JPWO2010100906A1 - 高分子電解質型燃料電池用ガスケット - Google Patents

高分子電解質型燃料電池用ガスケット Download PDF

Info

Publication number
JPWO2010100906A1
JPWO2010100906A1 JP2010546161A JP2010546161A JPWO2010100906A1 JP WO2010100906 A1 JPWO2010100906 A1 JP WO2010100906A1 JP 2010546161 A JP2010546161 A JP 2010546161A JP 2010546161 A JP2010546161 A JP 2010546161A JP WO2010100906 A1 JPWO2010100906 A1 JP WO2010100906A1
Authority
JP
Japan
Prior art keywords
seal
gasket
mountain
shaped portion
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010546161A
Other languages
English (en)
Other versions
JP4800443B2 (ja
Inventor
曜子 山本
曜子 山本
松本 敏宏
敏宏 松本
森本 隆志
隆志 森本
光生 吉村
光生 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2010546161A priority Critical patent/JP4800443B2/ja
Application granted granted Critical
Publication of JP4800443B2 publication Critical patent/JP4800443B2/ja
Publication of JPWO2010100906A1 publication Critical patent/JPWO2010100906A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0286Processes for forming seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0284Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/248Means for compression of the fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本発明は、膜電極接合体(9)の両面の外周に配置されたシール部材と、それらを挟む一対のセパレータ(10A)(10B)とを有する単電池モジュールが複数層積層され、その両端に配置された一対の端板を介して締結部材により挟みつけて組み立てられた燃料電池スタックを備える、高分子電解質型燃料電池において用いる、ガスケットであって、前記シール部材が、前記膜電極接合体の前記両面の外周部に一体形成して構成された、高分子電解質型燃料電池用ガスケット(14)に関する。従来の前記ガスケットでは、相反する要求である、確実なシール性の保持と低締結力化等とを実現できないという問題があった。本発明は、前記ガスケットにおける、前記シール部材を、2列のシールリップ(15)(16)を面内平行に連続して設け、少なくとも外側のシールリップが、下側山形状部の上に上側山形状部を重ねて一体的に形成された部材とすること等によって、上記問題の解決を図ったものである。

Description

本発明は、ポータブル電源、電気自動車用電源、又は、家庭内コージェネレーションシステム等に使用する燃料電池に関し、特に高分子電解質を用いた高分子電解質型燃料電池用ガスケットに関する。
高分子電解質を用いた燃料電池は、水素を含有する燃料ガスと空気など酸素を含有する酸化剤ガスとを電気化学的に反応させることで、電力と熱とを同時に発生させるものである。この燃料電池は、基本的には、水素イオンを選択的に輸送する高分子電解質膜、及び高分子電解質膜の両面に形成された一対の電極、すなわちアノードとカソードから構成される。これらの電極は、白金族金属触媒を担持したカーボン粉末を主成分とし、高分子電解質膜の表面に形成される触媒層、及び触媒層の外面に配置される、通気性と電子導電性を併せ持つガス拡散層を有する。このように高分子電解質膜と電極(ガス拡散層を含む)とが一体的に接合されて組み立てられたものを電解質膜電極接合体(以降、「MEA」と
する。)と呼ぶ。
また、MEAの両側には、MEAを機械的に挟み込んで固定するとともに、隣接するMEAを互いに電気的に直列に接続するための導電性のセパレータがそれぞれ配置される。各セパレータにおいてMEAと接触する部分には、それぞれの電極に燃料ガス又は酸化剤ガスなどの反応ガスを供給し、生成水又は余剰ガスを運び去るためのガス流路が形成される。このようなガス流路は、セパレータと別に設けることもできるが、セパレータの表面にそれぞれ溝を設けてそれぞれガス流路とする方式が一般的である。なお、このように、MEAが一対のセパレータにより挟み込まれた構造体を、「単電池モジュール」と言う。
各セパレータとMEAとの間に形成されるガス流路への反応ガスの供給、ガス流路からの反応ガス、及び、生成水の排出は、一対のセパレータのうちの少なくとも1つのセパレータの縁部にマニホールド孔と呼ばれる貫通した孔をそれぞれ設け、それぞれのガス流路の出入り口をこれらのマニホールド孔にそれぞれ連通して、各マニホールド孔から各ガス流路に反応ガスを分配することによって行われる。
また、ガス流路に供給される燃料ガス又は酸化剤ガスが外部へリークしたり、2種類のガスが互いに混合したりしないように、MEAにおける電極が形成されている部分、すなわち発電領域の外周を囲むように、一対のセパレータの間には、シール部材としてガスシール材又はガスケットが配置される。これらのガスシール材又はガスケットは、それぞれのマニホールド孔の周囲のシールをも行う。
燃料電池は、運転中に発熱するので、電池を良好な温度状態に維持するために、冷却水等で冷却する必要がある。通常、1〜3セル毎に、冷却水を流す冷却部が設けられる。これらのMEA、セパレータ、及び、冷却部を交互に重ねていき、10〜200セル積層した後、これらのセルの各端部に集電板と絶縁板とを介して端板を配置し、一対の端板でこれらのセルを挟み、締結ボルト(ロッド)等で両端から固定するのが一般的な積層電池(燃料電池スタック)の構造である。締結方式については、各セパレータの縁部に形成された貫通孔を通し、締結ボルトで締め付ける方法、又は、積層電池全体を端板越しに金属のベルトで締め上げる方式が一般的である。
このような積層電池においては、単電池モジュールを面内(積層方向に直交する平面内)で均一な締結力で締め付け、シールを確実に行なうことが重要である。近年では安全性保証のために、可燃ガスと外気とを確実に分離することが可能な2重シールが要求されている。しかし、低コスト化のためにスタックの小型化及び省スペース化も要求されており、2重シールが要求される場合には、締結荷重が増大し、締結部材が複雑になり、スタック体積が増大することが一般的であるため、2重シールとスタックの小型化及び低締結力化の要求とは相反することになる。
かかる燃料電池用のシールに関しては、特許文献1において図8に示すように、シール部の薄肉化、組立性の向上、位置ずれの防止、低面圧化、面圧の均一化等が優れているという観点から、リップ200を平行に2つ設け、面圧を高めずにシール性を確保したガスケットを有するカーボン材が一例として考案されている。
また、特許文献2では、低反力化の要求に応え、リップの倒れを防止でき、相手面の微小な凹凸又は段差などでもシール性を維持することができるガスケットの一例として、図9に示す2段構造のガスケット201が提案されている。互いに対向する二部材のうちの一方の部材にガスケット201を一体成形して取り付けられ、他方に密接するガスケット201において、一体成形して設けたシールリップ202は、低反力化のために潰し容積が小さい形状を有する。
特許文献3には、燃料電池用ガスケットにおいて、シール部が、両方向に突出する断面略三角形状のリップよりなる内側シールと、前記内側シールの外側に位置し、両方向に突出する断面略三角形状のリップとよりなる外側シールとを有し、前記内側シールと前記外側シールとが環状の連結部により連結されてものが開示されている。このような構成により、シール性能が良好で、反力を低く抑えることが出来ると共に、ガスケットが倒れるという問題を解決するようにしている。
特許文献4には、シール部に、両方向シール性を備えるシールリップを設け、前記シールリップの片側または両側に、一方向シール性を備えるシールリップを設けるように構成している。このような構成により、低反力化の要求に応えることができ、リップに倒れ現象が発生してもシール機能を維持することができ、しかも相手面に微小な凹凸や段差等があってもシール機能を維持することができるようにしている。
特許文献5には、ゴムシートの周縁に、それぞれ四角形などの断面を有する一対の間隔規制部が配置されるとともに、一対の間隔規制部の間に山形又は三角形の断面を有するリップ線部が配置されたものが開示されている。この一対の間隔規制部は、リップ線部が所望の圧縮変形を行うように寸法を制御するものである。
特許文献6には、ゴム状弾性材製のガスケット本体としてのゴムが、シールリップ部を有して断面三角形状ないし山形状に形成されており、ビード状のシールリップ(ビードとも称する)付きのフラットシール構造が開示されている。また、電解質膜の両面のガスケット本体にそれぞれビード状のシールリップ部を2本ずつ設けることにより、両面の樹脂フィルムの貼付け位置が左右に多少ずれることがあっても、ガスケット本体の面圧ピーク値が低下するのを防止することができるようにしたものも開示されている。
特開2000−133288号公報(第4頁、図3) 特開2005−016703号公報(第7頁、図3) 特開2007−335093号公報(第4頁、図3) 特開2004−360717号公報(第5,7頁、図5) 米国特許2008/0118811の公開公報(第3,4頁、図5,図6) 米国特許2004/0075224の公開公報(第11頁、図4,図11)
しかしながら、安全性保証のために可燃ガスと外気との2重シールが要求される場合には、前記した特許文献1〜6の燃料電池用ガスケットはいずれも、スタックの小型化及び省スペース化と低締結圧化と、確実なシール性の保持などの複数の課題解決を図ったものではない。特に、特許文献1は、2重に確実なシール性を保持するには、リップがそれぞれ小さいためにシール性が低くなり、特許文献2では、単純に2重シールにした場合はシールに必要な面積が大きくなるため、スタック体積及び締結圧が増大してしまう。
従って、本発明の目的は、前記課題を解決することにあって、高分子電解質型燃料電池において、確実にシール性を保証可能な2重シール構造を提供し、同時に相反する要求であるスタックの小型化及び低締結力化を実現することができる高分子電解質型燃料電池用ガスケットを提供することにある。
前記目的を達成するために、本発明は以下のように構成する。
前記本発明の第1態様にかかる高分子電解質型燃料電池用ガスケットは、膜電極接合体と、前記膜電極接合体の表裏両面の外周に配置されたシール部材と、前記膜電極接合体と前記シール部材を挟む一対のセパレータとを有する単電池モジュールが複数層積層されて積層体を構成し、前記積層体の両端に配置された一対の端板を介して締結部材により挟みつけて組み立てられた燃料電池スタックを備える高分子電解質型燃料電池において、
前記シール部材は、前記膜電極接合体の前記表裏両面の外周部に一体成形して構成され、
前記シール部材としては、シール性をそれぞれ備える2列のシールリップを面内平行に連続して設け、前記2列のシールリップのうちの少なくとも外側のシールリップが、下側山形状部の上に上側山形状部を重ねて一体的に形成され、かつ、前記下側山形状部の頂点の曲率半径は前記上側山形状部の頂点の曲率半径よりも大きいことを特徴とする高分子電解質型燃料電池用ガスケットを提供する。
本発明の第2態様によれば、前記下側山形状部の頂点の曲率半径をRとし、前記上側山形状部の頂点の曲率半径をRとするとき、前記曲率半径Rと前記曲率半径Rとの相関関係は、
×0.5≧R を満足し、
前記2列のシールリップの間の部分の高さは、前記膜電極接合体の表裏各面の前記セパレータで前記2列のシールリップを締め付ける高さより低く形成されている、
第1の態様に記載の高分子電解質型燃料電池用ガスケットを提供する。
本発明の第3態様によれば、前記下側山形状部の頂角及び前記上側山形状部の頂角が18°以上であり、前記2列のシールリップの厚さ方向と直交しかつ前記2列のシールリップの延在方向と直交する方向沿いの全幅に対して、前記膜電極接合体の外周の表面から前記上側山形状部の頂点までの厚さ方向の寸法は60%以下である、
第1又は2の態様に記載の高分子電解質型燃料電池用ガスケットを提供する。
本発明の第4態様によれば、前記上側山形状部及び前記下側山形状部は、共に、その頂点付近の断面は円形であり、
前記上側山形状部は、前記燃料電池スタックの組立時に、前記下側山形状部の頂点の部分よりも、前記上側山形状部の頂点の部分が前記セパレータと接触して大きく弾性変形する変形容易部であり、
前記下側山形状部は、前記変形容易部が大きく弾性変形したのち前記下側山形状部の頂点の部分が変形して前記セパレータとの間でのシール面積を拡大させるシール面積拡大部である、第1〜3のいずれか1つの態様に記載の高分子電解質型燃料電池用ガスケットを提供する。
本構成によって、2重シールの低反力化と狭幅化を実現でき、確実なシール性を保証することが可能であることにより、燃料電池スタックの低締結力化、小型化を実現する2重シール構造を提供することができる。
以上のように、本発明の高分子電解質型燃料電池ガスケットによれば、省スペースで低反力の2重シールを実現することができるため、スタックの低締結力化を実現し、スタックを小型化できる。さらに、安定して締結可能で、従来よりも2重にシール性を発揮することができ、締結構造を簡易化することができるという効果を奏する。
本発明のこれらと他の目的と特徴は、添付された図面についての好ましい実施形態に関連した次の記述から明らかになる。この図面においては、
図1は、本発明の第1実施の形態にかかる燃料電池スタックの分解斜視図であり、 図2Aは、図1の前記燃料電池スタックのMEAとガスケット構造の概略を示す平面図であり、 図2Bは、図1の前記燃料電池スタックのセパレータ10Aの燃料ガス流路溝に隣接するMEAの燃料ガス用ガスケット構造を示す平面図であり、 図2Cは、図1の前記燃料電池スタックのMEAとガスケット構造を示す平面図であり、 図2Dは、図1の前記燃料電池スタックのカソード側セパレータ又は冷却水セパレータのガスケット構造を示す平面図であり、 図3Aは、従来例にかかるガスケット構造の部分断面図(図2AのA−A線と同様な部分についての、従来例にかかるガスケット構造の部分断面図)であり、 図3Bは、本発明の前記第1実施形態にかかる前記燃料電池スタックのガスケット構造の図2AのA−A線の断面図であり、 図4Aは、前記従来例のガスケットを用いたMEAと一対のセパレータとの2重シール構造の部分断面図(図2AのA−A線と同様な部分についての、従来例にかかる2重シール構造の部分断面図)であって、仮想的にガスケットとセパレータとを組み付けた状態の図であり、 図4Bは、前記第1実施形態にかかる前記燃料電池スタックのガスケットを使用するMEAと一対のセパレータとの2重シール構造の部分断面図(図2AのA−A線における2重シール構造の部分断面図)であって、仮想的にガスケットとセパレータとを組み付けた状態の図であり、 図4Cは、従来例のガスケット構造におけるシール反力と本発明の前記第1実施形態のガスケット構造におけるシール反力との比較を示すグラフであり、 図4Dは、従来例のガスケット構造と前記第1実施形態のガスケット構造との寸法での比較を示す部分断面説明図であり、 図4Eは、締結時における、前記従来例のガスケットを用いたMEAと一対のセパレータとの2重シール構造の部分断面図(図2AのA−A線と同様な部分についての、従来例にかかる2重シール構造の部分断面図)であり、 図4Fは、締結時における、前記第1実施形態にかかる前記燃料電池スタックのガスケットを使用するMEAと一対のセパレータとの2重シール構造の部分断面図(図2AのA−A線における2重シール構造の部分断面図)であり、 図5Aは、前記第1実施形態の変形例を示す部分断面図であり、 図5Bは、前記第1実施形態の前記ガスケットの別の変形例を示す部分断面図であり、 図6Aは、本発明の第2実施形態にかかるガスケット構造の部分断面図であって、仮想的にMEAとセパレータとを組み付けた状態の図であり、 図6Bは、締結時における、本発明の前記第2実施形態にかかる前記ガスケット構造の部分断面図であり、 図7Aは、本発明の第3実施形態にかかるガスケット構造の部分断面図であって、仮想的にMEAとセパレータとを組み付けた状態の図であり、 図7Bは、締結時における、本発明の前記第3実施形態にかかる前記ガスケット構造の部分断面図であり、 図8は、特許文献1における実施例の一例を示す部分断面図であり、 図9は、特許文献2における実施例の一例を示す部分断面図であり、 図10Aは、図3Bの前記第1実施形態にかかる前記燃料電池スタックのガスケット構造の一部の拡大断面図であり、 図10Bは、図10Aのガスケットがセパレータに押圧された状態での拡大断面図であり、 図11Aは、従来の一段リップのガスケットがセパレータに押圧される直前の状態の拡大断面図であり、 図11Bは、従来の一段リップのガスケットがセパレータに押圧された状態の拡大断面図であり、 図11Cは、前記第1実施形態にかかる二段のシールリップのガスケットがセパレータに押圧される直前の状態の拡大断面図であり、 図11Dは、前記第1実施形態にかかる二段のシールリップのガスケットがセパレータに押圧された状態の拡大断面図であり、 図11Eは、前記第1実施形態の変形例にかかる二段のシールリップのガスケットがセパレータに押圧される直前の状態の拡大断面図であり、 図11Fは、前記第1実施形態の前記変形例にかかる二段のシールリップのガスケットがセパレータに押圧された状態の拡大断面図である。
以下、本発明を実施するための形態について図面を参照しながら説明する。
(第1実施形態)
図1は、本発明の第1実施形態にかかる高分子電解質形燃料電池(PEFC)の一例である燃料電池スタック30の構造を、一部を分解して模式的に示す斜視図である。図1に示すように、燃料電池スタック30は、その中心部に、単電池モジュール(セル)1を複数層積層させてセル積層体20が構成されている。なお、セル積層体20の両端部の最外層には、集電板2と、内面に弾性体の一例としての多数の内側バネ4を有する端板3とが配置されている。頭部7aに外側バネ5が嵌め込まれた4本の締結ボルト7が、セル積層体20の一方の端部から、端板3と集電板2とセル積層体20と集電板2と端板3とのそれぞれの角部のボルト孔6を貫通し、ナット8がねじ込まれて締結されるように構成されている。第1実施形態では、一例として、セル1は60個積層されてセル積層体20を構成し、締結部材の一例として、ボルト孔6に挿通される締結ボルト7とナット8とで締結されている。なお、締結部材は、締結ボルト7とナット8とで構成するものに限らず、締結バンドなど他の構成でもよい。
各集電板2は、セル積層体20の両外側にそれぞれ配置し、発電された電気を効率良く集電できるように、一例として、銅板に金メッキが施したものを使用している。なお、集電板2には、電気伝導性の良好な金属材料、例えば、鉄、ステンレス鋼、又は、アルミニウム等を使用しても良い。また、各集電板2の表面処理には、スズメッキ、又は、ニッケルメッキ等を施してもよい。各集電板2の外側には、電気を絶縁するために電気絶縁性のある材料を用いた端板3を配置し、絶縁の役割も兼用させている。ここで、端板3には、一例として、ポリフェニレンサルファイド樹脂を用いて射出成形で製作したものを使用している。端板3と一体となっている各配管3aは、セル積層体20の各マニホールドに、マニホールド用シール部材の一例として機能しかつマニホールド用貫通穴を有するガスケット(図示せず)を介して押し当てられて連通させて構成している。各端板3の内側には、セル1に荷重を加える前記多数の内側バネ4が、電解質膜電極接合体(以降、「MEA」とする。)9の投影部分、つまり、セル1の内側に、集中的に均等に配置され、締め付けた状態で例えば8.4kNの荷重がセル積層体20に加えられるように締め付け寸法が管理されている。外側バネ5は、各締結ボルト7の頭部7aと端板3の外面との間に配置されて、複数本の締結ボルト7と複数個のナット8で組立時に調整されて、例えば10kNで締結されている。
セル1は、表裏両面の周縁部にシール部材の一例としてのガスケット14をそれぞれ有するMEA9を一対の導電性のセパレータ10、具体的にはアノード側セパレータ10A及びカソード側セパレータ10Cで挟み、さらに、一方のセパレータ例えばカソード側セパレータ10Cの外側に冷却水セパレータ10Wを配置して構成されている。各セパレータ10A,10C及びMEA9の周縁部には、燃料ガス、酸化剤ガス、及び、冷却水が流通するそれぞれ一対の貫通孔、すなわち、マニホールド孔11(11A,11C,11W)が穿たれている。また、冷却水セパレータ10Wには、燃料ガス、酸化剤ガス、及び、冷却水が流通する一対の貫通孔、すなわち、マニホールド孔11(11A,11C,11W)が穿たれている。複数個のセル1が積層されたセル積層体20の状態では、これらマニホールド孔11が積層されて互いに連通し、燃料ガス用マニホールド11A、酸化剤ガス用マニホールド11C、冷却水用マニホールド11Wをそれぞれ独立して形成している。
MEA9の本体部9aは、水素イオンを選択的に輸送する高分子電解質膜と、及び高分子電解質膜の周縁部より内側の部分の内外両面に形成された一対の電極層、すなわちアノードとカソードの電極層とより構成されている。電極層は、ガス拡散層と、ガス拡散層と高分子電解質膜との間に配置される触媒層とを有する積層構造を有している。
アノード側セパレータ10A及びカソード側セパレータ10Cは、平板状であって、MEA9と接触する側の面、すなわち内面は、MEA9の本体部9aとガスケット14との形状にそれぞれ対応した形状を有するように構成している。アノード側セパレータ10A及びカソード側セパレータ10Cのそれぞれには、一例として、東海カーボン株式会社製グラッシーカーボン(厚さ3mm)を用いることができる。各セパレータ10A,10C,10Wでは、各種マニホールド孔及びボルト孔6が該各セパレータ10A,10C,10Wを厚み方向に貫通している。また、各セパレータ10A,10Cの内面には、それぞれ、燃料ガス流路溝12Aと酸化剤ガス流路溝12Cとが形成され、セパレータ10Wの内面(カソード側セパレータ10C側の面)には冷却水流路溝12Wが形成されている。各種マニホールド孔と、ボルト孔6と、燃料ガス流路溝12Aと、酸化剤ガス流路溝12Cと、冷却水流路溝等12Wとは、切削加工あるいは成形加工によりそれぞれ形成されている。
MEA9の表面と裏面とにそれぞれ配置されたガスケット14は、弾性体で構成されたシール部材であり、MEA9と一体形成され、MEA9とセパレータ10A,10Cとの押圧によって、セパレータ10A,10Cの内面の形状に応じてガスケット14は変形し、MEA9の本体部9aの外周及びマニホールド孔11(11A,11C,11W)の外周がガスケット14(14A,14C,14W)でシールされている。
一例として、図2Bには、図1の前記燃料電池スタックのセパレータ10Aの燃料ガス流路溝12Aに隣接するMEA9の燃料ガス用ガスケット構造を示す平面図を示す。燃料ガス用マニホールド孔11Aと燃料ガス用本体部9aAとが連通する空間と、酸化剤ガス用マニホールド11Cと冷却水用マニホールド11Wとをそれぞれ独立させるように、燃料ガス用ガスケット14Aで仕切るように構成している。
図2Cには、図1の前記燃料電池スタックのセパレータ10Cの酸化剤ガス流路溝12Cに隣接するMEA9の酸化剤ガス用ガスケット構造を示す平面図を示す。酸化剤ガス用マニホールド孔11Cと酸化剤ガス用本体部9aCとが連通する空間と、燃料ガス用マニホールド11Aと冷却水用マニホールド11Wとをそれぞれ独立させるように、酸化剤ガス用ガスケット14Cで仕切るように構成している。
図2Dには、図1の前記燃料電池スタックのカソード側セパレータ10C又は冷却水セパレータ10Wの冷却水用ガスケット構造を示す平面図を示す。冷却水用マニホールド孔11Wと冷却水流路溝12Wとが連通する空間と、燃料ガス用マニホールド11Aと酸化剤ガス用マニホールド11Cとをそれぞれ独立させるように、冷却水用ガスケット14Wで仕切るように構成している。
アノード側セパレータ10A及びカソード側セパレータ10CのMEA9と反対側の背面(外面)には、各種マニホールド孔11の周囲に、耐熱性の材質からなるスクイーズパッキン等の一般的なシール部材(図示せず)が配設されている。このパッキンなどのシール部材によって、隣接するセル1間において、各種マニホールド孔11のセル1間の連接部からの燃料ガス、酸化剤ガス、及び冷却水のそれぞれの漏出が防止される。
ここで、図2Aに、前記第1実施形態における燃料電池スタック30のMEA9のより具体的な構造の平面図を示す。MEA9の外周部に枠体13が成形され、MEA9の本体部9a及びマニホールド孔11の外周にガスケット14を成形して配置している。MEA9の本体部9aと枠体13と、ガスケット14との部分断面A−Aを図3Bに示す。図3Aには、従来例のMEA109において同様な部分で切断したときのガスケット構造の部分断面図、図3Bに前記第1実施形態のガスケット14の構造の部分断面図を示す。
図3A及び図3Bにおいて、MEA109,9の外周に、樹脂から成る枠体113,13を成形により設け、枠体113,13上の上下面にガスケット114,14を一体成形している。ここで、従来例と前記第1実施形態とでは、枠体113,13の上下面に成形されたガスケット114−1,14−1とガスケット114−2,14−2はそれぞれ上下で同じ断面形状を持っている。
前記第1実施形態では、枠体13の上下面に成形されたガスケット14−1とガスケット14−2はそれぞれ上下で同じ断面形状を持つものであるが、本発明はこれに限定されるものではなく、例えば、図3BのMEA9の上下内部に流れる流体の種類、温度、又は、圧力条件などによっては、上面を従来例のガスケット形状とする一方、下面のみを前記第1実施形態のガスケット14の形状としてもよい。より具体的には、例えば、上面を冷却水のみが流れる場合には、上面を従来のガスケット114によるシールとすることが好ましく、下面を可燃ガス又は酸化剤ガスが流れる場合には、前記第1実施形態の2重シールのガスケット14を採用すると、上面よりも厳格なシール性が要求される下面において、前記第1実施形態にかかる顕著な効果を発揮することができる。
さらに、それぞれ上下面に図6A、図7Aに後記する応用例の2重シールのガスケット形状を個別に配置しても、2重シールの効果を発揮することができる。また、一例として、枠体13としてはグラスファイバー添加ポリプロピレン、ガスケット14としてはオレフィン系熱可塑性エラストマの一種を使用することができる。ガスケット材料として、熱硬化樹脂は成形時の流動性が非常に高く、MEA9の電極にまで含浸してしまうため、熱可塑性樹脂の方が好ましい。また、枠体13とガスケット14のそれぞれは、接着性を材料自体が有するものを使用すると、さらにシール性は向上する。
図3Aは、従来のガスケット114の構造を示した部分断面図であり、シールリップ114aは1段の山形状の構造となっている。
図3Bは、前記第1実施形態のシール構造を示した部分断面図である。上下のガスケット14−1と14−2は同じ形状をしているため、上側のガスケット14−1を代表例として、以下、説明する。枠体13に一体成形されたガスケット14−1は、MEA9の本体部9aの外形である四角形の各辺と並列にMEA9の面内で平行して2列連続した、四角形枠形状の第1シールリップ15と四角形枠形状の第2シールリップ16とで構成し、第1シールリップ15及び第2シールリップ16はそれぞれ図3Bの上下方向(厚み方向)に2段の山形状で構成している。
より詳細には、ガスケット14−1は、図3Bの断面図において、外気側(図3Bの右側)に配置された第1シールリップ15が、枠体13の表面から隆起した第1段目の第1下側山形状部15Mと、第1下側山形状部15Mの縦断面円形状の頂点としての第1下側頂点15Bと、第1下側山形状部15Mの頂点15Bの付近からさらに隆起した第2段目の第1上側山形状部15Nと、第1上側山形状部15Nの縦断面円形状の頂点としての第1上側頂点15Cとで形成されている。平面的に見ても、第1上側山形状部15Nの底面部分の直径は、第1下側山形状部15Mの頂点15Bの付近の直径よりも小さくして、第1上側山形状部15Nと第1下側山形状部15Mとのつなぎ目で段部が形成されるようにしている。また、MEA9の本体部9a側(図3Bの左側)に配置された第2シールリップ16も同様に、枠体13の表面から隆起した第1段目の第2下側山形状部16Mと、第2下側山形状部16Mの頂点としての第2下側頂点16Bと、第2下側山形状部16Mの頂点16Bの付近からさらに隆起した第2段目の第2上側山形状部16Nと、第2上側山形状部16Nの頂点としての第2上側頂点16Cとで形成されている。平面的に見ても、第2上側山形状部16Nの底面部分の直径は、第2下側山形状部16Mの頂点16Bの付近の直径よりも小さくして、第2上側山形状部16Nと第2下側山形状部16Mとのつなぎ目で段部が形成されるようにしている。そして、さらに、第1下側山形状部15Mの底部と第2下側山形状部16Mの底部とが一体となって連続部14Pを形成して、第1及び第2シールリップ15,16間が連続した形状となるようにしている。第1及び第2シールリップ15,16間の連続部14Pの高さH2は、枠体13からスタック組立後のセパレータ保持位置までの高さH1よりも低く設定している。このようにH1>H2とすることにより、低反力化が実現され、狭い範囲で2重シールを成形可能となる。言い換えれば、逆に、連続部14Pの高さH2は、枠体13からスタック組立後のセパレータ保持位置までの高さH1と同等か又はそれよりも高く設定すれば、セパレータ保持位置の高さH1まで第1及び第2シールリップ15,16及び連続部14Pを弾性変形させる必要が生じて、反力が大きくなり、2重シールではなく1重シールとなってしまうためである。このような場合に、確実に2重シールを達成しようとすると、第1及び第2シールリップ15,16の間隔を大きくしなければならず、狭い範囲で2重シールを成形することが不可能となる。なお、第1下側頂点15Bと、第1上側頂点15Cと、第2下側頂点16Bと、第2上側頂点16Cとのそれぞれの高さは、スタック組立後のセパレータ保持位置までの高さH1よりも高く設定して、スタック組立時に弾性的に確実に変形するようにしている。
図10Aは、図3Bの前記第1実施形態にかかる前記燃料電池スタックのガスケット構造の一部の拡大断面図であり、図10Bは、図10Aのガスケットがセパレータに押圧された状態での拡大断面図である。ここで、下側山形状部15M,16Mの底面の幅をWとし、連続部14Pの幅をdとし、下側山形状部15M,16Mの底面から上側山形状部15N,16Nの頂点部15C,16Cまでの高さをhとすると、W>h>0でかつW>d>0とすることが好ましい。その理由は、以下のとおりである。
まず、W>h>0が好ましい理由は、シールリップ15,16の安定性のためである。高さhが幅Wよりも大きい場合には、シールリップ15,16が不安定になりやすいためである。
次に、W>dが好ましい理由は、幅dが大き過ぎると、全体の寸法が大きくなるとともに、シールリップ15,16の圧縮時に、2つのシールリップ15,16間の連続部14Pで形成される凹部72の空間体積が大きくなる。凹部72の空間体積が大きくなると、当該凹部72の空間内に混入した水分の温度が低下して凍結状態になると、水が凍る際に水の体積が増大する。例えば、図4Aに示すように、前記従来例のガスケットを用いたMEAと一対のセパレータとの2重シール構造では、全体の寸法がさらに大きくなるとともに、2重シール構造間の間隔がさらに大きくなり、凹部72の空間体積がさらに大きくなって、当該凹部72の空間内に混入した水分の温度が低下して凍結状態になると、水が凍る際に水の体積がさらに増大することになる。ここで、シールリップ15,16の図10Aにおける上下面のセパレータ10などはシール材料よりも強度が大きいため、水分(水)の体積が増大する際に発生する力が、セパレータ10などよりも、シールリップ15,16に作用し、シールリップ15,16を図10Bにおける左右方向に押すことになり、シールリップ15,16が倒れやすくなる。シールリップ15,16が倒れるとリークが発生してしまう。そこで、このようなリークを確実に防止するためには、前記凹部72の空間の体積が最小になるように寸法設定する必要がある。このため、W>dとする必要がある。
さらに、d>0が好ましい理由は、シールリップ15,16の圧縮時に凹部72の空間が全くの残らない場合には、シールリップ15,16が圧縮されるとき、2つのシールリップ15,16が相互に押し合い、シールリップ15,16が倒れやすくなって好ましくない。このような状態を防止するためには、幅dは少なくとも正の値とする必要がある。
これらの理由から、W>h>0でかつW>d>0とすることが好ましい。
また、締結圧力を小さくしつつ、所定のシール耐圧を確保するためには、各シールリップ15,16は、下側山形状部15M,16Mと上側山形状部15N,16Nとで構成される二段リップ(2段の山形状の構造)が効果的である理由について説明する。
まず、比較のため、図11A及び図11Bに示すように、従来のように一段リップ(1段の山形状の構造)の場合には、一段の山形状部114aの頂部114bがセパレータ110に当接すると、山形状部114aの頂部114bが、弾性変形により、つぶれて圧縮される。セパレータ110から受ける力をPとすると、山形状部114aの頂部114bがつぶれて圧縮された部分70での締結圧力はΣPで表され、圧縮された部分70の面積で決まることになる(クロスハッチング部分参照)。
一方、図11C及び図11Dに示すように、第1実施形態のように二段リップ(2段の山形状の構造)の場合には、上側山形状部15N,16Nのすべてと、下側山形状部15M,16Mの一部とがセパレータ10にそれぞれ当接すると、上側山形状部15N,16Nのすべてと、下側山形状部15M,16Mの一部とが、それぞれ、弾性変形によりつぶれて圧縮される。セパレータ10から受ける力をPとすると、つぶれて圧縮された部分71での締結圧力はΣPで表され、圧縮された部分71の面積で決まることになる(クロスハッチング部分参照)。このとき、シールリップ15,16のシール耐圧は、ピーク面圧PMAXで決定される。このピーク面圧PMAXがガスの圧力よりも高ければ、シールを行うことができる。
ここで、図11Bと図11Dとを比べるとよくわかるように、クロスハッチング部分の面積で示された締結圧力は、従来の図11Bよりも、第1実施形態の図11Dの方が小さくなっており、締結圧力が小さくなっていることが明確にわかる。また、ピーク面圧PMAXは、図11Bと図11Dとでは、ほぼ同じである。
さらに、本実施形態のように二段リップの場合の変形例としての二山タイプ(2段の山形状の構造でかつ上側の山形状部が複数個有している構造)は、下側山形状部15Mの頂点15Bの付近からさらに隆起した第2段目の複数の上側山形状部15N−1,15N−2を有するものである。具体的には図示しないが、他方のシールリップ16も同様に有することができる。このような構成では、シールリップ15においては、上側山形状部15N−1,15N−2のすべてと、下側山形状部15Mの一部とがセパレータ10に当接すると、上側山形状部15N−1,15N−2のすべてと、下側山形状部15Mの一部とが、それぞれ、弾性変形により、つぶれて圧縮される。セパレータ10から受ける力をPとすると、つぶれて圧縮された部分73での締結圧力はΣPで表され、圧縮された部分73の面積で決まることになる(クロスハッチング部分参照)。
このとき、シール耐圧の最大値は、上側山形状部15N−1,15N−2がそれぞれ圧縮された二箇所で、ガスの圧力よりも高いピーク面圧PMAXが発生することになる。この結果、ピーク面圧PMAXが二箇所で発生させることができて、シール機能をより安定して発揮することができる。なお、図11Fの前記二箇所のそれぞれのピーク面圧PMAXは、図11Bと図11Dとほぼ同じである。
前記第1実施形態では、第1シールリップ15と第2シールリップ16は鏡上側山形状部15N,16Nのすべてと、下側山形状部15M,16Mの一部とが面対称となっており、頂点の曲率半径は、第1下側頂点15Bと第2下側頂点16Bとでは同じとし、第1上側頂点15Cと第2上側頂点16Cとでは同じとしている。しかしながら、後述するように、本発明はこれに限定されるものではなく、第1上側頂点15Cと第2上側頂点16Cとで異なる曲率半径を用いてもよい。第1下側頂点15Bと第2下側頂点16Bの曲率半径をそれぞれR、第1上側頂点15Cと第2上側頂点16Cの曲率半径をそれぞれRとすると、その相関関係は、R×0.5≧R を満足するのが、本発明の効果をより確実に達成する上で好ましい。ここで、一例として、曲率半径Rとしては0.2〜0.6mmが望ましく、前記第1実施形態では曲率半径Rに0.3mmを採用することができる。第1及び第2シールリップ15,16をそれぞれ2段の山形状部で構成し、2段の山形状部の頂点の曲率半径RとRをR×0.5≧Rに設定することにより、第1及び第2シールリップ15,16の第1上側頂点15Cと第2上側頂点16Cの2箇所で弾性変形してセパレータ10A又は10Cに対して集中的にシールすることになり(言い換えれば、断面において、第1上側頂点15Cの頂点を通過する中心線上で集中的にシール性が向上することになり)、小さな反力で、2重のシール性を確実に確保することが可能となる。特に、頂点の曲率半径RをR×0.5≧Rに設定することにより、ガスケット14の形状を安定して成形することが出来るだけではなく、スタック組立時にガスケット14を安定して締結することができ、シール性を保証することが可能となる。すなわち、頂点の曲率半径RがR×0.5よりも小さければ、成形性が悪くなる(ショート(成形樹脂の充填不足)が発生するなどの)ためであるとともに、スタック締結時にシールによじれが発生したり、均一に荷重がかからなくなるためである。また、前記第1実施形態では第1シールリップ15と第2シールリップ16の頂点形状を一致させているが、前記の相関関係を満足していれば、第1シールリップ15と第2シールリップ16の頂点を互いに異なる頂点形状に変更しても前記の効果を発揮する。
また、前記第1実施形態では、各下側山形状部15M,16Mの下側頂点15B,16Bの曲率半径Rの中心位置と各上側山形状部15N,16Nの上側頂点15C,16Cの曲率半径Rの中心位置とを一直線上に一致させているが、MEA9の内外の環境又はMEA9へ供給するガス又は水の圧力負荷状況によっては、上側頂点15C,16Cの曲率半径Rの中心位置を、下側頂点15B,16Bの曲率半径Rの中心位置に対して、MEA9側、若しくは、外気側へそれぞれ下側頂点15B,16Bの曲率半径Rと上側頂点15C,16Cの曲率半径Rの端部が一致するまでの範囲内で移動させるようにしてもよい。特に、MEA9へ供給するガス又は水の内圧が大きい場合には、第2シールリップ16の上側頂点15C,16Cの曲率半径Rの中心をMEA9側に移動させたり、上側頂点15C,16Cの曲率半径Rを前記範囲内で大きめに(例えば、(R×0.5≧R)の範囲でかつ曲率半径Rを最大値に近い値に)設定すると、内圧による第2シールリップ16の上側頂点16Cのズレがなくなり、内圧負荷時のシール性向上に効果がある。
スタック組立時に第1及び第2シールリップ15,16の倒れを確実に防止し、安定性を確実に向上させるために、第1及び第2シールリップ15,16の頂角θはそれぞれ18°以上あることが望ましい。低締結力化を確実に図るため及びガスケット本体の面圧ピーク値の低下を防止する観点から、頂角θの上限値は90度である。
さらに、第1及び第2シールリップ15,16の合計高さ(枠体13の表面から第2シールリップ16の頂点までの厚さ方向の寸法)Hと全幅D(第1及び第2シールリップ15,16の両方の幅の合計(第1シールリップ15の外端から第2シールリップ16の内端までの寸法))の比(H/D)は、H/D≦0.6が望ましい。言い換えれば、2列のシールリップの厚さ方向と直交しかつ前記2列のシールリップの延在方向と直交する方向沿いの全幅Dに対して、前記膜電極接合体の外周の表面から前記上側山形状部の頂点までの厚さ方向の寸法Hは60%以下であることが望ましい。前記比(H/D)の下限値は0.1である。前記比(H/D)の下限値が0.1未満では、材料使用量が多くなる割には、シール効果が上がらなくなるためである。
全幅Dは、0.5〜5.0mmが最適である。なお、ここで、幅とは、前記シールリップの厚さ方向と直交しかつ前記シールリップの延在方向と直交する方向沿いの寸法を指す。ここでは、一つの実例として、頂角θ=18°、高さHと全幅Dの比(H/D)としては、 H/D=0.6 を採用することができる。頂角θが前記18°よりも小さい場合、又は、第1及び第2シールリップ15,16の高さHと全幅Dの比(H/D)が前記0.6よりも大きい場合には、スタック組立の際の締付荷重負荷時に第1及び第2シールリップ15,16の頂点が不安定になり横倒れが発生する可能性があり、横倒れが発生すると、シール性を発揮することが出来ないことになる。スタック30の小型化及び単電池モジュール1の薄型化を確実に実現するためにも、第1及び第2シールリップ15,16はシール性を発揮可能な一番低い高さで、全幅Dも出来る限り狭い方が望ましいため、前記したように、H/D≦0.6を満足させることが好ましい。
本発明の前記第1実施形態では、第1及び第2シールリップ15,16を2段にし、第1段目の下側山形状部15M,16Mよりも平面的に小さくかつ断面的に小さな曲率半径を有する第2段目の上側山形状部15N,16Nを、下側山形状部15M,16Mの上に配置している。このように構成することにより、スタック組立時にセパレータ10A,10Cに、最初に、上側山形状部15N,16Nが接触して、下側山形状部15M,16Mよりも、容易にかつ大きく弾性変形することができる変形容易部として上側山形状部15N,16Nが機能するようにしている。上側山形状部15N,16Nが変形容易部として大きく弾性変形したのち、下側山形状部15M,16Mの頂点の部分が変形してセパレータ10A,10Cとの間でのシール面積を拡大させるシール面積拡大部として下側山形状部15M,16Mが機能する。この結果、スタック組立の際の締付荷重負荷時に第1及び第2シールリップ15,16の頂点がセパレータ10A又は10Cの対向面に対して安定して接触して弾性変形を開始することになり、第1及び第2シールリップ15,16の横倒れを確実に防止することができ、シール性を確実に発揮することができる。よって、スタック30の小型化及び単電池モジュール1の薄型化を確実に実現することができる。さらに、第1及び第2シールリップ15,16がそれぞれセパレータ10A又は10Cの対向面に接触してシール性を発揮することにより、二重にシールすることができ、確実にシール性を保証可能な2重シール構造を提供することができる。よって、従来よりもシール性が向上するために、従来例よりもシール高さを低くすることができ、反力を小さくすることができるという効果も発揮される。また、枠体13とガスケット14の材料として互いに接着性の無いものをそれぞれ使用した場合には、全幅Dを大きく設定したり、若しくは、枠体13のガスケット14を成形させる部分の表面の表面粗さを粗くしたりすると、シール性の向上に効果がある。ガスケット14は、合成ゴム、EPDM、又は、シリコーンなどの樹脂材料でも形成することができる。
次に、前記第1実施形態の形状のガスケット14を、従来の形状のガスケット114と比較しながら説明する。
図4Aは従来の形状のガスケット114を2個並列させてセパレータ110に接触させるように配置して2重シールを構成するようにした場合の単電池モジュール1の部分断面図、図4Bは前記第1実施形態の形状のガスケット14での単電池モジュール1の部分断面図である。なお、図4A及び図4Bは、共に、セパレータのシール溝形状が分かりやすいようにセパレータ形状を図示したものであって、締結時の断面を示すものではなく、仮想的にガスケット114とセパレータ110とを組み付けた状態の図であるため、シールが弾性変形を全くしていない状態で図示している。
図4Cは、図4Aの従来のガスケット形状で2重シールにした場合に発生するシール反力と、図4Bの本発明の前記第1実施形態のガスケット形状の場合に発生するシール反力とを比較したシミュレーション結果を示すグラフである。シミュレーションは、汎用構造解析ソフトABAQUSで実施した。本発明の前記第1実施形態のガスケット14の形状では、従来例より最大40%程度反力が低減し、スタック30の低締結圧化を実現することが可能である。また、実験でもシミュレーションと同様の結果を得た。
さらに、図4Dに示す通り、本発明の前記第1実施形態のガスケット14の形状は、従来例の形状のガスケット114を2個並列させて構成された2重シール構造と比較して、単電池モジュール1においてガスケット14の占有面積が少なくて済むため、省スペースが可能となり、スタック30の小型化が可能となる。
図4Eは、図4Aの従来の形状のガスケット114を2個並列させてセパレータ110に接触させるように配置して2重シールを構成するようにした場合の単電池モジュール1の部分断面図において、締結時の断面を示すものであって、シールが弾性変形をしている状態の図である。
図4Fは、図4Bの前記第1実施形態の形状のガスケット14での単電池モジュール1の部分断面図において、締結時の断面を示すものであって、シールが弾性変形をしている状態の図である。
図5A及び図5Bは、前記第1実施形態の変形例をそれぞれ示した図である。図5Aは、ガスケット14の底面が、枠体13側に埋没した構造となっている。言い換えれば、ガスケット14を配置する枠体13の表面に凹部13aを予め形成し、この凹部13a内にガスケット14を嵌合配置している。このように枠体13に埋没するようにガスケット14を形成することにより、ガスケット14の周囲を凹部13aの縁部13bで囲むことができて、ガスケット14の締結時に枠体13がガスケット14の平面方向への広がりを縁部13bでせき止めることができるため、シール性はさらに向上する。さらに、図5Bのように、第1及び第2シールリップ15,16の片側だけ枠体13に埋没している形状(言い換えれば、図5Bで、第1シールリップ15のMEA9の本体部9a側だけ、枠体13の隆起部13cで支持されている形状)でも、シール性が向上するという同様の効果を現す。
なお、本発明は前記実施形態に限定されるものではなく、以下に例示するように、その他種々の態様で実施できる。
(第2実施形態)
図6Aは、本発明の第2実施形態のシール構造の部分断面図を示している。外気側の第1シールリップ15が前記第1実施形態と同じ2段リップ構造であるのに対して、MEA側の第3シールリップ18が1段リップ構造をしている。第3シールリップ18は、2段の山形状の代わりに、頂点が縦断面円形状の1つの山形状としてもよい。このように、内外が異なる環境の場合に、それぞれの環境に適したシールリップ形状とすることにより、運転条件又は環境条件によっては、第1実施形態の効果に加え、シール性を、より一層、長期的に向上させる効果を発揮することができる。以下、このことについて、説明する。なお、図6Aは、セパレータのシール溝形状が分かりやすいようにセパレータ形状を図示したものであって、締結時の断面を示すものではなく、仮想的にMEAとセパレータとを組み付けた状態の図であるため、シールが弾性変形を全くしていない状態で図示している。これに対して、図6Bは、前記第2実施形態にかかるガスケット構造の部分断面図において、締結時の断面を示すものであって、シールが弾性変形をしている状態の図である。
燃料電池スタック30の単電池モジュール1の内部は、水蒸気と水と水素と酸素との雰囲気であり、MEA側に配置されたシールリップに対しては最大数百MPaの内圧が負荷されるのに対して、外気は空気雰囲気であり、外気側に配置されたシールリップに対しては圧力無負荷となる。第1実施形態のような2重シール構造を採用する場合、単電池モジュール1の内部のMEA9と接するシールリップは耐水性及び耐水蒸気性、並びに、耐圧力性を併せ持つ必要があり、外気と接するシールリップは、空気に対する耐久性の保持が必要となる。MEA9側のシールリップとして、第1実施形態の第2シールリップ16に代えて第3シールリップ18を配置すれば、第3シールリップ18はセパレータ10A又は10Cとの接触面積が第2シールリップ16よりも大きくなる。このため、燃料ガス及び酸化ガスの内圧が負荷した場合でも耐圧に強く、より一層、長期にわたりシール性をより確実に保持することが可能であり、さらに、水蒸気及び水環境下での耐性もより一層高い構造とすることができる。すなわち、MEA側の内圧が非常に大きくかかる場合には、第3シールリップ18の形状にすれば、より一層、長期的にシール性を向上させることができる。また、単電池モジュール1の温度は燃料電池スタック30の起動中には80℃程度まで上昇するため、特にMEA9側のシールリップには耐熱性も求められる。この第2実施形態では、ガスケット14の材料として耐熱性のある熱可塑性エラストマを使用することができる。
なお、材料又は内外の環境によっては(例えば、MEA側のシールには圧力が負荷されず、外気側は低温下になる場合には)、図6Aの配置とは逆に、内側(MEA側)に2段のシールリップ構造、外側(外気側)に1段シールリップ構造を採用しても、シール性向上及び長期的なシール性保持に対して効果がある。
(第3実施形態)
図7Aは、本発明の第3実施形態のシール構造の部分断面図を示している。このガスケット14は、MEA9側の第2シールリップ16が2段の山形状の構造とし、外気側のシールリップ17は板状で対向する相手側のセパレータ10A又は10Cに縦断面円形かつ凸形状の凸部24を形成している。第2実施形態2と同様に、第2シールリップ16で確実なシール性を保持することができ、さらに、外気側のシールリップ17と凸部24とで、小さな締結力でシール性を確保することが可能となる。また、材料又は内外の環境によっては、内側に板状構造のシールリップ17を配置し、外側に2段の山形状の第2シールリップ16を採用しても効果がある。なお、図7Aは、セパレータのシール溝形状が分かりやすいようにセパレータ形状を図示したものであって、締結時の断面を示すものではなく、仮想的にMEAとセパレータとを組み付けた状態の図であるいため、シールが弾性変形を全くしていない状態で図示している。これに対して、図7Bは、前記第3実施形態にかかるガスケット構造の部分断面図において、締結時の断面を示すものであって、シールが弾性変形をしている状態の図である。
なお、前記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
本発明の高分子電解質型燃料電池用ガスケットは、ポータブル電源、電気自動車用電源、又は、家庭内コージェネレーションシステム等に使用する燃料電池用ガスケットとして有用である。
本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形又は修正は明白である。そのような変形又は修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
本発明は、ポータブル電源、電気自動車用電源、又は、家庭内コージェネレーションシステム等に使用する燃料電池に関し、特に高分子電解質を用いた高分子電解質型燃料電池用ガスケットに関する。
高分子電解質を用いた燃料電池は、水素を含有する燃料ガスと空気など酸素を含有する酸化剤ガスとを電気化学的に反応させることで、電力と熱とを同時に発生させるものである。この燃料電池は、基本的には、水素イオンを選択的に輸送する高分子電解質膜、及び高分子電解質膜の両面に形成された一対の電極、すなわちアノードとカソードから構成される。これらの電極は、白金族金属触媒を担持したカーボン粉末を主成分とし、高分子電解質膜の表面に形成される触媒層、及び触媒層の外面に配置される、通気性と電子導電性を併せ持つガス拡散層を有する。このように高分子電解質膜と電極(ガス拡散層を含む)とが一体的に接合されて組み立てられたものを電解質膜電極接合体(以降、「MEA」と
する。)と呼ぶ。
また、MEAの両側には、MEAを機械的に挟み込んで固定するとともに、隣接するMEAを互いに電気的に直列に接続するための導電性のセパレータがそれぞれ配置される。各セパレータにおいてMEAと接触する部分には、それぞれの電極に燃料ガス又は酸化剤ガスなどの反応ガスを供給し、生成水又は余剰ガスを運び去るためのガス流路が形成される。このようなガス流路は、セパレータと別に設けることもできるが、セパレータの表面にそれぞれ溝を設けてそれぞれガス流路とする方式が一般的である。なお、このように、MEAが一対のセパレータにより挟み込まれた構造体を、「単電池モジュール」と言う。
各セパレータとMEAとの間に形成されるガス流路への反応ガスの供給、ガス流路からの反応ガス、及び、生成水の排出は、一対のセパレータのうちの少なくとも1つのセパレータの縁部にマニホールド孔と呼ばれる貫通した孔をそれぞれ設け、それぞれのガス流路の出入り口をこれらのマニホールド孔にそれぞれ連通して、各マニホールド孔から各ガス流路に反応ガスを分配することによって行われる。
また、ガス流路に供給される燃料ガス又は酸化剤ガスが外部へリークしたり、2種類のガスが互いに混合したりしないように、MEAにおける電極が形成されている部分、すなわち発電領域の外周を囲むように、一対のセパレータの間には、シール部材としてガスシール材又はガスケットが配置される。これらのガスシール材又はガスケットは、それぞれのマニホールド孔の周囲のシールをも行う。
燃料電池は、運転中に発熱するので、電池を良好な温度状態に維持するために、冷却水等で冷却する必要がある。通常、1〜3セル毎に、冷却水を流す冷却部が設けられる。これらのMEA、セパレータ、及び、冷却部を交互に重ねていき、10〜200セル積層した後、これらのセルの各端部に集電板と絶縁板とを介して端板を配置し、一対の端板でこれらのセルを挟み、締結ボルト(ロッド)等で両端から固定するのが一般的な積層電池(燃料電池スタック)の構造である。締結方式については、各セパレータの縁部に形成された貫通孔を通し、締結ボルトで締め付ける方法、又は、積層電池全体を端板越しに金属のベルトで締め上げる方式が一般的である。
このような積層電池においては、単電池モジュールを面内(積層方向に直交する平面内)で均一な締結力で締め付け、シールを確実に行なうことが重要である。近年では安全性保証のために、可燃ガスと外気とを確実に分離することが可能な2重シールが要求されている。しかし、低コスト化のためにスタックの小型化及び省スペース化も要求されており、2重シールが要求される場合には、締結荷重が増大し、締結部材が複雑になり、スタック体積が増大することが一般的であるため、2重シールとスタックの小型化及び低締結力化の要求とは相反することになる。
かかる燃料電池用のシールに関しては、特許文献1において図8に示すように、シール部の薄肉化、組立性の向上、位置ずれの防止、低面圧化、面圧の均一化等が優れているという観点から、リップ200を平行に2つ設け、面圧を高めずにシール性を確保したガスケットを有するカーボン材が一例として考案されている。
また、特許文献2では、低反力化の要求に応え、リップの倒れを防止でき、相手面の微小な凹凸又は段差などでもシール性を維持することができるガスケットの一例として、図9に示す2段構造のガスケット201が提案されている。互いに対向する二部材のうちの一方の部材にガスケット201を一体成形して取り付けられ、他方に密接するガスケット201において、一体成形して設けたシールリップ202は、低反力化のために潰し容積が小さい形状を有する。
特許文献3には、燃料電池用ガスケットにおいて、シール部が、両方向に突出する断面略三角形状のリップよりなる内側シールと、前記内側シールの外側に位置し、両方向に突出する断面略三角形状のリップとよりなる外側シールとを有し、前記内側シールと前記外側シールとが環状の連結部により連結されてものが開示されている。このような構成により、シール性能が良好で、反力を低く抑えることが出来ると共に、ガスケットが倒れるという問題を解決するようにしている。
特許文献4には、シール部に、両方向シール性を備えるシールリップを設け、前記シールリップの片側または両側に、一方向シール性を備えるシールリップを設けるように構成している。このような構成により、低反力化の要求に応えることができ、リップに倒れ現象が発生してもシール機能を維持することができ、しかも相手面に微小な凹凸や段差等があってもシール機能を維持することができるようにしている。
特許文献5には、ゴムシートの周縁に、それぞれ四角形などの断面を有する一対の間隔規制部が配置されるとともに、一対の間隔規制部の間に山形又は三角形の断面を有するリップ線部が配置されたものが開示されている。この一対の間隔規制部は、リップ線部が所望の圧縮変形を行うように寸法を制御するものである。
特許文献6には、ゴム状弾性材製のガスケット本体としてのゴムが、シールリップ部を有して断面三角形状ないし山形状に形成されており、ビード状のシールリップ(ビードとも称する)付きのフラットシール構造が開示されている。また、電解質膜の両面のガスケット本体にそれぞれビード状のシールリップ部を2本ずつ設けることにより、両面の樹脂フィルムの貼付け位置が左右に多少ずれることがあっても、ガスケット本体の面圧ピーク値が低下するのを防止することができるようにしたものも開示されている。
特開2000−133288号公報(第4頁、図3) 特開2005−016703号公報(第7頁、図3) 特開2007−335093号公報(第4頁、図3) 特開2004−360717号公報(第5,7頁、図5) 米国特許2008/0118811の公開公報(第3,4頁、図5,図6) 米国特許2004/0075224の公開公報(第11頁、図4,図11)
しかしながら、安全性保証のために可燃ガスと外気との2重シールが要求される場合には、前記した特許文献1〜6の燃料電池用ガスケットはいずれも、スタックの小型化及び省スペース化と低締結圧化と、確実なシール性の保持などの複数の課題解決を図ったものではない。特に、特許文献1は、2重に確実なシール性を保持するには、リップがそれぞれ小さいためにシール性が低くなり、特許文献2では、単純に2重シールにした場合はシールに必要な面積が大きくなるため、スタック体積及び締結圧が増大してしまう。
従って、本発明の目的は、前記課題を解決することにあって、高分子電解質型燃料電池において、確実にシール性を保証可能な2重シール構造を提供し、同時に相反する要求であるスタックの小型化及び低締結力化を実現することができる高分子電解質型燃料電池用ガスケットを提供することにある。
前記目的を達成するために、本発明は以下のように構成する。
前記本発明の第1態様にかかる高分子電解質型燃料電池用ガスケットは、膜電極接合体と、前記膜電極接合体の表裏両面の外周に配置されたシール部材と、前記膜電極接合体と前記シール部材を挟む一対のセパレータとを有する単電池モジュールが複数層積層されて積層体を構成し、前記積層体の両端に配置された一対の端板を介して締結部材により挟みつけて組み立てられた燃料電池スタックを備える高分子電解質型燃料電池において、
前記シール部材は、前記膜電極接合体の前記表裏両面の外周部に一体成形して構成され、
前記シール部材としては、シール性をそれぞれ備える2列のシールリップを面内平行に連続して設け、前記2列のシールリップのうちの少なくとも外側のシールリップが、下側山形状部の上に上側山形状部を重ねて一体的に形成され、かつ、前記下側山形状部の頂点の曲率半径は前記上側山形状部の頂点の曲率半径よりも大きいことを特徴とする高分子電解質型燃料電池用ガスケットを提供する。
本発明の第2態様によれば、前記下側山形状部の頂点の曲率半径をRとし、前記上側山形状部の頂点の曲率半径をRとするとき、前記曲率半径Rと前記曲率半径Rとの相関関係は、
×0.5≧R を満足し、
前記2列のシールリップの間の部分の高さは、前記膜電極接合体の表裏各面の前記セパレータで前記2列のシールリップを締め付ける高さより低く形成されている、
第1の態様に記載の高分子電解質型燃料電池用ガスケットを提供する。
本発明の第3態様によれば、前記下側山形状部の頂角及び前記上側山形状部の頂角が18°以上であり、前記2列のシールリップの厚さ方向と直交しかつ前記2列のシールリップの延在方向と直交する方向沿いの全幅に対して、前記膜電極接合体の外周の表面から前記上側山形状部の頂点までの厚さ方向の寸法は60%以下である、
第1又は2の態様に記載の高分子電解質型燃料電池用ガスケットを提供する。
本発明の第4態様によれば、前記上側山形状部及び前記下側山形状部は、共に、その頂点付近の断面は円形であり、
前記上側山形状部は、前記燃料電池スタックの組立時に、前記下側山形状部の頂点の部分よりも、前記上側山形状部の頂点の部分が前記セパレータと接触して大きく弾性変形する変形容易部であり、
前記下側山形状部は、前記変形容易部が大きく弾性変形したのち前記下側山形状部の頂点の部分が変形して前記セパレータとの間でのシール面積を拡大させるシール面積拡大部である、第1〜3のいずれか1つの態様に記載の高分子電解質型燃料電池用ガスケットを提供する。
本構成によって、2重シールの低反力化と狭幅化を実現でき、確実なシール性を保証することが可能であることにより、燃料電池スタックの低締結力化、小型化を実現する2重シール構造を提供することができる。
以上のように、本発明の高分子電解質型燃料電池ガスケットによれば、省スペースで低反力の2重シールを実現することができるため、スタックの低締結力化を実現し、スタックを小型化できる。さらに、安定して締結可能で、従来よりも2重にシール性を発揮することができ、締結構造を簡易化することができるという効果を奏する。
本発明のこれらと他の目的と特徴は、添付された図面についての好ましい実施形態に関連した次の記述から明らかになる。この図面においては、
図1は、本発明の第1実施の形態にかかる燃料電池スタックの分解斜視図であり、 図2Aは、図1の前記燃料電池スタックのMEAとガスケット構造の概略を示す平面図であり、 図2Bは、図1の前記燃料電池スタックのセパレータ10Aの燃料ガス流路溝に隣接するMEAの燃料ガス用ガスケット構造を示す平面図であり、 図2Cは、図1の前記燃料電池スタックのMEAとガスケット構造を示す平面図であり、 図2Dは、図1の前記燃料電池スタックのカソード側セパレータ又は冷却水セパレータのガスケット構造を示す平面図であり、 図3Aは、従来例にかかるガスケット構造の部分断面図(図2AのA−A線と同様な部分についての、従来例にかかるガスケット構造の部分断面図)であり、 図3Bは、本発明の前記第1実施形態にかかる前記燃料電池スタックのガスケット構造の図2AのA−A線の断面図であり、 図4Aは、前記従来例のガスケットを用いたMEAと一対のセパレータとの2重シール構造の部分断面図(図2AのA−A線と同様な部分についての、従来例にかかる2重シール構造の部分断面図)であって、仮想的にガスケットとセパレータとを組み付けた状態の図であり、 図4Bは、前記第1実施形態にかかる前記燃料電池スタックのガスケットを使用するMEAと一対のセパレータとの2重シール構造の部分断面図(図2AのA−A線における2重シール構造の部分断面図)であって、仮想的にガスケットとセパレータとを組み付けた状態の図であり、 図4Cは、従来例のガスケット構造におけるシール反力と本発明の前記第1実施形態のガスケット構造におけるシール反力との比較を示すグラフであり、 図4Dは、従来例のガスケット構造と前記第1実施形態のガスケット構造との寸法での比較を示す部分断面説明図であり、 図4Eは、締結時における、前記従来例のガスケットを用いたMEAと一対のセパレータとの2重シール構造の部分断面図(図2AのA−A線と同様な部分についての、従来例にかかる2重シール構造の部分断面図)であり、 図4Fは、締結時における、前記第1実施形態にかかる前記燃料電池スタックのガスケットを使用するMEAと一対のセパレータとの2重シール構造の部分断面図(図2AのA−A線における2重シール構造の部分断面図)であり、 図5Aは、前記第1実施形態の変形例を示す部分断面図であり、 図5Bは、前記第1実施形態の前記ガスケットの別の変形例を示す部分断面図であり、 図6Aは、本発明の第2実施形態にかかるガスケット構造の部分断面図であって、仮想的にMEAとセパレータとを組み付けた状態の図であり、 図6Bは、締結時における、本発明の前記第2実施形態にかかる前記ガスケット構造の部分断面図であり、 図7Aは、本発明の第3実施形態にかかるガスケット構造の部分断面図であって、仮想的にMEAとセパレータとを組み付けた状態の図であり、 図7Bは、締結時における、本発明の前記第3実施形態にかかる前記ガスケット構造の部分断面図であり、 図8は、特許文献1における実施例の一例を示す部分断面図であり、 図9は、特許文献2における実施例の一例を示す部分断面図であり、 図10Aは、図3Bの前記第1実施形態にかかる前記燃料電池スタックのガスケット構造の一部の拡大断面図であり、 図10Bは、図10Aのガスケットがセパレータに押圧された状態での拡大断面図であり、 図11Aは、従来の一段リップのガスケットがセパレータに押圧される直前の状態の拡大断面図であり、 図11Bは、従来の一段リップのガスケットがセパレータに押圧された状態の拡大断面図であり、 図11Cは、前記第1実施形態にかかる二段のシールリップのガスケットがセパレータに押圧される直前の状態の拡大断面図であり、 図11Dは、前記第1実施形態にかかる二段のシールリップのガスケットがセパレータに押圧された状態の拡大断面図であり、 図11Eは、前記第1実施形態の変形例にかかる二段のシールリップのガスケットがセパレータに押圧される直前の状態の拡大断面図であり、 図11Fは、前記第1実施形態の前記変形例にかかる二段のシールリップのガスケットがセパレータに押圧された状態の拡大断面図である。
以下、本発明を実施するための形態について図面を参照しながら説明する。
(第1実施形態)
図1は、本発明の第1実施形態にかかる高分子電解質形燃料電池(PEFC)の一例である燃料電池スタック30の構造を、一部を分解して模式的に示す斜視図である。図1に示すように、燃料電池スタック30は、その中心部に、単電池モジュール(セル)1を複数層積層させてセル積層体20が構成されている。なお、セル積層体20の両端部の最外層には、集電板2と、内面に弾性体の一例としての多数の内側バネ4を有する端板3とが配置されている。頭部7aに外側バネ5が嵌め込まれた4本の締結ボルト7が、セル積層体20の一方の端部から、端板3と集電板2とセル積層体20と集電板2と端板3とのそれぞれの角部のボルト孔6を貫通し、ナット8がねじ込まれて締結されるように構成されている。第1実施形態では、一例として、セル1は60個積層されてセル積層体20を構成し、締結部材の一例として、ボルト孔6に挿通される締結ボルト7とナット8とで締結されている。なお、締結部材は、締結ボルト7とナット8とで構成するものに限らず、締結バンドなど他の構成でもよい。
各集電板2は、セル積層体20の両外側にそれぞれ配置し、発電された電気を効率良く集電できるように、一例として、銅板に金メッキが施したものを使用している。なお、集電板2には、電気伝導性の良好な金属材料、例えば、鉄、ステンレス鋼、又は、アルミニウム等を使用しても良い。また、各集電板2の表面処理には、スズメッキ、又は、ニッケルメッキ等を施してもよい。各集電板2の外側には、電気を絶縁するために電気絶縁性のある材料を用いた端板3を配置し、絶縁の役割も兼用させている。ここで、端板3には、一例として、ポリフェニレンサルファイド樹脂を用いて射出成形で製作したものを使用している。端板3と一体となっている各配管3aは、セル積層体20の各マニホールドに、マニホールド用シール部材の一例として機能しかつマニホールド用貫通穴を有するガスケット(図示せず)を介して押し当てられて連通させて構成している。各端板3の内側には、セル1に荷重を加える前記多数の内側バネ4が、電解質膜電極接合体(以降、「MEA」とする。)9の投影部分、つまり、セル1の内側に、集中的に均等に配置され、締め付けた状態で例えば8.4kNの荷重がセル積層体20に加えられるように締め付け寸法が管理されている。外側バネ5は、各締結ボルト7の頭部7aと端板3の外面との間に配置されて、複数本の締結ボルト7と複数個のナット8で組立時に調整されて、例えば10kNで締結されている。
セル1は、表裏両面の周縁部にシール部材の一例としてのガスケット14をそれぞれ有するMEA9を一対の導電性のセパレータ10、具体的にはアノード側セパレータ10A及びカソード側セパレータ10Cで挟み、さらに、一方のセパレータ例えばカソード側セパレータ10Cの外側に冷却水セパレータ10Wを配置して構成されている。各セパレータ10A,10C及びMEA9の周縁部には、燃料ガス、酸化剤ガス、及び、冷却水が流通するそれぞれ一対の貫通孔、すなわち、マニホールド孔11(11A,11C,11W)が穿たれている。また、冷却水セパレータ10Wには、燃料ガス、酸化剤ガス、及び、冷却水が流通する一対の貫通孔、すなわち、マニホールド孔11(11A,11C,11W)が穿たれている。複数個のセル1が積層されたセル積層体20の状態では、これらマニホールド孔11が積層されて互いに連通し、燃料ガス用マニホールド11A、酸化剤ガス用マニホールド11C、冷却水用マニホールド11Wをそれぞれ独立して形成している。
MEA9の本体部9aは、水素イオンを選択的に輸送する高分子電解質膜と、及び高分子電解質膜の周縁部より内側の部分の内外両面に形成された一対の電極層、すなわちアノードとカソードの電極層とより構成されている。電極層は、ガス拡散層と、ガス拡散層と高分子電解質膜との間に配置される触媒層とを有する積層構造を有している。
アノード側セパレータ10A及びカソード側セパレータ10Cは、平板状であって、MEA9と接触する側の面、すなわち内面は、MEA9の本体部9aとガスケット14との形状にそれぞれ対応した形状を有するように構成している。アノード側セパレータ10A及びカソード側セパレータ10Cのそれぞれには、一例として、東海カーボン株式会社製グラッシーカーボン(厚さ3mm)を用いることができる。各セパレータ10A,10C,10Wでは、各種マニホールド孔及びボルト孔6が該各セパレータ10A,10C,10Wを厚み方向に貫通している。また、各セパレータ10A,10Cの内面には、それぞれ、燃料ガス流路溝12Aと酸化剤ガス流路溝12Cとが形成され、セパレータ10Wの内面(カソード側セパレータ10C側の面)には冷却水流路溝12Wが形成されている。各種マニホールド孔と、ボルト孔6と、燃料ガス流路溝12Aと、酸化剤ガス流路溝12Cと、冷却水流路溝等12Wとは、切削加工あるいは成形加工によりそれぞれ形成されている。
MEA9の表面と裏面とにそれぞれ配置されたガスケット14は、弾性体で構成されたシール部材であり、MEA9と一体形成され、MEA9とセパレータ10A,10Cとの押圧によって、セパレータ10A,10Cの内面の形状に応じてガスケット14は変形し、MEA9の本体部9aの外周及びマニホールド孔11(11A,11C,11W)の外周がガスケット14(14A,14C,14W)でシールされている。
一例として、図2Bには、図1の前記燃料電池スタックのセパレータ10Aの燃料ガス流路溝12Aに隣接するMEA9の燃料ガス用ガスケット構造を示す平面図を示す。燃料ガス用マニホールド孔11Aと燃料ガス用本体部9aAとが連通する空間と、酸化剤ガス用マニホールド11Cと冷却水用マニホールド11Wとをそれぞれ独立させるように、燃料ガス用ガスケット14Aで仕切るように構成している。
図2Cには、図1の前記燃料電池スタックのセパレータ10Cの酸化剤ガス流路溝12Cに隣接するMEA9の酸化剤ガス用ガスケット構造を示す平面図を示す。酸化剤ガス用マニホールド孔11Cと酸化剤ガス用本体部9aCとが連通する空間と、燃料ガス用マニホールド11Aと冷却水用マニホールド11Wとをそれぞれ独立させるように、酸化剤ガス用ガスケット14Cで仕切るように構成している。
図2Dには、図1の前記燃料電池スタックのカソード側セパレータ10C又は冷却水セパレータ10Wの冷却水用ガスケット構造を示す平面図を示す。冷却水用マニホールド孔11Wと冷却水流路溝12Wとが連通する空間と、燃料ガス用マニホールド11Aと酸化剤ガス用マニホールド11Cとをそれぞれ独立させるように、冷却水用ガスケット14Wで仕切るように構成している。
アノード側セパレータ10A及びカソード側セパレータ10CのMEA9と反対側の背面(外面)には、各種マニホールド孔11の周囲に、耐熱性の材質からなるスクイーズパッキン等の一般的なシール部材(図示せず)が配設されている。このパッキンなどのシール部材によって、隣接するセル1間において、各種マニホールド孔11のセル1間の連接部からの燃料ガス、酸化剤ガス、及び冷却水のそれぞれの漏出が防止される。
ここで、図2Aに、前記第1実施形態における燃料電池スタック30のMEA9のより具体的な構造の平面図を示す。MEA9の外周部に枠体13が成形され、MEA9の本体部9a及びマニホールド孔11の外周にガスケット14を成形して配置している。MEA9の本体部9aと枠体13と、ガスケット14との部分断面A−Aを図3Bに示す。図3Aには、従来例のMEA109において同様な部分で切断したときのガスケット構造の部分断面図、図3Bに前記第1実施形態のガスケット14の構造の部分断面図を示す。
図3A及び図3Bにおいて、MEA109,9の外周に、樹脂から成る枠体113,13を成形により設け、枠体113,13上の上下面にガスケット114,14を一体成形している。ここで、従来例と前記第1実施形態とでは、枠体113,13の上下面に成形されたガスケット114−1,14−1とガスケット114−2,14−2はそれぞれ上下で同じ断面形状を持っている。
前記第1実施形態では、枠体13の上下面に成形されたガスケット14−1とガスケット14−2はそれぞれ上下で同じ断面形状を持つものであるが、本発明はこれに限定されるものではなく、例えば、図3BのMEA9の上下内部に流れる流体の種類、温度、又は、圧力条件などによっては、上面を従来例のガスケット形状とする一方、下面のみを前記第1実施形態のガスケット14の形状としてもよい。より具体的には、例えば、上面を冷却水のみが流れる場合には、上面を従来のガスケット114によるシールとすることが好ましく、下面を可燃ガス又は酸化剤ガスが流れる場合には、前記第1実施形態の2重シールのガスケット14を採用すると、上面よりも厳格なシール性が要求される下面において、前記第1実施形態にかかる顕著な効果を発揮することができる。
さらに、それぞれ上下面に図6A、図7Aに後記する応用例の2重シールのガスケット形状を個別に配置しても、2重シールの効果を発揮することができる。また、一例として、枠体13としてはグラスファイバー添加ポリプロピレン、ガスケット14としてはオレフィン系熱可塑性エラストマの一種を使用することができる。ガスケット材料として、熱硬化樹脂は成形時の流動性が非常に高く、MEA9の電極にまで含浸してしまうため、熱可塑性樹脂の方が好ましい。また、枠体13とガスケット14のそれぞれは、接着性を材料自体が有するものを使用すると、さらにシール性は向上する。
図3Aは、従来のガスケット114の構造を示した部分断面図であり、シールリップ114aは1段の山形状の構造となっている。
図3Bは、前記第1実施形態のシール構造を示した部分断面図である。上下のガスケット14−1と14−2は同じ形状をしているため、上側のガスケット14−1を代表例として、以下、説明する。枠体13に一体成形されたガスケット14−1は、MEA9の本体部9aの外形である四角形の各辺と並列にMEA9の面内で平行して2列連続した、四角形枠形状の第1シールリップ15と四角形枠形状の第2シールリップ16とで構成し、第1シールリップ15及び第2シールリップ16はそれぞれ図3Bの上下方向(厚み方向)に2段の山形状で構成している。
より詳細には、ガスケット14−1は、図3Bの断面図において、外気側(図3Bの右側)に配置された第1シールリップ15が、枠体13の表面から隆起した第1段目の第1下側山形状部15Mと、第1下側山形状部15Mの縦断面円形状の頂点としての第1下側頂点15Bと、第1下側山形状部15Mの頂点15Bの付近からさらに隆起した第2段目の第1上側山形状部15Nと、第1上側山形状部15Nの縦断面円形状の頂点としての第1上側頂点15Cとで形成されている。平面的に見ても、第1上側山形状部15Nの底面部分の直径は、第1下側山形状部15Mの頂点15Bの付近の直径よりも小さくして、第1上側山形状部15Nと第1下側山形状部15Mとのつなぎ目で段部が形成されるようにしている。また、MEA9の本体部9a側(図3Bの左側)に配置された第2シールリップ16も同様に、枠体13の表面から隆起した第1段目の第2下側山形状部16Mと、第2下側山形状部16Mの頂点としての第2下側頂点16Bと、第2下側山形状部16Mの頂点16Bの付近からさらに隆起した第2段目の第2上側山形状部16Nと、第2上側山形状部16Nの頂点としての第2上側頂点16Cとで形成されている。平面的に見ても、第2上側山形状部16Nの底面部分の直径は、第2下側山形状部16Mの頂点16Bの付近の直径よりも小さくして、第2上側山形状部16Nと第2下側山形状部16Mとのつなぎ目で段部が形成されるようにしている。そして、さらに、第1下側山形状部15Mの底部と第2下側山形状部16Mの底部とが一体となって連続部14Pを形成して、第1及び第2シールリップ15,16間が連続した形状となるようにしている。第1及び第2シールリップ15,16間の連続部14Pの高さH2は、枠体13からスタック組立後のセパレータ保持位置までの高さH1よりも低く設定している。このようにH1>H2とすることにより、低反力化が実現され、狭い範囲で2重シールを成形可能となる。言い換えれば、逆に、連続部14Pの高さH2は、枠体13からスタック組立後のセパレータ保持位置までの高さH1と同等か又はそれよりも高く設定すれば、セパレータ保持位置の高さH1まで第1及び第2シールリップ15,16及び連続部14Pを弾性変形させる必要が生じて、反力が大きくなり、2重シールではなく1重シールとなってしまうためである。このような場合に、確実に2重シールを達成しようとすると、第1及び第2シールリップ15,16の間隔を大きくしなければならず、狭い範囲で2重シールを成形することが不可能となる。なお、第1下側頂点15Bと、第1上側頂点15Cと、第2下側頂点16Bと、第2上側頂点16Cとのそれぞれの高さは、スタック組立後のセパレータ保持位置までの高さH1よりも高く設定して、スタック組立時に弾性的に確実に変形するようにしている。
図10Aは、図3Bの前記第1実施形態にかかる前記燃料電池スタックのガスケット構造の一部の拡大断面図であり、図10Bは、図10Aのガスケットがセパレータに押圧された状態での拡大断面図である。ここで、下側山形状部15M,16Mの底面の幅をWとし、連続部14Pの幅をdとし、下側山形状部15M,16Mの底面から上側山形状部15N,16Nの頂点部15C,16Cまでの高さをhとすると、W>h>0でかつW>d>0とすることが好ましい。その理由は、以下のとおりである。
まず、W>h>0が好ましい理由は、シールリップ15,16の安定性のためである。高さhが幅Wよりも大きい場合には、シールリップ15,16が不安定になりやすいためである。
次に、W>dが好ましい理由は、幅dが大き過ぎると、全体の寸法が大きくなるとともに、シールリップ15,16の圧縮時に、2つのシールリップ15,16間の連続部14Pで形成される凹部72の空間体積が大きくなる。凹部72の空間体積が大きくなると、当該凹部72の空間内に混入した水分の温度が低下して凍結状態になると、水が凍る際に水の体積が増大する。例えば、図4Aに示すように、前記従来例のガスケットを用いたMEAと一対のセパレータとの2重シール構造では、全体の寸法がさらに大きくなるとともに、2重シール構造間の間隔がさらに大きくなり、凹部72の空間体積がさらに大きくなって、当該凹部72の空間内に混入した水分の温度が低下して凍結状態になると、水が凍る際に水の体積がさらに増大することになる。ここで、シールリップ15,16の図10Aにおける上下面のセパレータ10などはシール材料よりも強度が大きいため、水分(水)の体積が増大する際に発生する力が、セパレータ10などよりも、シールリップ15,16に作用し、シールリップ15,16を図10Bにおける左右方向に押すことになり、シールリップ15,16が倒れやすくなる。シールリップ15,16が倒れるとリークが発生してしまう。そこで、このようなリークを確実に防止するためには、前記凹部72の空間の体積が最小になるように寸法設定する必要がある。このため、W>dとする必要がある。
さらに、d>0が好ましい理由は、シールリップ15,16の圧縮時に凹部72の空間が全くの残らない場合には、シールリップ15,16が圧縮されるとき、2つのシールリップ15,16が相互に押し合い、シールリップ15,16が倒れやすくなって好ましくない。このような状態を防止するためには、幅dは少なくとも正の値とする必要がある。
これらの理由から、W>h>0でかつW>d>0とすることが好ましい。
また、締結圧力を小さくしつつ、所定のシール耐圧を確保するためには、各シールリップ15,16は、下側山形状部15M,16Mと上側山形状部15N,16Nとで構成される二段リップ(2段の山形状の構造)が効果的である理由について説明する。
まず、比較のため、図11A及び図11Bに示すように、従来のように一段リップ(1段の山形状の構造)の場合には、一段の山形状部114aの頂部114bがセパレータ110に当接すると、山形状部114aの頂部114bが、弾性変形により、つぶれて圧縮される。セパレータ110から受ける力をPとすると、山形状部114aの頂部114bがつぶれて圧縮された部分70での締結圧力はΣPで表され、圧縮された部分70の面積で決まることになる(クロスハッチング部分参照)。
一方、図11C及び図11Dに示すように、第1実施形態のように二段リップ(2段の山形状の構造)の場合には、上側山形状部15N,16Nのすべてと、下側山形状部15M,16Mの一部とがセパレータ10にそれぞれ当接すると、上側山形状部15N,16Nのすべてと、下側山形状部15M,16Mの一部とが、それぞれ、弾性変形によりつぶれて圧縮される。セパレータ10から受ける力をPとすると、つぶれて圧縮された部分71での締結圧力はΣPで表され、圧縮された部分71の面積で決まることになる(クロスハッチング部分参照)。このとき、シールリップ15,16のシール耐圧は、ピーク面圧PMAXで決定される。このピーク面圧PMAXがガスの圧力よりも高ければ、シールを行うことができる。
ここで、図11Bと図11Dとを比べるとよくわかるように、クロスハッチング部分の面積で示された締結圧力は、従来の図11Bよりも、第1実施形態の図11Dの方が小さくなっており、締結圧力が小さくなっていることが明確にわかる。また、ピーク面圧PMAXは、図11Bと図11Dとでは、ほぼ同じである。
さらに、本実施形態のように二段リップの場合の変形例としての二山タイプ(2段の山形状の構造でかつ上側の山形状部が複数個有している構造)は、下側山形状部15Mの頂点15Bの付近からさらに隆起した第2段目の複数の上側山形状部15N−1,15N−2を有するものである。具体的には図示しないが、他方のシールリップ16も同様に有することができる。このような構成では、シールリップ15においては、上側山形状部15N−1,15N−2のすべてと、下側山形状部15Mの一部とがセパレータ10に当接すると、上側山形状部15N−1,15N−2のすべてと、下側山形状部15Mの一部とが、それぞれ、弾性変形により、つぶれて圧縮される。セパレータ10から受ける力をPとすると、つぶれて圧縮された部分73での締結圧力はΣPで表され、圧縮された部分73の面積で決まることになる(クロスハッチング部分参照)。
このとき、シール耐圧の最大値は、上側山形状部15N−1,15N−2がそれぞれ圧縮された二箇所で、ガスの圧力よりも高いピーク面圧PMAXが発生することになる。この結果、ピーク面圧PMAXが二箇所で発生させることができて、シール機能をより安定して発揮することができる。なお、図11Fの前記二箇所のそれぞれのピーク面圧PMAXは、図11Bと図11Dとほぼ同じである。
前記第1実施形態では、第1シールリップ15と第2シールリップ16は鏡上側山形状部15N,16Nのすべてと、下側山形状部15M,16Mの一部とが面対称となっており、頂点の曲率半径は、第1下側頂点15Bと第2下側頂点16Bとでは同じとし、第1上側頂点15Cと第2上側頂点16Cとでは同じとしている。しかしながら、後述するように、本発明はこれに限定されるものではなく、第1上側頂点15Cと第2上側頂点16Cとで異なる曲率半径を用いてもよい。第1下側頂点15Bと第2下側頂点16Bの曲率半径をそれぞれR、第1上側頂点15Cと第2上側頂点16Cの曲率半径をそれぞれRとすると、その相関関係は、R×0.5≧R を満足するのが、本発明の効果をより確実に達成する上で好ましい。ここで、一例として、曲率半径Rとしては0.2〜0.6mmが望ましく、前記第1実施形態では曲率半径Rに0.3mmを採用することができる。第1及び第2シールリップ15,16をそれぞれ2段の山形状部で構成し、2段の山形状部の頂点の曲率半径RとRをR×0.5≧Rに設定することにより、第1及び第2シールリップ15,16の第1上側頂点15Cと第2上側頂点16Cの2箇所で弾性変形してセパレータ10A又は10Cに対して集中的にシールすることになり(言い換えれば、断面において、第1上側頂点15Cの頂点を通過する中心線上で集中的にシール性が向上することになり)、小さな反力で、2重のシール性を確実に確保することが可能となる。特に、頂点の曲率半径RをR×0.5≧Rに設定することにより、ガスケット14の形状を安定して成形することが出来るだけではなく、スタック組立時にガスケット14を安定して締結することができ、シール性を保証することが可能となる。すなわち、頂点の曲率半径RがR×0.5よりも小さければ、成形性が悪くなる(ショート(成形樹脂の充填不足)が発生するなどの)ためであるとともに、スタック締結時にシールによじれが発生したり、均一に荷重がかからなくなるためである。また、前記第1実施形態では第1シールリップ15と第2シールリップ16の頂点形状を一致させているが、前記の相関関係を満足していれば、第1シールリップ15と第2シールリップ16の頂点を互いに異なる頂点形状に変更しても前記の効果を発揮する。
また、前記第1実施形態では、各下側山形状部15M,16Mの下側頂点15B,16Bの曲率半径Rの中心位置と各上側山形状部15N,16Nの上側頂点15C,16Cの曲率半径Rの中心位置とを一直線上に一致させているが、MEA9の内外の環境又はMEA9へ供給するガス又は水の圧力負荷状況によっては、上側頂点15C,16Cの曲率半径Rの中心位置を、下側頂点15B,16Bの曲率半径Rの中心位置に対して、MEA9側、若しくは、外気側へそれぞれ下側頂点15B,16Bの曲率半径Rと上側頂点15C,16Cの曲率半径Rの端部が一致するまでの範囲内で移動させるようにしてもよい。特に、MEA9へ供給するガス又は水の内圧が大きい場合には、第2シールリップ16の上側頂点15C,16Cの曲率半径Rの中心をMEA9側に移動させたり、上側頂点15C,16Cの曲率半径Rを前記範囲内で大きめに(例えば、(R×0.5≧R)の範囲でかつ曲率半径Rを最大値に近い値に)設定すると、内圧による第2シールリップ16の上側頂点16Cのズレがなくなり、内圧負荷時のシール性向上に効果がある。
スタック組立時に第1及び第2シールリップ15,16の倒れを確実に防止し、安定性を確実に向上させるために、第1及び第2シールリップ15,16の頂角θはそれぞれ18°以上あることが望ましい。低締結力化を確実に図るため及びガスケット本体の面圧ピーク値の低下を防止する観点から、頂角θの上限値は90度である。
さらに、第1及び第2シールリップ15,16の合計高さ(枠体13の表面から第2シールリップ16の頂点までの厚さ方向の寸法)Hと全幅D(第1及び第2シールリップ15,16の両方の幅の合計(第1シールリップ15の外端から第2シールリップ16の内端までの寸法))の比(H/D)は、H/D≦0.6が望ましい。言い換えれば、2列のシールリップの厚さ方向と直交しかつ前記2列のシールリップの延在方向と直交する方向沿いの全幅Dに対して、前記膜電極接合体の外周の表面から前記上側山形状部の頂点までの厚さ方向の寸法Hは60%以下であることが望ましい。前記比(H/D)の下限値は0.1である。前記比(H/D)の下限値が0.1未満では、材料使用量が多くなる割には、シール効果が上がらなくなるためである。
全幅Dは、0.5〜5.0mmが最適である。なお、ここで、幅とは、前記シールリップの厚さ方向と直交しかつ前記シールリップの延在方向と直交する方向沿いの寸法を指す。ここでは、一つの実例として、頂角θ=18°、高さHと全幅Dの比(H/D)としては、 H/D=0.6 を採用することができる。頂角θが前記18°よりも小さい場合、又は、第1及び第2シールリップ15,16の高さHと全幅Dの比(H/D)が前記0.6よりも大きい場合には、スタック組立の際の締付荷重負荷時に第1及び第2シールリップ15,16の頂点が不安定になり横倒れが発生する可能性があり、横倒れが発生すると、シール性を発揮することが出来ないことになる。スタック30の小型化及び単電池モジュール1の薄型化を確実に実現するためにも、第1及び第2シールリップ15,16はシール性を発揮可能な一番低い高さで、全幅Dも出来る限り狭い方が望ましいため、前記したように、H/D≦0.6を満足させることが好ましい。
本発明の前記第1実施形態では、第1及び第2シールリップ15,16を2段にし、第1段目の下側山形状部15M,16Mよりも平面的に小さくかつ断面的に小さな曲率半径を有する第2段目の上側山形状部15N,16Nを、下側山形状部15M,16Mの上に配置している。このように構成することにより、スタック組立時にセパレータ10A,10Cに、最初に、上側山形状部15N,16Nが接触して、下側山形状部15M,16Mよりも、容易にかつ大きく弾性変形することができる変形容易部として上側山形状部15N,16Nが機能するようにしている。上側山形状部15N,16Nが変形容易部として大きく弾性変形したのち、下側山形状部15M,16Mの頂点の部分が変形してセパレータ10A,10Cとの間でのシール面積を拡大させるシール面積拡大部として下側山形状部15M,16Mが機能する。この結果、スタック組立の際の締付荷重負荷時に第1及び第2シールリップ15,16の頂点がセパレータ10A又は10Cの対向面に対して安定して接触して弾性変形を開始することになり、第1及び第2シールリップ15,16の横倒れを確実に防止することができ、シール性を確実に発揮することができる。よって、スタック30の小型化及び単電池モジュール1の薄型化を確実に実現することができる。さらに、第1及び第2シールリップ15,16がそれぞれセパレータ10A又は10Cの対向面に接触してシール性を発揮することにより、二重にシールすることができ、確実にシール性を保証可能な2重シール構造を提供することができる。よって、従来よりもシール性が向上するために、従来例よりもシール高さを低くすることができ、反力を小さくすることができるという効果も発揮される。また、枠体13とガスケット14の材料として互いに接着性の無いものをそれぞれ使用した場合には、全幅Dを大きく設定したり、若しくは、枠体13のガスケット14を成形させる部分の表面の表面粗さを粗くしたりすると、シール性の向上に効果がある。ガスケット14は、合成ゴム、EPDM、又は、シリコーンなどの樹脂材料でも形成することができる。
次に、前記第1実施形態の形状のガスケット14を、従来の形状のガスケット114と比較しながら説明する。
図4Aは従来の形状のガスケット114を2個並列させてセパレータ110に接触させるように配置して2重シールを構成するようにした場合の単電池モジュール1の部分断面図、図4Bは前記第1実施形態の形状のガスケット14での単電池モジュール1の部分断面図である。なお、図4A及び図4Bは、共に、セパレータのシール溝形状が分かりやすいようにセパレータ形状を図示したものであって、締結時の断面を示すものではなく、仮想的にガスケット114とセパレータ110とを組み付けた状態の図であるため、シールが弾性変形を全くしていない状態で図示している。
図4Cは、図4Aの従来のガスケット形状で2重シールにした場合に発生するシール反力と、図4Bの本発明の前記第1実施形態のガスケット形状の場合に発生するシール反力とを比較したシミュレーション結果を示すグラフである。シミュレーションは、汎用構造解析ソフトABAQUSで実施した。本発明の前記第1実施形態のガスケット14の形状では、従来例より最大40%程度反力が低減し、スタック30の低締結圧化を実現することが可能である。また、実験でもシミュレーションと同様の結果を得た。
さらに、図4Dに示す通り、本発明の前記第1実施形態のガスケット14の形状は、従来例の形状のガスケット114を2個並列させて構成された2重シール構造と比較して、単電池モジュール1においてガスケット14の占有面積が少なくて済むため、省スペースが可能となり、スタック30の小型化が可能となる。
図4Eは、図4Aの従来の形状のガスケット114を2個並列させてセパレータ110に接触させるように配置して2重シールを構成するようにした場合の単電池モジュール1の部分断面図において、締結時の断面を示すものであって、シールが弾性変形をしている状態の図である。
図4Fは、図4Bの前記第1実施形態の形状のガスケット14での単電池モジュール1の部分断面図において、締結時の断面を示すものであって、シールが弾性変形をしている状態の図である。
図5A及び図5Bは、前記第1実施形態の変形例をそれぞれ示した図である。図5Aは、ガスケット14の底面が、枠体13側に埋没した構造となっている。言い換えれば、ガスケット14を配置する枠体13の表面に凹部13aを予め形成し、この凹部13a内にガスケット14を嵌合配置している。このように枠体13に埋没するようにガスケット14を形成することにより、ガスケット14の周囲を凹部13aの縁部13bで囲むことができて、ガスケット14の締結時に枠体13がガスケット14の平面方向への広がりを縁部13bでせき止めることができるため、シール性はさらに向上する。さらに、図5Bのように、第1及び第2シールリップ15,16の片側だけ枠体13に埋没している形状(言い換えれば、図5Bで、第1シールリップ15のMEA9の本体部9a側だけ、枠体13の隆起部13cで支持されている形状)でも、シール性が向上するという同様の効果を現す。
なお、本発明は前記実施形態に限定されるものではなく、以下に例示するように、その他種々の態様で実施できる。
(第2実施形態)
図6Aは、本発明の第2実施形態のシール構造の部分断面図を示している。外気側の第1シールリップ15が前記第1実施形態と同じ2段リップ構造であるのに対して、MEA側の第3シールリップ18が1段リップ構造をしている。第3シールリップ18は、2段の山形状の代わりに、頂点が縦断面円形状の1つの山形状としてもよい。このように、内外が異なる環境の場合に、それぞれの環境に適したシールリップ形状とすることにより、運転条件又は環境条件によっては、第1実施形態の効果に加え、シール性を、より一層、長期的に向上させる効果を発揮することができる。以下、このことについて、説明する。なお、図6Aは、セパレータのシール溝形状が分かりやすいようにセパレータ形状を図示したものであって、締結時の断面を示すものではなく、仮想的にMEAとセパレータとを組み付けた状態の図であるため、シールが弾性変形を全くしていない状態で図示している。これに対して、図6Bは、前記第2実施形態にかかるガスケット構造の部分断面図において、締結時の断面を示すものであって、シールが弾性変形をしている状態の図である。
燃料電池スタック30の単電池モジュール1の内部は、水蒸気と水と水素と酸素との雰囲気であり、MEA側に配置されたシールリップに対しては最大数百MPaの内圧が負荷されるのに対して、外気は空気雰囲気であり、外気側に配置されたシールリップに対しては圧力無負荷となる。第1実施形態のような2重シール構造を採用する場合、単電池モジュール1の内部のMEA9と接するシールリップは耐水性及び耐水蒸気性、並びに、耐圧力性を併せ持つ必要があり、外気と接するシールリップは、空気に対する耐久性の保持が必要となる。MEA9側のシールリップとして、第1実施形態の第2シールリップ16に代えて第3シールリップ18を配置すれば、第3シールリップ18はセパレータ10A又は10Cとの接触面積が第2シールリップ16よりも大きくなる。このため、燃料ガス及び酸化ガスの内圧が負荷した場合でも耐圧に強く、より一層、長期にわたりシール性をより確実に保持することが可能であり、さらに、水蒸気及び水環境下での耐性もより一層高い構造とすることができる。すなわち、MEA側の内圧が非常に大きくかかる場合には、第3シールリップ18の形状にすれば、より一層、長期的にシール性を向上させることができる。また、単電池モジュール1の温度は燃料電池スタック30の起動中には80℃程度まで上昇するため、特にMEA9側のシールリップには耐熱性も求められる。この第2実施形態では、ガスケット14の材料として耐熱性のある熱可塑性エラストマを使用することができる。
なお、材料又は内外の環境によっては(例えば、MEA側のシールには圧力が負荷されず、外気側は低温下になる場合には)、図6Aの配置とは逆に、内側(MEA側)に2段のシールリップ構造、外側(外気側)に1段シールリップ構造を採用しても、シール性向上及び長期的なシール性保持に対して効果がある。
(第3実施形態)
図7Aは、本発明の第3実施形態のシール構造の部分断面図を示している。このガスケット14は、MEA9側の第2シールリップ16が2段の山形状の構造とし、外気側のシールリップ17は板状で対向する相手側のセパレータ10A又は10Cに縦断面円形かつ凸形状の凸部24を形成している。第2実施形態2と同様に、第2シールリップ16で確実なシール性を保持することができ、さらに、外気側のシールリップ17と凸部24とで、小さな締結力でシール性を確保することが可能となる。また、材料又は内外の環境によっては、内側に板状構造のシールリップ17を配置し、外側に2段の山形状の第2シールリップ16を採用しても効果がある。なお、図7Aは、セパレータのシール溝形状が分かりやすいようにセパレータ形状を図示したものであって、締結時の断面を示すものではなく、仮想的にMEAとセパレータとを組み付けた状態の図であるいため、シールが弾性変形を全くしていない状態で図示している。これに対して、図7Bは、前記第3実施形態にかかるガスケット構造の部分断面図において、締結時の断面を示すものであって、シールが弾性変形をしている状態の図である。
なお、前記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
本発明の高分子電解質型燃料電池用ガスケットは、ポータブル電源、電気自動車用電源、又は、家庭内コージェネレーションシステム等に使用する燃料電池用ガスケットとして有用である。
本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形又は修正は明白である。そのような変形又は修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
前記本発明の第1態様にかかる高分子電解質型燃料電池用ガスケットは、膜電極接合体と、前記膜電極接合体の表裏両面の外周に配置されたシール部材と、前記膜電極接合体と前記シール部材を挟む一対のセパレータとを有する単電池モジュールが複数層積層されて積層体を構成し、前記積層体の両端に配置された一対の端板を介して締結部材により挟みつけて組み立てられた燃料電池スタックを備える高分子電解質型燃料電池において、
前記シール部材は、前記膜電極接合体の前記表裏両面の外周部に配置され、
前記シール部材としては、シール性をそれぞれ備える2列のシールリップを面内平行に連続して設け、前記2列のシールリップのうちの少なくとも外側のシールリップが、下側山形状部の上に上側山形状部を重ねて形成され、かつ、前記下側山形状部の頂点の曲率半径は前記上側山形状部の頂点の曲率半径よりも大きいと共に、前記下側山形状部の底面の幅をW、隣合う下側山形状部の間隔をd、前記下側山形状部の前記底面から前記上側山形状部の頂点部までの高さをhとした場合、W>h>0、かつ、W>d>0である、高分子電解質型燃料電池用ガスケットを提供する。

Claims (4)

  1. 膜電極接合体と、前記膜電極接合体の表裏両面の外周に配置されたシール部材と、前記膜電極接合体と前記シール部材を挟む一対のセパレータとを有する単電池モジュールが複数層積層されて積層体を構成し、前記積層体の両端に配置された一対の端板を介して締結部材により挟みつけて組み立てられた燃料電池スタックを備える高分子電解質型燃料電池において、
    前記シール部材は、前記膜電極接合体の前記表裏両面の外周部に一体成形して構成され、
    前記シール部材としては、前記セパレータとの間で発揮可能なシール性をそれぞれ備える2列のシールリップを面内平行に連続して設け、前記2列のシールリップのうちの少なくとも外側のシールリップが、下側山形状部の上に上側山形状部を重ねて一体的に形成され、かつ、前記下側山形状部の頂点の曲率半径は前記上側山形状部の頂点の曲率半径よりも大きい高分子電解質型燃料電池用ガスケット。
  2. 前記下側山形状部の頂点の曲率半径をRとし、前記上側山形状部の頂点の曲率半径をRとするとき、前記曲率半径Rと前記曲率半径Rとの相関関係は、
    ×0.5≧R を満足し、
    前記2列のシールリップの間の部分の高さは、前記膜電極接合体の表裏各面の前記セパレータで前記2列のシールリップを締め付ける高さより低く形成されている、
    請求項1に記載の高分子電解質型燃料電池用ガスケット。
  3. 前記下側山形状部の頂角及び前記上側山形状部の頂角が18°以上であり、前記2列のシールリップの厚さ方向と直交しかつ前記2列のシールリップの延在方向と直交する方向沿いの全幅に対して、前記膜電極接合体の外周の表面から前記上側山形状部の頂点までの厚さ方向の寸法は60%以下である、
    請求項1又は2に記載の高分子電解質型燃料電池用ガスケット。
  4. 前記上側山形状部及び前記下側山形状部は、共に、その頂点付近の断面は円形であり、
    前記上側山形状部は、前記燃料電池スタックの組立時に、前記下側山形状部の頂点の部分よりも、前記上側山形状部の頂点の部分が前記セパレータと接触して大きく弾性変形する変形容易部であり、
    前記下側山形状部は、前記変形容易部が大きく弾性変形したのち前記下側山形状部の頂点の部分が変形して前記セパレータとの間でのシール面積を拡大させるシール面積拡大部である、請求項1〜3のいずれか1つに記載の高分子電解質型燃料電池用ガスケット。
JP2010546161A 2009-03-04 2010-03-03 高分子電解質型燃料電池用ガスケット Active JP4800443B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010546161A JP4800443B2 (ja) 2009-03-04 2010-03-03 高分子電解質型燃料電池用ガスケット

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009050077 2009-03-04
JP2009050077 2009-03-04
PCT/JP2010/001439 WO2010100906A1 (ja) 2009-03-04 2010-03-03 高分子電解質型燃料電池用ガスケット
JP2010546161A JP4800443B2 (ja) 2009-03-04 2010-03-03 高分子電解質型燃料電池用ガスケット

Publications (2)

Publication Number Publication Date
JP4800443B2 JP4800443B2 (ja) 2011-10-26
JPWO2010100906A1 true JPWO2010100906A1 (ja) 2012-09-06

Family

ID=42709473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010546161A Active JP4800443B2 (ja) 2009-03-04 2010-03-03 高分子電解質型燃料電池用ガスケット

Country Status (4)

Country Link
US (1) US8962212B2 (ja)
EP (1) EP2405516B1 (ja)
JP (1) JP4800443B2 (ja)
WO (1) WO2010100906A1 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9190692B2 (en) * 2010-03-17 2015-11-17 Nissan Motor Co., Ltd. Fuel cell
KR101210638B1 (ko) * 2010-11-17 2012-12-07 현대자동차주식회사 가스켓을 가지는 연료전지용 분리판 및 이의 제조방법
JP6168641B2 (ja) * 2011-05-13 2017-07-26 日産自動車株式会社 燃料電池
EP2823526B1 (en) * 2012-03-09 2015-11-18 Nissan Motor Co., Ltd. Fuel cell stack and seal plate used for the same
JP6274608B2 (ja) * 2012-03-15 2018-02-07 日産自動車株式会社 燃料電池
EP2851986B1 (en) * 2012-05-17 2018-08-08 Panasonic Intellectual Property Management Co., Ltd. Fuel cell and method for producing same
DE102012020947A1 (de) * 2012-10-25 2014-04-30 Volkswagen Aktiengesellschaft Membran-Elektroden-Anordnung sowie Brennstoffzelle mit einer solchen
JP6141103B2 (ja) * 2013-05-27 2017-06-07 Nok株式会社 燃料電池のシール構造
JP6082715B2 (ja) * 2014-06-26 2017-02-15 住友理工株式会社 燃料電池用ゴムガスケット
JP6383203B2 (ja) * 2014-07-25 2018-08-29 Nok株式会社 プレート一体ガスケットの製造方法
EP3012892B1 (fr) * 2014-10-24 2017-07-19 Swiss Hydrogen SA Dispositif électrochimique à empilement
DE102015100740A1 (de) * 2015-01-20 2016-07-21 Elringklinger Ag Elektrochemische Einheit für einen Brennstoffzellenstapel
CA2989526C (en) * 2015-06-15 2020-11-10 Nissan Motor Co., Ltd. Fuel cell electrode structure, metal separator, fuel cell single cell using the fuel cell electrode structure and the metal separator, and mold for producing the fuel cell electrode structure
JP6485547B2 (ja) * 2015-07-13 2019-03-20 日産自動車株式会社 燃料電池のシール構造
WO2017051470A1 (ja) * 2015-09-25 2017-03-30 株式会社東芝 非水電解質電池用電極、非水電解質電池および電池パック
DE102016205043A1 (de) * 2016-03-24 2017-09-28 Volkswagen Aktiengesellschaft Brennstoffzellenstapel und Brennstoffzellensystem mit einem solchen Brennstoffzellenstapel
KR101918354B1 (ko) * 2016-10-12 2018-11-14 현대자동차주식회사 연료전지용 가스켓
JP6597552B2 (ja) 2016-10-25 2019-10-30 トヨタ自動車株式会社 ガスケットおよび燃料電池
WO2019012961A1 (ja) * 2017-07-12 2019-01-17 Nok株式会社 二次電池用ガスケット
CN107946515B (zh) * 2017-12-26 2023-07-18 上汽大众汽车有限公司 电池包及其密封机构
CN110571452B (zh) * 2018-06-05 2022-08-19 Nok株式会社 燃料电池用密封垫
JP7103249B2 (ja) * 2019-01-30 2022-07-20 トヨタ自動車株式会社 燃料電池スタック
JP7345267B2 (ja) * 2019-03-29 2023-09-15 大阪瓦斯株式会社 電気化学素子、電気化学モジュール、電気化学装置及びエネルギーシステム
JP7196773B2 (ja) * 2019-05-31 2022-12-27 トヨタ自動車株式会社 燃料電池
JP7309596B2 (ja) * 2019-12-23 2023-07-18 Nok株式会社 燃料電池用接合セパレータ
CN114256492B (zh) * 2020-09-22 2024-02-13 未势能源科技有限公司 密封垫和电化学电池
DE102021203983A1 (de) * 2021-04-21 2022-10-27 Cellcentric Gmbh & Co. Kg Einzelzellanordnung für einen Brennstoffzellenstapel
DE202023104082U1 (de) * 2022-07-29 2023-08-28 Kamax Holding Gmbh & Co. Kg Verbindungsmittel, Batterieanordnung und Brennstoffzelle
WO2024106305A1 (ja) * 2022-11-15 2024-05-23 Nok株式会社 ガスケットおよびガスケット装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003056704A (ja) * 2001-03-09 2003-02-26 Nok Corp ガスケット
JP2004311254A (ja) * 2003-04-08 2004-11-04 Matsushita Electric Ind Co Ltd 燃料電池のガスシール構造
JP2004319461A (ja) * 2003-04-02 2004-11-11 Matsushita Electric Ind Co Ltd 燃料電池用電解質膜構造、燃料電池用電解質膜−電極接合体構造、及び燃料電池
JP2005050728A (ja) * 2003-07-30 2005-02-24 Nichias Corp 燃料電池のセパレータ用ゴムガスケット
JP2005243293A (ja) * 2004-02-24 2005-09-08 Nissan Motor Co Ltd 燃料電池用の固体高分子電解質膜

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3678024B2 (ja) 1998-10-28 2005-08-03 Nok株式会社 燃料電池用カーボン材
DE10246096A1 (de) * 2002-10-02 2004-04-22 Siemens Ag Dichtung
CN1536698B (zh) 2003-04-02 2010-12-15 松下电器产业株式会社 燃料电池用电解质膜结构、mea结构及燃料电池
JP2004360717A (ja) 2003-06-02 2004-12-24 Nok Corp ガスケット
JP2005016703A (ja) 2003-06-04 2005-01-20 Nok Corp ガスケット
JP2006156097A (ja) * 2004-11-29 2006-06-15 Matsushita Electric Ind Co Ltd 燃料電池
JP5062389B2 (ja) 2005-07-15 2012-10-31 Nok株式会社 燃料電池およびその製造方法
JP5093554B2 (ja) 2006-06-12 2012-12-12 Nok株式会社 燃料電池用ガスケット
US8642230B2 (en) * 2007-06-11 2014-02-04 Panasonic Corporation Electrode-membrane-frame assembly for fuel cell, polyelectrolyte fuel cell and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003056704A (ja) * 2001-03-09 2003-02-26 Nok Corp ガスケット
JP2004319461A (ja) * 2003-04-02 2004-11-11 Matsushita Electric Ind Co Ltd 燃料電池用電解質膜構造、燃料電池用電解質膜−電極接合体構造、及び燃料電池
JP2004311254A (ja) * 2003-04-08 2004-11-04 Matsushita Electric Ind Co Ltd 燃料電池のガスシール構造
JP2005050728A (ja) * 2003-07-30 2005-02-24 Nichias Corp 燃料電池のセパレータ用ゴムガスケット
JP2005243293A (ja) * 2004-02-24 2005-09-08 Nissan Motor Co Ltd 燃料電池用の固体高分子電解質膜

Also Published As

Publication number Publication date
WO2010100906A1 (ja) 2010-09-10
EP2405516A4 (en) 2012-11-21
JP4800443B2 (ja) 2011-10-26
US20110318665A1 (en) 2011-12-29
US8962212B2 (en) 2015-02-24
EP2405516B1 (en) 2014-04-30
EP2405516A1 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
JP4800443B2 (ja) 高分子電解質型燃料電池用ガスケット
US8371587B2 (en) Metal bead seal for fuel cell plate
US9178226B2 (en) Fuel cell sealing structure
JP4418527B2 (ja) 燃料電池
US20090004539A1 (en) Fuel cell
WO2010050339A1 (ja) 燃料電池の密封構造
US9660276B2 (en) Fuel cell including separator with outer ends placed inward of fluid passages formed in frame
US20070042255A1 (en) Seal for fuel cell
US8927174B2 (en) Sealing structure of fuel cell
US9673458B2 (en) Fuel cell
US10770737B2 (en) Gasket and fuel cell stack including gasket
US9196911B2 (en) Fuel cell gas diffusion layer integrated gasket
US9490487B2 (en) Fuel cell
US10003098B2 (en) Fuel cell
CN109546193B (zh) 燃料电池堆
JP2012195128A (ja) 高分子電解質型燃料電池用ガスケットおよび高分子電解質型燃料電池
US10497948B2 (en) Fuel cell stack with asymmetrical bipolar plates
JP2006344434A (ja) 燃料電池
CN110649277B (zh) 燃料电池、半板及其设计方法
US9350034B2 (en) Fuel cell gas diffusion layer integrated gasket
US7758991B2 (en) Fuel cell
US11658313B2 (en) Separator assembly for fuel cell and fuel cell stack including same
CN112563527A (zh) 燃料电池用隔板构件和燃料电池堆
JP2008218200A (ja) 燃料電池スタック、および、燃料電池スタックの製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4800443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150