヒドロキシポリエーテルA−1のシクロヘキサノン溶液(固形分45質量%)
*2:合成例2で作製した側鎖にエチレン性不飽和基を有し、主鎖に芳香環を有するポリヒドロキシポリエーテルA−2のシクロヘキサノン溶液(固形分45質量%)
*3:エトキシ化ビスフェノールAジアクリレート(日立化成工業株式会社製 ファンクリルFA−321A)
*4:エトキシ化フルオレン型ビスフェノールジアクリレートのプロピレングリコールモノメチルエーテルアセテート溶液(新中村化学工業株式会社製 NKエステルA−BPEF/PGMAC、固形分70質量%)
*5:ビスフェノールA型エポキシジアクリレート(新中村化学工業株式会社製 NKオリゴ EA−1020)
*6:一般式(6)で表される芳香族エポキシ(メタ)アクリレート(Z5が−C(CH32−)(新中村化学工業株式会社製 NKオリゴ EA−5222)
*7:1−[4−(2−ヒドロキシエトキシ)フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン(チバ・ジャパン株式会社製 イルガキュア2959)
*8:ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキシド(チバ・ジャパン株式会社製 イルガキュア819)
*9:プロピレングリコールモノメチルエーテルアセテート
*10:合成例4で作製した(メタ)アクリルポリマーP−1のメチルエチルケトン溶液(固形分42質量%)
*11:主鎖に芳香環を有するポリヒドロキシポリエーテル(東都化成株式会社製 フェノトートYP−70)のプロピレングリコールモノメチルエーテルアセテート溶液(固形分40質量%)
得られた光導波路(長さ100mm)の光伝搬損失測定、高温高湿放置試験、温度サイクル試験、及びリフロー試験を前記と同様な条件で実施した。
以上の結果を表4に示す。
Figure 2010126116
*12:◎…0.1dB/cm以下、○…0.1dB/cmより大きく、0.2dB/cm以下、×…0.3dB/cmより大きい
表3及び表4から、本発明の光導波路形成用樹脂組成物は、透明性、耐熱性に優れ、破断伸び率及び引張り弾性率の点で強靭性に優れており、これらを用いて製造した光導波路は、光伝搬損失が低く透明性に優れ、高温高湿放置試験及び温度サイクル試験等が良好で環境信頼性に優れ、リフロー試験成績等が良好で耐熱性に優れていることがわかる。一方、比較例1に示した本発明に属さない光導波路形成用樹脂組成物はある程度の強靭性は有するものの、該光導波路形成用樹脂組成物を用いて製造した光導波路は、環境信頼性及び耐熱性に劣っていることがわかる。
本発明の光導波路形成用樹脂組成物は、透明性、耐熱性、及び強靭性に優れており、これらを用いて製造した光導波路は透明性、環境信頼性、及び耐熱性に優れたものである。また、該光導波路形成用樹脂組成物を用いた光導波路形成用樹脂フィルムは、光導波路の製造過程において、各層の平坦性、クラッドとコアの層間密着性、及び光導波路コアパターン形成時の解像度(細線又は狭線間対応性)をより向上させ、平坦性に優れ、線幅や線間の小さい微細パターンの形成を可能とするものである。
1 光導波路
2 コア部
3 上部クラッド層
4 下部クラッド層
5 基材

Claims (15)

  1. (A)側鎖にエチレン性不飽和基を有し、主鎖に芳香環を有するポリヒドロキシポリエーテル、(B)エチレン性不飽和基を有する重合性化合物、及び(C)ラジカル重合開始剤を含んでなる光導波路形成用樹脂組成物。
  2. 前記(A)成分が、下記一般式(1)及び(2)で表される構造単位を有する請求項1に記載の光導波路形成用樹脂組成物。
    Figure 2010126116
    (式中、R1は、水素原子又は炭素数1〜20の有機基を示す。X1は、
    Figure 2010126116
    のいずれかの2価の基を示す。R2〜R18は、各々独立に水素原子、フッ素原子、炭素数1〜20の有機基のいずれかを示す。Z1は、単結合、酸素原子、硫黄原子、−CH2−、−C(CH32−、−CF2−、−C(CF32−、−SO2−、
    Figure 2010126116
    のいずれかの2価の基を示す。aは、2〜10の整数を示す。Y1は、単結合又は炭素数1〜20の2価の有機基を示す。Y2は、炭素数1〜20の2価の有機基を示す。)
    Figure 2010126116
    (式中、X2は、
    Figure 2010126116
    のいずれかの2価の基を示す。R19〜R35は、各々独立に水素原子、フッ素原子及び炭素数1〜20の有機基のいずれかを示す。Z2は、単結合、酸素原子、硫黄原子、−CH2−、−C(CH32−、−CF2−、−C(CF32−、−SO2−、
    Figure 2010126116
    のいずれかの2価の基を示す。bは、2〜10の整数を示す。Y3は、単結合又は炭素数1〜20の2価の有機基を示す。)
  3. 一般式(1)で表される構造単位が、下記一般式(3)で表される請求項1又は2に記載の光導波路形成用樹脂組成物。
    Figure 2010126116
    (式中、R36は、水素原子又はメチル基を示す。X1は、
    Figure 2010126116
    のいずれかの2価の基を示す。R2〜R18は、各々独立に水素原子、フッ素原子及び炭素数1〜20の有機基のいずれかを示す。Z1は、単結合、酸素原子、硫黄原子、−CH2−、−C(CH32−、−CF2−、−C(CF32−、−SO2−、
    Figure 2010126116
    のいずれかの2価の基を示す。aは、2〜10の整数を示す。Y1は、単結合又は炭素数1〜20の2価の有機基を示す。Y4は、炭素数1〜18の2価の有機基を示す。)
  4. (A)成分の配合量が、(A)成分及び(B)成分の総量に対して、10〜90質量%であり、(B)成分の配合量が、(A)成分及び(B)成分の総量に対して、10〜90質量%であり、(C)成分の配合量が、(A)成分及び(B)成分の総量100質量部に対して、0.1〜10質量部である請求項1〜3のいずれかに記載の光導波路形成用樹脂組成物。
  5. (B)エチレン性不飽和基を有する重合性化合物が、その分子中に脂環構造、複素環構造、アリール基、アリールオキシ基、及びアラルキル基、からなる群から選ばれる少なくとも1種を含む化合物である請求項1〜4のいずれかに記載の光導波路形成用樹脂組成物。
  6. (B)エチレン性不飽和基を有する重合性化合物が、(メタ)アクリレートである請求項1〜5のいずれかに記載の光導波路形成用樹脂組成物。
  7. (B)エチレン性不飽和基を有する重合性化合物が、下記一般式(4)〜(6)で表される(メタ)アクリレートのうちの少なくとも1つである請求項6に記載の光導波路形成用樹脂組成物。
    Figure 2010126116
    (式中、R37は、水素原子又はメチル基を示す。R38は、
    Figure 2010126116
    のいずれかの1価の基を示す。R39〜R52は、各々独立に水素原子、フッ素原子及び炭素数1〜20の有機基のいずれかを示す。Z3は、単結合、酸素原子、硫黄原子、−CH2−、−C(CH32−、−CF2−、−C(CF32−、−SO2−、
    Figure 2010126116
    のいずれかの2価の基を示す。cは、2〜10の整数を示す。W1は、酸素原子、硫黄原子、−OCH2−、−SCH2−、−O(CH2CH2O)d−、−O[CH2CH(CH3)O]e−、−O[(CH25CO2f−及び−OCH2CH(OH)CH2O−のいずれかの2価の基を含む。d〜fは1〜10の整数を示す。)
    Figure 2010126116
    (式中、R53及びR54は、各々独立に水素原子又はメチル基を示す。R55〜R60は、各々独立に水素原子、フッ素原子及び炭素数1〜20の有機基のいずれかを示す。Z4は、単結合、酸素原子、硫黄原子、−CH2−、−C(CH32−、−CF2−、−C(CF32−、−SO2−、
    Figure 2010126116
    のいずれかの2価の基を示す。gは2〜10の整数を示す。W2及びW3は、各々独立に酸素原子、硫黄原子、−OCH2−、−SCH2−、−O(CH2CH2O)h−、−O[CH2CH(CH3)O]i−及び−O[(CH25CO2j−のいずれかの2価の基を含む。h〜jは、各々独立に1〜10の整数を示す。)
    Figure 2010126116
    (式中、kは、1〜10の整数を示す。R61及びR62は、各々独立に水素原子又はメチル基を示す。R63〜R68は、各々独立に水素原子、フッ素原子及び炭素数1〜20の有機基のいずれかを示す。Z5は、単結合、酸素原子、硫黄原子、−CH2−、−C(CH32−、−CF2−、−C(CF32−、−SO2−、
    Figure 2010126116
    のいずれかの2価の基を示す。lは、2〜10の整数を示す。W4及びW5は、各々独立に酸素原子、−O(CH2CH2O)m−、−O[CH2CH(CH3)O]n−及び−O[(CH25CO2o−のいずれかの2価の基を含む。m〜oは、各々独立に1〜10の整数を示す。)
  8. (C)ラジカル重合開始剤が、光ラジカル重合開始剤である請求項1〜7のいずれかに記載の光導波路形成用樹脂組成物。
  9. 請求項1〜8のいずれかに記載の光導波路形成用樹脂組成物を用いて形成された光導波路形成用樹脂フィルム。
  10. 請求項1〜8のいずれかに記載の光導波路形成用樹脂組成物を用いて形成されたコア部を有する光導波路。
  11. 請求項9に記載の光導波路形成用樹脂フィルムを用いて形成されたコア部を有する光導波路。
  12. 光伝搬損失が、0.3dB/cm以下である請求項10又は11に記載の光導波路。
  13. 温度85℃、相対湿度85%の高温高湿放置試験を1000時間実施後の、波長850nmの光源における光伝搬損失が、0.3dB/cm以下である請求項10〜12のいずれかに記載の光導波路。
  14. 温度−55℃と125℃の間の温度サイクル試験を1000サイクル実施後の、波長850nmの光源における光伝搬損失が、0.3dB/cm以下である請求項10〜13のいずれかに記載の光導波路。
  15. 最高温度265℃のリフロー試験を3回実施後の、波長850nmの光源における光伝搬損失が、0.3dB/cm以下である請求項10〜14のいずれかに記載の光導波路。
JP2011511459A 2009-04-30 2010-04-28 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム及び光導波路 Expired - Fee Related JP5585578B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011511459A JP5585578B2 (ja) 2009-04-30 2010-04-28 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム及び光導波路

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009111499 2009-04-30
JP2009111499 2009-04-30
JP2011511459A JP5585578B2 (ja) 2009-04-30 2010-04-28 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム及び光導波路
PCT/JP2010/057633 WO2010126116A1 (ja) 2009-04-30 2010-04-28 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム及び光導波路

Publications (2)

Publication Number Publication Date
JPWO2010126116A1 true JPWO2010126116A1 (ja) 2012-11-01
JP5585578B2 JP5585578B2 (ja) 2014-09-10

Family

ID=43032260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011511459A Expired - Fee Related JP5585578B2 (ja) 2009-04-30 2010-04-28 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム及び光導波路

Country Status (6)

Country Link
US (1) US8787723B2 (ja)
JP (1) JP5585578B2 (ja)
KR (1) KR20120022840A (ja)
CN (1) CN102414591A (ja)
TW (1) TW201040224A (ja)
WO (1) WO2010126116A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5627399B2 (ja) * 2010-11-05 2014-11-19 キヤノン株式会社 保護層付き基板の製造方法および基板加工方法
JP6026347B2 (ja) * 2013-04-23 2016-11-16 日東電工株式会社 感光性エポキシ樹脂組成物および光導波路コア層形成用硬化性フィルム、ならびにそれを用いた光導波路、光・電気伝送用混載フレキシブルプリント配線板
US10663666B2 (en) * 2013-12-05 2020-05-26 United States Of America As Represented By The Secretary Of The Navy Flexible, low profile kink resistant fiber optic splice tension sleeve
US9519096B2 (en) * 2013-12-23 2016-12-13 3M Innovative Properties Company Pressure sensitive adhesive light guides
JP6517043B2 (ja) * 2015-02-25 2019-05-22 ルネサスエレクトロニクス株式会社 光結合装置、光結合装置の製造方法および電力変換システム
US20190079397A1 (en) * 2016-03-10 2019-03-14 Nissan Chemical Corporation Stepped substrate coating composition including compound having photocrosslinking group due to unsaturated bond between carbon atoms

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228274A (ja) 1993-02-04 1994-08-16 Nippon Telegr & Teleph Corp <Ntt> 耐熱性光学樹脂
JP4196563B2 (ja) 2001-12-26 2008-12-17 Jsr株式会社 光導波路形成用放射線硬化性ドライフィルム、光導波路ならびに光導波路の製造方法
EP2368939A1 (en) 2004-10-07 2011-09-28 Hitachi Chemical Co., Ltd. Resin composition for optical material, and resin film for optical material
JP4894995B2 (ja) 2004-10-21 2012-03-14 Jsr株式会社 光導波路用感光性樹脂組成物、光導波路及びその製造方法
EP1995266A4 (en) * 2006-03-15 2012-02-08 Hitachi Chemical Co Ltd PHENOXY RESIN FOR OPTICAL MATERIAL, RESIN COMPOSITION FOR OPTICAL MATERIAL, RESIN FILM FOR OPTICAL MATERIAL AND OPTICAL WAVEGUIDE THEREOF
JP4518089B2 (ja) 2006-07-05 2010-08-04 Jsr株式会社 光導波路用感光性樹脂組成物、ドライフィルム、光導波路及びその製造方法
JP5365198B2 (ja) * 2007-02-14 2013-12-11 日立化成株式会社 光学材料用樹脂組成物、光学材料用樹脂フィルム及びこれらを用いた光導波路
WO2009041510A1 (ja) * 2007-09-25 2009-04-02 Panasonic Electric Works Co., Ltd. 樹脂成形体の製造方法、その製造方法により得られる樹脂成形体、光デバイス、マイクロレンズ、マイクロレンズアレイ、及びマイクロ流体デバイス

Also Published As

Publication number Publication date
JP5585578B2 (ja) 2014-09-10
US20120076468A1 (en) 2012-03-29
TW201040224A (en) 2010-11-16
KR20120022840A (ko) 2012-03-12
WO2010126116A1 (ja) 2010-11-04
US8787723B2 (en) 2014-07-22
CN102414591A (zh) 2012-04-11

Similar Documents

Publication Publication Date Title
JP4241874B2 (ja) 光学材料用樹脂組成物、光学材料用樹脂フィルム及び光導波路
JP5359889B2 (ja) クラッド層形成用樹脂組成物およびこれを用いたクラッド層形成用樹脂フィルム、これらを用いた光導波路ならびに光モジュール
JP5321899B2 (ja) クラッド層形成用樹脂組成物、光導波路及び光モジュール
JP5585578B2 (ja) 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム及び光導波路
JP5892066B2 (ja) 光導波路形成用樹脂組成物、これを用いた光導波路形成用樹脂フィルム、及びこれらを用いた光導波路
WO2015029261A1 (ja) 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム及びそれらを用いた光導波路
JP5387370B2 (ja) 光導波路形成用樹脂組成物及びこれを用いた光導波路形成用樹脂フィルム、並びにこれらを用いた光導波路
JP5526740B2 (ja) 光導波路形成用樹脂組成物及びこれを用いた光導波路形成用樹脂フィルム、並びにこれらを用いた光導波路
JP5347529B2 (ja) クラッド層形成用樹脂組成物およびこれを用いたクラッド層形成用樹脂フィルム、これらを用いた光導波路ならびに光モジュール
JP2010091733A (ja) コア部形成用樹脂組成物及びこれを用いたコア部形成用樹脂フィルム、ならびにこれらを用いた光導波路
JP5003506B2 (ja) 光学材料用樹脂組成物、光学材料用樹脂フィルム、及びこれらを用いた光導波路
JP5515219B2 (ja) 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム、及びこれらを用いた光導波路
JP2010091734A (ja) コア部形成用樹脂組成物及びこれを用いたコア部形成用樹脂フィルム、ならびにこれらを用いた光導波路
JP2009175244A (ja) 光学材料用樹脂組成物、光学材料用樹脂フィルム、及びこれらを用いた光導波路
JP2015145999A (ja) 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム、それらを用いた光導波路及びその製造法
JP2015145998A (ja) 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム、それらを用いた光導波路及びその製造法
JP5904362B2 (ja) 光学材料用樹脂組成物、光学材料用樹脂フィルム及び光導波路
TWI501032B (zh) 光波導形成用樹脂組成物、光波導形成用樹脂膜及使用它們的光波導
JP2009167353A (ja) 光学材料用樹脂組成物、光学材料用樹脂フィルム、及びこれらを用いた光導波路
JP2016199719A (ja) 光学材料用樹脂組成物、光学材料用樹脂フィルム及び光導波路
JP2015146000A (ja) 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム及びそれらを用いた光導波路
WO2017022055A1 (ja) 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム、それらを用いた光導波路及びその製造方法
JP2010091732A (ja) コア部形成用樹脂組成物及びこれを用いたコア部形成用樹脂フィルム、ならびにこれらを用いた光導波路
JP2013174776A (ja) 光学材料用樹脂組成物、光学材料用樹脂フィルム及びそれらを用いた光導波路
JP2017187653A (ja) 光導波路クラッド材、光導波路クラッド層形成用樹脂フィルム及び光導波路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140707

LAPS Cancellation because of no payment of annual fees