JPWO2009069670A1 - 微小構造体検査装置および微小構造体検査方法 - Google Patents
微小構造体検査装置および微小構造体検査方法 Download PDFInfo
- Publication number
- JPWO2009069670A1 JPWO2009069670A1 JP2009543832A JP2009543832A JPWO2009069670A1 JP WO2009069670 A1 JPWO2009069670 A1 JP WO2009069670A1 JP 2009543832 A JP2009543832 A JP 2009543832A JP 2009543832 A JP2009543832 A JP 2009543832A JP WO2009069670 A1 JPWO2009069670 A1 JP WO2009069670A1
- Authority
- JP
- Japan
- Prior art keywords
- microstructure
- movable part
- value
- insulating layer
- pressure wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/12—Analysing solids by measuring frequency or resonance of acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/14—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Micromachines (AREA)
Abstract
微小構造体の可動部の減衰特性値を測定する微小構造体検査装置(10)であって、微小構造体に直に接触せずに可動部に衝撃を与える圧力波発生装置(1)およびパルス発生装置(2)と、可動部に接触することなく、可動部が自由振動を開始してから所定の時間の間に可動部の変位を測定する変位計(4)と、を備える。圧力波発生装置(1)は、熱励起式の音波発生素子、圧電式の音波発生素子または電磁式の振動素子から構成され、パルス発生装置(2)のパルス信号で駆動される。好ましくは、熱励起式の音波発生素子を用いた圧力波発生装置(1)は、熱伝導性の基板と、基板の一方の主面にナノ結晶シリコンで形成された断熱層と、断熱層の上に形成された絶縁体層と、絶縁体層の上に形成され、交流成分を含む電流が印加されて発熱する導体層と、から構成される。
Description
本発明は、可動部を有する微小構造体の検査装置および検査方法に関する。
近年、微小構造体デバイスたとえばMEMS(Micro Electro Mechanical Systems)を使用した各種センサが、自動車や医療などをはじめとする多くの分野に用いられている。このMEMSは、使用される電子機器の小型化・軽量化・高機能化に伴って発展している。一方、MEMSは、微細な構造であるために適正な検査方法が必要となっている。
微小構造体において、減衰率ξ、Q値、固有振動数f0、損失係数τなどの機械特性を測定する方法としては、インパルスハンマを用いて、減衰曲線を求める方法や、構造の加振周波数を意図的にスキャンして共振周波数を求め、共振曲線の半値幅(FWHM:Full Width at Half Maximum)より減衰率を求める方法がある。
特許文献1や特許文献2には、スピーカーから発したテスト音波をセンサの可動部に当てて可動部を変位させ、プローブ針を用いて微小構造体の電気的特性を調べる方法が開示されている。また、特許文献3には、ウエハ上に形成された加速度センサに対して、空気を吹き付けることにより変化する加速度センサの抵抗値を検出して加速度センサの特性を判別する検査方式が開示されている。
また、特許文献4には、超音波を可動部に対し出力し、物体にスローダイナミックスを引き起こさせ物理的変化を計測する方法が開示されている。また、特許文献5には、熱励起式の音波発生素子を用いて間欠的な疎密波を発生させて、物体までの距離および物体の存在する方位を求める方法が開示されている。また、特許文献6には、PZT(チタン酸ジルコン酸鉛)超音波変換素子を微小構造体に直に接触させ、動的応答を計測する方法が開示されている。
インパルスハンマを用いる方法では、微小構造体の支持部材、微小構造体の可動部の支持部などを経由して間接的に可動部に変位を与える。このため、可動部に加わるインパクト時間や強さを精密に制御できず、減衰曲線の測定精度が高くない。さらに、低Q値のDUT(Die Under Tester:チップ状態の試料)に対しては、インパクト時間と減衰時間が同程度となるため、減衰特性やQ値の測定ができないなどの問題があった。また、特許文献6に開示された方法でも微小構造体の可動部を直接加振できなかった。このため、パッケージ(PKG)や支持筺体の振動が信号線に重畳されたりインパクト源の残響が重畳されたりして測定精度が低下する原因となっていた。
低Q値のDUTに対しては、インパルスハンマを用いることなく音波でセンサ可動部に圧力を加える方法により微小構造体の可動部を直接加振でき測定可能となるが、音源のスピーカの残響の影響がある。高Q値のDUTに対しては、周波数を走査(スキャン)する方法では半値幅(FWHM)に充分な測定点を確保するのが困難であった。
微小構造体の電気的特性の検査は、インパルスハンマを用いるため、微小構造体に直接加振できずパッケージ(PKG)の状態で行っていた。このため、製造工程の最終段階でしか不良品を確認できず、製造途中で不良が発生した場合も製造工程の最終段階まで行われ、時間やコストの無駄が生じていた。また、不良解析と対策が遅れ、効率が悪くなることもあった。
本発明はこうした状況に鑑みてなされたものであり、その目的は、インパクト時間や強さを精密にかつ再現性よく制御でき、高精度に測定できる微小構造体の検査装置および微小構造体の検査方法を提供することである。
上記目的を達成するため、本発明の第1の観点に係る微小構造体検査装置は、
微小構造体の可動部の減衰特性値を測定する微小構造体検査装置であって、
前記微小構造体に直に接触しない圧力波発生装置を用いて、前記可動部に衝撃を与える衝撃手段と、
前記可動部に接触することなく、前記可動部が自由振動を開始してから所定の時間の間に前記可動部の変位を測定する測定手段と、
を備えることを特徴とする。
微小構造体の可動部の減衰特性値を測定する微小構造体検査装置であって、
前記微小構造体に直に接触しない圧力波発生装置を用いて、前記可動部に衝撃を与える衝撃手段と、
前記可動部に接触することなく、前記可動部が自由振動を開始してから所定の時間の間に前記可動部の変位を測定する測定手段と、
を備えることを特徴とする。
好ましくは、前記衝撃手段は、熱励起式の音波発生素子と、前記音波発生素子にパルス信号を入力する駆動手段とから構成されることを特徴とする。
好ましくは、前記熱励起式の音波発生素子は、
熱伝導性の基板と、
該基板の一方の主面にナノ結晶シリコンで形成された断熱層と、
該断熱層の上に形成された絶縁体層と、
該絶縁体層の上に形成され、交流成分を含む電流が印加されて発熱する導体層と、
から構成されることを特徴とする。
熱伝導性の基板と、
該基板の一方の主面にナノ結晶シリコンで形成された断熱層と、
該断熱層の上に形成された絶縁体層と、
該絶縁体層の上に形成され、交流成分を含む電流が印加されて発熱する導体層と、
から構成されることを特徴とする。
上記目的を達成するため、本発明の第2の観点に係る微小構造体検査方法は、
微小構造体に直に接触しない圧力波発生装置を用いて、前記微小構造体の可動部に衝撃を与えるステップと、
前記可動部を自由振動させるステップと、
前記可動部に接触することなく、前記可動部が自由振動を開始してから所定の時間の間に前記可動部の変位を測定する変位測定ステップと、
を備えることを特徴とする。
微小構造体に直に接触しない圧力波発生装置を用いて、前記微小構造体の可動部に衝撃を与えるステップと、
前記可動部を自由振動させるステップと、
前記可動部に接触することなく、前記可動部が自由振動を開始してから所定の時間の間に前記可動部の変位を測定する変位測定ステップと、
を備えることを特徴とする。
好ましくは、前記圧力波発生装置は、熱励起式の音波発生素子であることを特徴とする。
好ましくは、前記熱励起式の音波発生素子は、
熱伝導性の基板と、
該基板の一方の主面にナノ結晶シリコンで形成された断熱層と、
該断熱層の上に形成された絶縁体層と、
該絶縁体層の上に形成され、交流成分を含む電流が印加されて発熱する導体層と、
から構成されることを特徴とする。
熱伝導性の基板と、
該基板の一方の主面にナノ結晶シリコンで形成された断熱層と、
該断熱層の上に形成された絶縁体層と、
該絶縁体層の上に形成され、交流成分を含む電流が印加されて発熱する導体層と、
から構成されることを特徴とする。
好ましくは、前記変位測定ステップで測定した前記可動部の変位から、前記微小構造体のQ値を算出するQ値算出ステップと、
前記Q値が所定の範囲にあるときに前記微小構造体を正常と判断し、前記所定の範囲外にあるときに前記微小構造体が不良であると判断する判定ステップと、
を備えることを特徴とする。
前記Q値が所定の範囲にあるときに前記微小構造体を正常と判断し、前記所定の範囲外にあるときに前記微小構造体が不良であると判断する判定ステップと、
を備えることを特徴とする。
好ましくは、前記Q値算出ステップで算出したQ値と、前記判定ステップで判定した結果を、前記微小構造体を製造する製造装置の製造条件を設定する制御装置にフィードバックするステップを備えることを特徴とする。
本発明の微小構造体検査装置によれば、インパクト時間や強さを精密にかつ再現性よく制御できるため、微小構造体の振動減衰特性の測定精度が向上する。
1 圧力波発生装置
2 パルス発生装置
3 増幅部
4 変位計
5 演算部
6 支持部
7 チャック
8 検査台
10 微小構造体検査装置
12 基板
13 断熱層
14 発熱体(導体層)
15 絶縁体層
16 駆動回路
20 フォトリソグラフィ・エッチング処理装置(処理装置)
21 カセットステーション
22 処理ステーション
23 カセット
26、27、28 処理ユニット
40 制御部
S 微小構造体(試料)
W ウェハ
2 パルス発生装置
3 増幅部
4 変位計
5 演算部
6 支持部
7 チャック
8 検査台
10 微小構造体検査装置
12 基板
13 断熱層
14 発熱体(導体層)
15 絶縁体層
16 駆動回路
20 フォトリソグラフィ・エッチング処理装置(処理装置)
21 カセットステーション
22 処理ステーション
23 カセット
26、27、28 処理ユニット
40 制御部
S 微小構造体(試料)
W ウェハ
以下、この発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付し、その説明は繰り返さない。図1は、本発明の実施の形態に係る微小構造体検査装置の構成例を示すブロック図である。図2Aは、図1に記載した圧力波発生装置1の駆動回路の接続を含む平面図、図2Bは、図2AのX−X線断面図である。
図1に示すように、微小構造体検査装置10は、圧力波発生装置1、パルス発生装置2、増幅部3、変位計4、演算部5、支持部6、チャック7、検査台8から構成される。圧力波発生装置1は支持部6に支持され検査台8の上に設置される。圧力波発生装置1の圧力波が発生される面に向かい合う形で試料Sは置かれ、試料Sを有するウェハWはチャック7で支えられる。
本実施の形態の微小構造体検査装置10は、試料Sの加振に、圧力波発生装置1を使用した。圧力波の発生には熱励起式の音波発生素子を用い、ヒーターで空気の加熱冷却により発生する粗密波を音波として使用する。これにより、インパクト時間や強さをヒーターの制御で精密かつ再現性よく行え、かつ、弾性と質量を有する振動板を備えるスピーカーを用いないので残響のおそれがない。なお、振動板の質量が無視できる程度で、試料Sに接触させずに可動部を振動させることが可能であれば、圧力波の発生には、圧電式の音波発生素子を用いることもできる。また、微小構造体にコイルを形成し、電磁誘導によりコイルを加振して試料Sに直接衝撃を与えることもできる。
図2A、図2Bに示すように、圧力波発生装置1は、基板12、断熱層13、発熱体14、絶縁体層15から構成される。発熱体14の両端部に駆動回路16が電気的に接続される。基板12はバルクシリコンなどから形成される。基板12の一方の主面に、多孔質であるナノ結晶シリコン(以下、nc−Si(nano-crystal Silicon)という)の断熱層13が形成されている。基板12の断熱層13が形成されている面に、断熱層13の上に接して絶縁体層15が形成されている。絶縁体層15は、例えば、窒化珪素(Si3N4)、2酸化珪素(SiO2)、酸化アルミニウム(Al2O3)等の絶縁体の薄膜で形成される。そして、絶縁体層15の上に接して発熱体14が、導電性の金属、例えば、タングステン(W)や白金(Pt)、または金(Au)などの薄膜でヒーターパターンが形成されている。
駆動回路16は、発熱体14の両端に所定の周波数ωで間欠するパルス電圧、または交流電圧を印加する。断熱層13の厚さは、発熱体14に印加される電圧の交流成分に対して、断熱層13の熱伝導率と単位体積当たりの熱容量で決まる熱拡散長と同程度とする。これにより、発熱の交流成分は基板12側へは断熱し、発熱体14の熱容量のため発生する直流成分の熱は、大きな熱伝導性の基板12へ効率良く逃がすことができる。断熱層13の厚さは、nc−Siの場合、発生させる音波の周波数にもよるが、例えば、5μm〜200μm程度とする。
絶縁体層15の厚さは熱拡散長より充分小さく、発熱体14の発熱の交流成分は断熱層13で厚さ方向に断熱される。絶縁体層15は面の方向には熱を伝導する。発熱体14は絶縁体層15に密着しているので、絶縁体層15は発熱体14の温度を均一にするように作用する。絶縁体層15は電気を通さないので、それ自体は発熱せず、発熱体14の温度を均一にして発熱体14の局部的な熱応力を緩和する。従って、従来の圧力波発生装置では断線に到るような電圧でも、発熱体14の変形や断線が発生しにくくなる。その結果、圧力波発生装置1の発生する音波の音圧を大きくすることが可能になる。
絶縁体層15は、面内方向には熱伝導度が高く、厚さ方向には熱を吸収しないことが望ましい。そこで、熱伝導度が高く比熱の小さい物質で、薄く形成することが望ましい。絶縁体層15の材質としては、例えば、前述の窒化珪素(Si3N4)、2酸化珪素(SiO2)、酸化アルミニウム(Al2O3)以外に、酸化マグネシウム(MgO)、ダイヤモンド結晶炭素(C)、窒化アルミニウム(AlN)または炭化珪素(SiC)等を用いてもよい。絶縁体層15の厚さは、例えば、50nm〜200nm程度とする。
発熱体14としては、金属膜であれば材質は特に限定されない。たとえばタングステン(W)、モリブデン(Mo)、イリジウム(Ir)、金(Au)、アルミニウム(Al)、ニッケル(Ni)、チタン(Ti)、白金(Pt)などの金属単体や、それらの積層構造などを用いることができる。発熱体14は、真空蒸着、スパッタなどで成膜することができる。また膜厚は、熱容量を小さくするためにできるだけ薄くするのが好ましいが、適当な抵抗とするために10nm〜300nmの範囲で選択することができる。
次に、圧力波発生装置1を形成する工程を図2Bを用いて説明する。まず、シリコンウェハの基板12を用意し、裏面に例えばアルミニウムの薄膜から形成される電極層を真空蒸着などで形成する。そして、フッ酸(HF)とエタノールの混合溶液を用いて、白金(Pt)を対向電極として断熱層13を形成する部分に陽極酸化処理を施す。溶液の成分比、電流密度および処理時間を所定の値に制御して、所望の厚さと粒度に多孔質化したnc−Siの断熱層13を形成する。基板12の断熱層13を形成した面に絶縁体層15を形成する。基板12の上に、例えば、プラズマCVDによってノンドープ・ケイ酸ガラス(NSG)等を堆積させて、絶縁体層15とする。
例えば、発熱体14の形状にパターニングしたステンシルマスクSを絶縁体層15の上に保持して、金(Au)のスパッタによって、絶縁体層15の上に発熱体14を所定のパターンで形成する。その後、発熱体14に駆動回路16を接続するための電極などを形成し、必要に応じて裏面の電極層の除去、研磨などを行う。
再び図1、図2A及び図2Bを参照して、本発明の実施の形態における微小構造の検査手順を説明する。パルス発生装置2から送られた電圧は、増幅部3で所望の時間幅を有するパルス電圧や複数のパルス電圧へ増幅され、圧力波発生装置1の発熱体14へバースト状に印加される。発熱体14は、近傍の空気層を加熱、冷却することにより、インパルスの圧力波を形成し、試料Sに放射して加振する。加振により、試料Sの可動部が減衰振動を開始する。この可動部の振動を、変位計4、例えば非接触式のレーザ変位計などを用いて計測する。
圧力波発生装置1は、インパクト時間や強さを精密にかつ再現性よく制御でき、測定するのに十分な音圧を得られ、測定精度を高くすることができる。さらに、圧力波発生装置1は、圧力を加圧する際のインパルス源の残響もなく、ノイズの影響がない。また、圧力波発生装置1は、微小構造体を直接加振でき、変位の測定の際に試料Sに触れることもないので、可動部の減衰振動に影響しない。
変位計4で測定した変位量は、演算部5で減衰振動パターンとして算出され、共振周波数やQ値が分かる。求められた数値が所定の数値の範囲外にあるときは異常として判断し、良品と不良品を判別できる。
Q値は主に、振動の状態を表す無次元数で、弾性波の伝播においては、媒質の吸収によるエネルギーの減少に関する値である。Q値は、振動においては、一周期の間に系に蓄えられるエネルギーを、系から散逸するエネルギーで割ったもので、この値が大きいほど振動が安定であることを意味する。Q値が大きいと、振動状態が安定しており、起動時間が長く、振動エネルギーの分散が大きいことを示す。振動パターンをフーリエ変換で周波数スペクトルに変換した値より共振周波数が求められる。さらに振動パターンをヒルベルト変換したスペクトルグラフの傾きからQ値が求められる。例えば検査対象がMEMSの場合、共振周波数によりMEMSの可動部のバネ定数の異常の有無を判断できる。また、Q値により圧力センサやジャイロセンサなどの構造不良が検出できる。
図3は、実施の形態に係る微小構造体検査装置10と半導体製造装置からなる製造システムの構成例を示すブロック図である。半導体製造は前工程と後工程があり、前工程で回路設計・パターン設計、フォトマスク作成、ウェハ製造、素子形成がなされ、後工程で組み立て、最終検査・マーキングがなされるというのが代表的な製造過程の一連の流れである。図3に示す半導体製造装置は、微小構造体(MEMS)のフォトリソグラフィ・エッチング処理装置20(以下、処理装置20)であり、ウェハ製造工程に使用される。
微小構造体検査装置10は図1に示したものと同じであり説明は省略する。微小構造体検査装置10の演算部5が、処理装置20の制御部40と連結している。制御部40は演算処理装置と処理プログラムなどを記憶しているROM等から構成され、処理装置20全体と、処理装置20を構成している個々のシステムを制御する。
処理装置20は、カセットステーション21と、処理ステーション22とから構成される。カセットステーション21は、外部からウェハカセット単位で供給されるウェハWをカセット23から処理装置20に搬入し、または、処理後のウェハWを処理装置20からカセット23に搬出する。処理ステーション22は、複数の処理ユニットからなり、ウェハWを順に各処理ユニットを移動させながら、フォトリソグラフィ・エッチング処理を行う。
カセットステーション21には、カセット戴置台24が設けられ、処理されるウェハWを収納したカセット23が外部から供給される。また、カセット戴置台24では、処理されたウェハWが搬出用のカセット23に収納される。カセット戴置台24でのウェハWの搬送は、ステーション搬送機構25によって行われる。ステーション搬送機構25は、カセット戴置台24上に複数戴置されたカセット23にアクセス可能なように、水平方向(実線矢印方向)に移動可能であり、かつ、昇降(紙面垂直方向に移動)可能である。また、処理ステーション22からカセット戴置台24へウェハWを搬送できるように、回転(破線矢印方向に移動)可能である。
処理ステーション22には、複数からなるフォトリソグラフィ・エッチング処理ユニット(処理ユニット26〜28)と、ユニット搬送機構29と、仮戴置台30が設けられる。処理ユニット26ではレジストパターンの形成が行われる。処理ユニット27ではエッチングが行われる。処理ユニット28では成膜とレジスト除去が行われる。
処理ステーション22に搬入されたウェハWは仮戴置台30に置かれ、搬送機構がステーション搬送機構25からユニット搬送機構29へ切り替わる。ユニット搬送機構29によって、ウェハWは処理ユニット26から順に搬送され、フォトリソグラフィ・エッチング処理が施される。処理を終えたウェハWは再度、仮戴置台30に置かれ、ステーション搬送機構25により処理ステーション22から搬出される。ユニット搬送機構29もステーション搬送機構25と同様に、水平方向に移動可能であり、昇降や回転も可能である。
処理ユニット26ではレジストパターンの形成が行われる。処理ユニット26に搬入されたウェハWは、レジスト塗布され、フォトマスクで覆われる。フォトマスクで覆われたウェハWを露光、現像することで、所望の形(パターン)のレジストがウェハW上に形成される。レジストを加熱により硬化させ、ウェハWと密着させる。露光や現像が不十分な場合は、レジストは変形し、パターンより大きくはみ出た形状になりやすい。
処理ユニット27ではエッチングが行われる。ウェットエッチングとドライエッチングがあるが、ここではウェットエッチングを例に説明する。ウェハWをフッ化水素などのエッチング液中に浸漬し、レジストで覆われていない部分を腐食させる。レジストに保護された部分のウェハWはエッチングされず、レジストと同じ形状がウェハWに凸型で形成される。エッチング液の温度や時間により腐食具合が異なり、また、エッチング深さが深くなると、レジストの真下付近にも腐食が進むことがある。
処理ユニット28では成膜とレジスト除去が行われる。成膜では、真空蒸着やスパッタリングなどの手法でウェハW上に金属や酸化膜の層を形成する。その後、レジスト溶剤などで完全にレジストを除去する。レジスト除去の際に、レジスト上に形成された膜も除去されるので、ウェハW上に好みのパターンを追加できる。
複雑な構造をした微小構造体では、処理ユニット28での処理後に、図示しない処理ユニット26a、27a、28a〜26n、27n、28nでフォトリソグラフィ・エッチング処理を繰り返し行う。また、フォトリソグラフィ・エッチング処理の外、機械−電気変換素子形成、配線形成などによって微小構造体が製造される。
微小構造体が形成されたウェハWを微小構造体検査装置10にかける。試料Sである微小構造体を圧力波発生装置1の出力部分に対向する位置にあわせ、ウェハWをチャック7で支持する。パルス発生装置2から送られた電圧は、増幅部3で所望の時間幅を有するパルス電圧や複数のパルス電圧へ増幅され、圧力波発生装置1の発熱体14へバースト状に印加される。発熱体14は、近傍の空気層を加熱、冷却することにより、インパルスの圧力波を形成し、試料Sに放射して加振する。試料Sが直接加振されるので残響やノイズの影響がない。また、圧力波のインパクト時間や強さが精密に制御され、再現性も高い。加振により試料Sの可動部が減衰振動を開始する。この可動部の振動を、変位計4、例えばレーザードップラー変位計などを用いて計測する。
なお、変位計4による試料Sの変位の測定は、試料Sが自由振動を開始してから所定の時間の間に実行される。すなわち、圧力波発生装置1(スピーカ)は、試料S(可動部)に圧力波を放射することにより試料Sを振動させる。その後、圧力波発生装置1は、試料Sへの圧力波の放射を停止することにより試料Sを自由振動させる。そして、変位計4は、試料Sが自由振動している間に試料Sの変位を測定する。ここで、自由振動とは、スピーカやその他の周辺機器の残響がゼロ、若しくは無視できるほどに小さい状態で、可動部が振動していることをいう。試料Sが自由振動している間は、外部からの影響がゼロである。このため、試料Sが自由振動している間は、純粋に試料Sの減衰特性だけを測定できる。特に、ナノクリスタルシリコンスピーカは、残響を少なくすることができるため、かかる測定系に用いるスピーカとして好適である。
測定された減衰振動パターンが演算部5で数値処理され、共振周波数とQ値が算出され、微小構造体の良否が判定される。共振周波数が指定した数値範囲から外れることで、微小構造体の可動部のバネ定数の異常があることが分かる。Q値が設定した範囲より外にある場合は、センサの構造に異常があることが分かる。例えば微小構造体の破損や、膜厚異常などである。
これら共振周波数やQ値の異常から、不良の原因の分析が行われる。共振周波数が小さい場合は、例えば、オーバーエッチングで可動部が小さいまたは支持部が細いなどの可能性がある。また、Q値が小さい、すなわち振動がすぐに減少した場合は、微小構造体の破損の可能性がある。レジスト形成がうまく行われず、ウェハWの保護が不十分となり、必要以上にエッチングされ、本来あるべき形状が欠けている可能性がある。もしくは、成膜形成がうまく行われず、膜の厚薄が発生したなどの可能性がある。
測定した微小構造体の共振周波数とQ値は、演算部5から制御部40へ情報がフィードバックされる。良品として設定した数値範囲から外れている旨の情報のフィードバックがあった場合、異常の数値の出方により、予測される不具合とその対応方法について、条件を設定しておき、制御部40から対応するシステムへ制御指示が出るようにしておくことができる。また、制御部40の外部に連結された装置からブザー音やフラッシュ光が発せられ、異常を知らせるように、予め制御部40のプログラムを設定しておいてもよい。共振周波数とQ値の両方に異常がある場合に、処理ステーション22が一時停止するように設定することも可能である。
例えば、共振周波数の異常であればエッチングの結果が設計通りでないことが考えられる。このため、制御部40から処理ユニット27へ制御指示が出され、エッチングの条件等を適合するように変更する。Q値が良品の数値から大きく外れていれば、微小構造体の破損が考えらる。レジストが形状通りに行われず、エッチングの際にウェハWを保護できなかったことが原因の一つとして考えられる。レジスト形成の処理にかかる処理ユニット26へ制御部40から制御指示が出され、フォトリソグラフィの条件等を適合するように変更する。処理ユニット26の条件変更後に製造された微小構造体にQ値異常が発生した場合は、レジスト形成ではなく成膜形成に異常がある可能性が高い。制御部40から処理ユニット28へ制御指示が出され、成膜の条件等を適合するように変更する。
また、測定結果が良品の場合のときも、フィードバックされた測定データを蓄積し随時反映することで製造の傾向を掴むことができる。また、測定結果が良品の場合のときに、自動制御により各種の条件を調整することで、製品の品質を一定に保ちながら製造するのに役立つ。
測定を終えたウェハWは次の工程に送られると同時に、制御部40では測定結果をフィードバックする。これにより、これから微小構造体が形成されるウェハWの処理条件を自動制御により調整できるので、不良品の発生を防止することができる。また、共振周波数とQ値の数値に異常があった微小構造体はチェックされ、チップ切り出し後に廃棄することができる。これにより、製造の最終段階まで行わずに、不良品を除くことができる。
以上説明した通り、本発明の微小構造体検査方法ではインパクト時間や強さを精密にかつ再現性よく制御できるため、微小構造体の振動減衰特性の測定精度が向上する。さらに、測定結果を制御装置にフィードバックすることで、製品の品質を一定の値に保ちながら製造するのに役立つ。また、検査が製造の最終段階に限られずに実施できるので、不良品の製造を減らして、効率よく製造するのに役立つ。
本実施の形態の微小構造体検査装置10は、試料Sの加振に、圧力波発生装置1を使用した。圧力波の発生は熱励起式の音波発生素子を用いたが、微小構造体にコイルを形成し、電磁誘導によりコイルを加振して試料Sに直接衝撃を与えてもよい。
なお、実施の形態で説明した圧力波発生装置1や、圧力波発生装置1を使用した微小構造体検査装置10については上述した例に限られることなく構成の変更や修正を行ったり、装置を組合せることができる。例えば装置の選択や組合せは図3に示したものに限定されず、ハード面では、様々な形状、パターン、大きさなど、ソフト面ではプログラムの設定、特に良品とする数値範囲の設定など、測定の対象に合わせて任意に選択が可能である。また、製造段階の検査を行う工程についても実施の形態の例に限定されず、任意に選択できる。
次に、本発明の実施の形態の例として、検査する対象の試料Sを加速度センサの重錘やフィッシュボーン音響センサとした場合について測定を行った。実施例1は加速度センサの重錘の場合であり、実施例2はフィッシュボーン音響センサの場合である。
(実施例1)
実施例1の結果を図4〜図6に示す。図4は減衰振動パターンを示すグラフ、図5は周波数スペクトルの例を示すグラフ、図6はヒルベルト変換したスペクトルを示すグラフを表す。
実施例1の結果を図4〜図6に示す。図4は減衰振動パターンを示すグラフ、図5は周波数スペクトルの例を示すグラフ、図6はヒルベルト変換したスペクトルを示すグラフを表す。
図4で得られた減衰振動パターンをフーリエ変換したグラフが図5の周波数スペクトルである。ピーク値より、試料Sの共振周波数は787.7Hzであり、周波数スキャン法(最小分解能10Hz)で求めた共振周波数780Hzと一致する。図6のグラフ傾きより、Q値は552.2である。
実施例1より、本発明の実施の形態による検査法を用いても、共振周波数の値は従来の測定法を用いた結果と一致することから、測定可能であることがわかる。また、従来の測定法では、共振曲線の半値幅(FWHM)よりQ値を求めていた。高Q値の場合は測定数が少なく数値の信頼性に欠けるため測定できないことがあったが、本実施例1のように、高Q値を示す場合でも測定可能である。
(実施例2)
実施例2の結果を図7、図8、図9A、図9Bならびに図9Cに示す。図7は減衰振動パターンを示すグラフ、図8は周波数スペクトルの例を示すグラフ、図9A〜図9Cはヒルベルト変換したスペクトルを示すグラフを表す。
実施例2の結果を図7、図8、図9A、図9Bならびに図9Cに示す。図7は減衰振動パターンを示すグラフ、図8は周波数スペクトルの例を示すグラフ、図9A〜図9Cはヒルベルト変換したスペクトルを示すグラフを表す。
図7で得られた減衰振動パターンをフーリエ変換して求められた図8の周波数スペクトルのピーク数より、共振周波数を3つ有することが分かる。図9A〜図9Cは、図8のそれぞれの周波数に対してヒルベルト変換したスペクトルで、周波数の小さいものから各々グラフ化している。図8に示すように、共振周波数は、9030Hz、13200Hzならびに22000Hzの3つである。また、図9A〜図9Cに示すように、共振周波数9030HzにおいてQ値は54.5、共振周波数13200HzにおいてQ値は71.1、共振周波数22000HzにおいてQ値は207.8である。
実施例2で用いた試料Sのフィッシュボーン音響センサは、入力音波を受ける部分と片持ち支持された共振部分とそれらを結ぶ中心線部分の構造が可動する複雑な構造を有する微小構造体である。
実施例2の結果より、構造が複雑であっても測定可能であることが分かる。従来の場合は、構造が複雑になると、一部分の振動が他の部分の振動に影響を与え、測定できなかったり測定精度が低くなったりすることがあった。本実施例2では、測定が可能なだけでなく、各部分が有する固有の振動数が共振周波数として現れるため、不良箇所を有する部分の判定も合わせて行える。
本出願は、2007年11月26日に出願された日本国特許出願2007−304597号に基づく。本明細書中に日本国特許出願2007−304597号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。
本発明は、可動部を有する微小構造体を検査する装置として有用である。
Claims (8)
- 微小構造体の可動部の減衰特性値を測定する微小構造体検査装置であって、
前記微小構造体に直に接触しない圧力波発生装置を用いて、前記可動部に衝撃を与える衝撃手段と、
前記可動部に接触することなく、前記可動部が自由振動を開始してから所定の時間の間に前記可動部の変位を測定する測定手段と、
を備えることを特徴とする微小構造体検査装置。 - 前記衝撃手段は、熱励起式の音波発生素子と、前記音波発生素子にパルス信号を入力する駆動手段とから構成されることを特徴とする請求項1に記載の微小構造体検査装置。
- 前記熱励起式の音波発生素子は、
熱伝導性の基板と、
該基板の一方の主面にナノ結晶シリコンで形成された断熱層と、
該断熱層の上に形成された絶縁体層と、
該絶縁体層の上に形成され、交流成分を含む電流が印加されて発熱する導体層と、
から構成されることを特徴とする請求項2に記載の微小構造体検査装置。 - 微小構造体に直に接触しない圧力波発生装置を用いて、前記微小構造体の可動部に衝撃を与えるステップと、
前記可動部を自由振動させるステップと、
前記可動部に接触することなく、前記可動部が自由振動を開始してから所定の時間の間に前記可動部の変位を測定する変位測定ステップと、
を備えることを特徴とする微小構造体検査方法。 - 前記圧力波発生装置は、熱励起式の音波発生素子であることを特徴とする請求項4に記載の微小構造体検査方法。
- 前記熱励起式の音波発生素子は、
熱伝導性の基板と、
該基板の一方の主面にナノ結晶シリコンで形成された断熱層と、
該断熱層の上に形成された絶縁体層と、
該絶縁体層の上に形成され、交流成分を含む電流が印加されて発熱する導体層と、
から構成されることを特徴とする請求項5に記載の微小構造体検査方法。 - 前記変位測定ステップで測定した前記可動部の変位から、前記微小構造体のQ値を算出するQ値算出ステップと、
前記Q値が所定の範囲にあるときに前記微小構造体を正常と判断し、前記所定の範囲外にあるときに前記微小構造体が不良であると判断する判定ステップと、
を備えることを特徴とする請求項4ないし6のいずれか1項に記載の微小構造体検査方法。 - 前記Q値算出ステップで算出したQ値と、前記判定ステップで判定した結果を、前記微小構造体を製造する製造装置の製造条件を設定する制御装置にフィードバックするステップを備えることを特徴とする請求項7に記載の微小構造体検査方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007304597 | 2007-11-26 | ||
JP2007304597 | 2007-11-26 | ||
PCT/JP2008/071471 WO2009069670A1 (ja) | 2007-11-26 | 2008-11-26 | 微小構造体検査装置および微小構造体検査方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPWO2009069670A1 true JPWO2009069670A1 (ja) | 2011-04-14 |
Family
ID=40678563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009543832A Pending JPWO2009069670A1 (ja) | 2007-11-26 | 2008-11-26 | 微小構造体検査装置および微小構造体検査方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8333114B2 (ja) |
EP (1) | EP2221614A1 (ja) |
JP (1) | JPWO2009069670A1 (ja) |
KR (1) | KR20100095560A (ja) |
CN (2) | CN102654481A (ja) |
WO (1) | WO2009069670A1 (ja) |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8676543B2 (en) * | 2009-06-23 | 2014-03-18 | Exxonmobil Research And Engineering Company | Determining the resonance parameters for mechanical oscillators |
JP5617210B2 (ja) * | 2009-09-14 | 2014-11-05 | デクセリアルズ株式会社 | 光反射性異方性導電接着剤及び発光装置 |
US8245748B2 (en) * | 2010-07-14 | 2012-08-21 | Dukane Corporation | Vibration welding system |
US10101252B2 (en) | 2010-09-24 | 2018-10-16 | Rassini Frenos, S.A. De C.V. | Method of measuring damping using optical imaging technique |
KR101220373B1 (ko) | 2010-09-30 | 2013-01-09 | 기아자동차주식회사 | 하이브리드 차량의 모터 제어장치 및 방법 |
US9897518B2 (en) | 2012-04-23 | 2018-02-20 | Rassini Frenos, S.A. De C.V. | Method and apparatus for measuring damping in a workpiece |
JP6079776B2 (ja) * | 2012-06-06 | 2017-02-15 | 日本電気株式会社 | 構造物の分析装置および構造物の分析方法 |
JP6579323B2 (ja) * | 2014-01-24 | 2019-09-25 | 国立大学法人 東京大学 | 超音波発生素子 |
US10024825B2 (en) * | 2014-12-26 | 2018-07-17 | Axcelis Technologies, Inc. | Wafer clamp detection based on vibration or acoustic characteristic analysis |
CN105352690B (zh) * | 2015-11-26 | 2018-01-23 | 清华大学 | 医疗器械在磁场中的振动测量方法 |
US10134649B2 (en) | 2016-01-06 | 2018-11-20 | International Business Machines Corporation | Scanning acoustic microscope sensor array for chip-packaging interaction package reliability monitoring |
EP3644035B1 (en) * | 2017-06-21 | 2024-05-22 | Kabushiki Kaisha Toshiba | Structure evaluation system and structure evaluation method |
US10555412B2 (en) | 2018-05-10 | 2020-02-04 | Applied Materials, Inc. | Method of controlling ion energy distribution using a pulse generator with a current-return output stage |
US11476145B2 (en) | 2018-11-20 | 2022-10-18 | Applied Materials, Inc. | Automatic ESC bias compensation when using pulsed DC bias |
CN109668666A (zh) * | 2019-01-21 | 2019-04-23 | 河南翔宇医疗设备股份有限公司 | 一种用于检测体外冲击波能量密度的测试设备及方法 |
WO2020154310A1 (en) | 2019-01-22 | 2020-07-30 | Applied Materials, Inc. | Feedback loop for controlling a pulsed voltage waveform |
US11508554B2 (en) | 2019-01-24 | 2022-11-22 | Applied Materials, Inc. | High voltage filter assembly |
US11462389B2 (en) | 2020-07-31 | 2022-10-04 | Applied Materials, Inc. | Pulsed-voltage hardware assembly for use in a plasma processing system |
US11798790B2 (en) | 2020-11-16 | 2023-10-24 | Applied Materials, Inc. | Apparatus and methods for controlling ion energy distribution |
US11901157B2 (en) | 2020-11-16 | 2024-02-13 | Applied Materials, Inc. | Apparatus and methods for controlling ion energy distribution |
US11495470B1 (en) | 2021-04-16 | 2022-11-08 | Applied Materials, Inc. | Method of enhancing etching selectivity using a pulsed plasma |
US11948780B2 (en) | 2021-05-12 | 2024-04-02 | Applied Materials, Inc. | Automatic electrostatic chuck bias compensation during plasma processing |
US11791138B2 (en) | 2021-05-12 | 2023-10-17 | Applied Materials, Inc. | Automatic electrostatic chuck bias compensation during plasma processing |
US11967483B2 (en) | 2021-06-02 | 2024-04-23 | Applied Materials, Inc. | Plasma excitation with ion energy control |
US20220399185A1 (en) | 2021-06-09 | 2022-12-15 | Applied Materials, Inc. | Plasma chamber and chamber component cleaning methods |
US11810760B2 (en) | 2021-06-16 | 2023-11-07 | Applied Materials, Inc. | Apparatus and method of ion current compensation |
US11569066B2 (en) | 2021-06-23 | 2023-01-31 | Applied Materials, Inc. | Pulsed voltage source for plasma processing applications |
US11776788B2 (en) | 2021-06-28 | 2023-10-03 | Applied Materials, Inc. | Pulsed voltage boost for substrate processing |
US11476090B1 (en) | 2021-08-24 | 2022-10-18 | Applied Materials, Inc. | Voltage pulse time-domain multiplexing |
US12106938B2 (en) | 2021-09-14 | 2024-10-01 | Applied Materials, Inc. | Distortion current mitigation in a radio frequency plasma processing chamber |
US11694876B2 (en) | 2021-12-08 | 2023-07-04 | Applied Materials, Inc. | Apparatus and method for delivering a plurality of waveform signals during plasma processing |
US11972924B2 (en) | 2022-06-08 | 2024-04-30 | Applied Materials, Inc. | Pulsed voltage source for plasma processing applications |
US12111341B2 (en) | 2022-10-05 | 2024-10-08 | Applied Materials, Inc. | In-situ electric field detection method and apparatus |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06118070A (ja) * | 1992-10-08 | 1994-04-28 | Iwatsu Electric Co Ltd | 加振方法及び加振装置 |
WO2006093232A1 (ja) * | 2005-03-03 | 2006-09-08 | Tokyo Electron Limited | 微小構造体の検査装置、微小構造体の検査方法および微小構造体の検査プログラム |
WO2007003952A2 (en) * | 2005-07-06 | 2007-01-11 | The University Of Nottingham | Method and apparatus for non contact scanning acoustic microscopy |
JP2007144406A (ja) * | 2005-10-26 | 2007-06-14 | Matsushita Electric Works Ltd | 圧力波発生装置およびその製造方法 |
JP2007285904A (ja) * | 2006-04-18 | 2007-11-01 | Tokyo Electron Ltd | 音取得装置、音校正装置、音測定装置、およびプログラム。 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04178538A (ja) * | 1990-11-14 | 1992-06-25 | Nippon Steel Corp | 試料内に超音波を発生・検出させる方法及びその装置 |
JPH0534371A (ja) | 1991-07-31 | 1993-02-09 | Tokai Rika Co Ltd | 半導体加速度センサの感度測定装置 |
US5398785A (en) * | 1993-01-11 | 1995-03-21 | Regeants Of The University Of California | Semiactive control apparatus for damping vibrations of a body |
US5520052A (en) * | 1994-02-10 | 1996-05-28 | The United States Of America As Represented By The United States Department Of Energy | Method and apparatus for determining material structural integrity |
SE518997C2 (sv) | 2001-04-02 | 2002-12-17 | Impressonic Ab | Förfarande och anordning för att detektera skada i material eller föremål |
US6595058B2 (en) | 2001-06-19 | 2003-07-22 | Computed Ultrasound Global Inc. | Method and apparatus for determining dynamic response of microstructure by using pulsed broad bandwidth ultrasonic transducer as BAW hammer |
US7872394B1 (en) * | 2001-12-13 | 2011-01-18 | Joseph E Ford | MEMS device with two axes comb drive actuators |
US6907787B2 (en) * | 2003-04-30 | 2005-06-21 | Honeywell International Inc. | Surface acoustic wave pressure sensor with microstructure sensing elements |
JP2005114376A (ja) * | 2003-10-02 | 2005-04-28 | Sonix Kk | 超音波を用いる物体検査方法および装置 |
WO2005059521A1 (en) * | 2003-12-11 | 2005-06-30 | Eidgenössische Technische Hochschule Zürich | Device and method for measuring flexural damping of fibres |
JP4387987B2 (ja) * | 2004-06-11 | 2009-12-24 | 株式会社オクテック | 微小構造体の検査装置、微小構造体の検査方法および微小構造体の検査プログラム |
CN1710388A (zh) * | 2004-06-17 | 2005-12-21 | 史铁林 | 微机电系统动态特性与可靠性三维测量装置 |
JP2006220637A (ja) | 2004-07-27 | 2006-08-24 | Matsushita Electric Works Ltd | センサ装置 |
JP4573794B2 (ja) | 2005-03-31 | 2010-11-04 | 東京エレクトロン株式会社 | プローブカードおよび微小構造体の検査装置 |
KR100763193B1 (ko) * | 2005-10-13 | 2007-10-04 | 삼성전자주식회사 | Drm 라이센스 제공 방법 및 시스템 |
-
2008
- 2008-11-26 CN CN2012100976382A patent/CN102654481A/zh active Pending
- 2008-11-26 WO PCT/JP2008/071471 patent/WO2009069670A1/ja active Application Filing
- 2008-11-26 JP JP2009543832A patent/JPWO2009069670A1/ja active Pending
- 2008-11-26 CN CN200880117854A patent/CN101874203A/zh active Pending
- 2008-11-26 US US12/744,873 patent/US8333114B2/en not_active Expired - Fee Related
- 2008-11-26 EP EP08854451A patent/EP2221614A1/en not_active Withdrawn
- 2008-11-26 KR KR1020107012325A patent/KR20100095560A/ko not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06118070A (ja) * | 1992-10-08 | 1994-04-28 | Iwatsu Electric Co Ltd | 加振方法及び加振装置 |
WO2006093232A1 (ja) * | 2005-03-03 | 2006-09-08 | Tokyo Electron Limited | 微小構造体の検査装置、微小構造体の検査方法および微小構造体の検査プログラム |
WO2007003952A2 (en) * | 2005-07-06 | 2007-01-11 | The University Of Nottingham | Method and apparatus for non contact scanning acoustic microscopy |
JP2007144406A (ja) * | 2005-10-26 | 2007-06-14 | Matsushita Electric Works Ltd | 圧力波発生装置およびその製造方法 |
JP2007285904A (ja) * | 2006-04-18 | 2007-11-01 | Tokyo Electron Ltd | 音取得装置、音校正装置、音測定装置、およびプログラム。 |
Also Published As
Publication number | Publication date |
---|---|
CN101874203A (zh) | 2010-10-27 |
EP2221614A1 (en) | 2010-08-25 |
CN102654481A (zh) | 2012-09-05 |
KR20100095560A (ko) | 2010-08-31 |
US8333114B2 (en) | 2012-12-18 |
WO2009069670A1 (ja) | 2009-06-04 |
US20100307248A1 (en) | 2010-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8333114B2 (en) | Microstructure inspecting device, and microstructure inspecting method | |
US9476861B2 (en) | Ultrasound diagnostic device and ultrasound probe | |
JP4388614B2 (ja) | 媒質の粘度と密度を測定するためのセンサ | |
TWI289204B (en) | Minute structure inspection device, minute structure inspection method, and minute structure inspection program | |
US6595058B2 (en) | Method and apparatus for determining dynamic response of microstructure by using pulsed broad bandwidth ultrasonic transducer as BAW hammer | |
JPWO2009128546A1 (ja) | 圧電/電歪デバイスの検査方法及び検査装置、並びに圧電/電歪デバイスの調整方法 | |
JP2007017288A (ja) | 超音波疲労試験装置及び超音波疲労試験方法 | |
Kazari et al. | Multi-frequency piezoelectric micromachined ultrasonic transducers | |
Unterreitmeier et al. | An acoustic emission sensor system for thin layer crack detection | |
Lai et al. | Novel bulk acoustic wave hammer to determinate the dynamic response of microstructures using pulsed broad bandwidth ultrasonic transducers | |
JP3374775B2 (ja) | 振動波センサ | |
CN113514352B (zh) | 微纳米材料与结构力热耦合高周疲劳试验方法及试验装置 | |
US6457359B1 (en) | Apparatus and methods for measuring stress in a specimen including a thin membrane | |
JP5225284B2 (ja) | 電気機械変換素子の電気機械特性検査方法 | |
Onken et al. | High cycle fatigue testing and modelling of sputtered aluminium thin films on vibrating silicon MEMS cantilevers | |
JP2008233053A (ja) | 圧電振動素子の周波数特性測定方法 | |
Salowitz et al. | Structural health monitoring of high temperature composites | |
Hung et al. | Various fatigue testing of polycrystalline silicon microcantilever beam in bending | |
DeAngelis et al. | Optimizing piezoelectric ceramic thickness in ultrasonic transducers | |
JP4820931B2 (ja) | 試料の弾性定数を測定する弾性定数測定装置及び測定方法 | |
JP2005156355A (ja) | ヤング率測定方法及びヤング率測定装置 | |
Gupta et al. | Data-Over-Sound With PMUTs | |
TW548408B (en) | Method and apparatus for determining dynamic response of microstructure | |
JP4532212B2 (ja) | 圧電/電歪デバイスセットの検査方法 | |
JP5356148B2 (ja) | プローバー装置及び検査方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121113 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130319 |