JPWO2009063756A1 - ガラス板の製造方法およびガラス物品の残留応力測定方法 - Google Patents

ガラス板の製造方法およびガラス物品の残留応力測定方法 Download PDF

Info

Publication number
JPWO2009063756A1
JPWO2009063756A1 JP2009541092A JP2009541092A JPWO2009063756A1 JP WO2009063756 A1 JPWO2009063756 A1 JP WO2009063756A1 JP 2009541092 A JP2009541092 A JP 2009541092A JP 2009541092 A JP2009541092 A JP 2009541092A JP WO2009063756 A1 JPWO2009063756 A1 JP WO2009063756A1
Authority
JP
Japan
Prior art keywords
residual stress
glass ribbon
glass
hue
ribbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009541092A
Other languages
English (en)
Inventor
有吉是 関根
有吉是 関根
祐一 吉住
祐一 吉住
貴弘 小野
貴弘 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JPWO2009063756A1 publication Critical patent/JPWO2009063756A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0047Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes measuring forces due to residual stresses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

製造ライン上を流れる連続したガラス板、いわゆるガラスリボンの残留応力を精度良く且つ簡単な方法を用いて短時間に測定する。移動するガラスリボンを鋭敏色法による光学系を用いて撮影し、該ガラスリボン内の残留応力分布を反映して鋭敏色が変化する様子を表す画像データを得る第1ステップと、前記画像データから、色相を含んで表現される所定の色空間における色相の値を表す数値データを求める第2ステップと、を実施することにより、前記移動するガラスリボンに対して時系列でその残留応力を示す色相を測定する。

Description

本発明は、ガラス板が連続したガラスリボンを含むガラス物品の残留応力を測定する方法、および該方法を用いてガラス板を製造する方法に関する。
一般に、ガラス物品はその内部に存在する残留応力(歪み)によって光学的特性や機械的特性等の品質が影響を受ける。ガラス物品の残留応力が大きいと、具体的には、局所的な屈折率の違い、切断時のガラス小片いわゆるカレット、想定した切断方向にクラックが走らない迷走、小さなクラックであるビリ(hair crack)や欠け、ガラス物品全体の反り、等が発生する。このため、ガラス物品の残留応力を測定することは品質の良いガラス製品を製造する上で非常に重要となる。従来、ガラス物品の残留応力測定方法には、例えばセナルモン法や鋭敏色法など、種々のものが知られている。これらの測定方法はいずれも、残留応力に起因し光弾性効果を介してガラス物品内部に発生する複屈折を、ガラス物品に透過させた偏光を観察することによって求めるものである。以下に原理を簡単に説明する。
セナルモン法(例えば、特許文献1参照)では、単色光源と、偏光子と、測定対象のガラス物品と、4分の1波長板と、検光子と、をこの順に配置してなる光学系を用いて測定を行う。4分の1波長板は、その光学軸が偏光子の偏光軸と同方向となるように配置され、検光子は、その偏光軸が任意に回転可能とされる。測定対象のガラス物品を、その残留応力により生じた複屈折の光学軸が偏光子の偏光軸と45°の角度をなすように置くと、4分の1波長板を通過した後の光は、ガラス物品の複屈折に基づく位相差に比例した角度で偏波面が傾いた直線偏光となる。検光子の偏光軸を回転させることによってこの直線偏光の偏波面の角度が求まり、得られた角度に対応する複屈折の大きさから、光路に直交する面での残留応力を定量的に知ることができる。
鋭敏色法(例えば、特許文献2,3参照)では、白色光源と、偏光子と、測定対象のガラス物品と、鋭敏色板(1波長板)と、検光子と、をこの順に配置してなる光学系を用いて測定を行う。鋭敏色板は、その光学軸が偏光子の偏光軸と45°の角度をなすように配置され、検光子は、その偏光軸が偏光子の偏光軸と90°の角度をなすように配置される。測定対象のガラス物品に複屈折(残留応力)がない場合には、鋭敏色板に入射された各波長の直線偏光のうち、鋭敏色板に固有の所定の基準波長の光は、鋭敏色板を通過することにより正確に1波長分の位相差を与えられるので検光子を通過できなくなるが、基準波長以外の光は、与えられる位相差が1波長からずれるため検光子を通過可能である。この結果、検光子を通過した後の光は基準波長の成分が欠如することとなり、該基準波長に応じた発色を呈するようになる。測定対象のガラス物品に複屈折が存在すると、このガラス物品と鋭敏色板とによって丁度1波長分の位相差を与えられる光の波長が、複屈折の大きさに応じた量だけ上記の基準波長からシフトする。したがって、検光子を通過した後の光は、ガラス物品の残留応力を反映した色に発色することとなるため、この色を観察することにより光路に直交する面での残留応力を知ることができる。
特開昭61−79109号公報 特開昭60−242309号公報 特開平10−332533号公報
ここで、ガラス板の製造ラインにおいて従来の残留応力測定方法を適用する際には、次のような点が問題となる。
セナルモン法を用いる場合、上述したようにある1つの測定点の測定を行うには、検光子を回転させて直線偏光の偏波面の角度を求める必要がある。具体的には、検光子を回転させた時の検光子通過後の光の明暗を測定し、明暗が最も暗くなるような検光子の回転角度を探すという操作を行うが、正しく回転角度を探すにはある所定の測定時間(例えば10秒程度)を要する。ところが、ガラス板は連続したガラスリボンとして製造ライン上を流れているので、実際に測定をしているガラスリボン面上の箇所はこの測定時間の間にどんどん変わっていってしまう。つまり、測定によって得られる残留応力は、ガラスリボンの1点の測定結果ではなくある長さにわたった平均値となるため、精度が悪いものとなってしまうという問題がある。また、測定点ごとに検光子を適切な角度に回転させなければならないという手間も発生する。更に、ガラスリボンのある広さ全体の残留応力を得るには、1点ずつ測定を行わなければならないため、時間が膨大にかかってしまう問題もある。
また、鋭敏色法を用いる場合は、測定すべき残留応力は鋭敏色の変化として観察されるので、ガラスリボンの所望の範囲を画像として撮影(特許文献3参照)することにより、画像内に現れる鋭敏色の分布から一度に当該範囲内の残留応力の分布が得られる。そのため、製造ライン上を流れるガラスリボンを測定する際にも、セナルモン法のように測定結果が平均化されてしまうことがなく、また測定時間も短くて済む。しかしながら、撮影された画像の色を評価するため、例えば光源の明暗が変化すると評価される色の明るさも変化してしまい、正しい残留応力を測定することができないという問題がある。
本発明は上記の点に鑑みてなされたものであり、製造ラインにおいて時系列で得られるガラスリボンの残留応力に関する情報に基づいて、迅速にガラス板の製造条件を変更することを可能にするために、その目的は、製造ライン上を流れるガラスリボンの残留応力を精度良く且つ簡易な方法を用いて短時間でしかも大面積に対して測定するガラス板の製造方法を提供することにある。また、その目的は、ガラスリボン以外の大面積のガラス物品、例えば切断後のガラス板において、残留応力を精度良く且つ簡易な方法を用いて短時間で測定するガラス物品の残留応力測定方法を提供することにある。
本発明は上記の課題を解決するためになされたものであり、
原材料を溶解して溶融ガラスを得る溶融工程と、前記溶融ガラスを連続した板状のガラスリボンに成形する成形工程と、前記ガラスリボンを移動させながら徐々に冷却する徐冷工程と、冷却された前記ガラスリボンを切断する切断工程と、を含むガラス板の製造方法において、移動する前記ガラスリボンを鋭敏色法による光学系を用いて撮影し、該ガラスリボン内の残留応力分布を反映して鋭敏色が変化する様子を表す画像データを得る第1ステップと、前記画像データから色相を含んで表現される所定の色空間における色相の値を表す数値データを求める第2ステップと、を実施することにより前記移動するガラスリボンに対して時系列でその残留応力を示す色相を測定する測定工程を有し、前記ガラスリボンの撮影におけるガラスリボンの撮影位置が、前記ガラスリボンの温度がそのガラスの歪点以下の温度にある位置である、ガラス板の製造方法である。
この発明では、基本原理として鋭敏色法を用いて画像を撮影するので、測定対象が移動するガラスリボンであっても測定結果が平均化される問題がないとともに測定にかかる時間が短く、更に、撮影された画像から「色合い」を示す色相だけを取り出すようにしたので、画像中の「明るさ」等に関する不要な情報が排除される。これにより光源および測定を行う周囲の明暗などに影響を受けることなく正しい残留応力の分布を測定することが可能である。ここで、鋭敏色は光に含まれる各波長の混合割合即ち色合いを表すものであるから、色相によって残留応力を知ることができ、色相を測定することは残留応力を相対的に測定することに相当している。
また、本発明は、前記測定工程において更に、前記光学系における色相と該色相を反映する位相差との対応を示すデータベースを参照することによって、前記求めた数値データに基づき前記移動するガラスリボンに対して時系列で、前記位相差とそれに基づく残留応力値を求めるものである。
この発明では、予めデータベースを用意しておくことで、色相を表す数値データから位相差を求め、さらに残留応力値を正確に求めることが可能である。
また、本発明は上記ガラス板の製造方法において、前記第1ステップは、前記移動するガラスリボンに対してその幅方向に位置をずらしながら撮影を行うことにより複数枚の画像データを得るステップであり、前記測定工程は、前記複数枚の画像データから前記移動するガラスリボンの幅方向における色相または残留応力の分布を得る工程である。
この発明では、撮影に用いるカメラの視野と比較してガラスリボンの幅が大きい場合でも、ガラスリボンの幅方向における残留応力の分布を知ることが可能である。
また、本発明は上記ガラス板の製造方法において、前記第2ステップは、前記各画像データの一部分であって、前記ガラスリボンの幅方向において中央付近となる一部分のデータのみに基づいて色相の値を表す前記数値データを求めるステップである。
この発明では、光がガラスリボン中を通過する光路長が各画像の中央付近よりも長いため正しい鋭敏色が得られない画像の周辺部分を排除したので、正確な色相を測定することが可能である。
また、更に、本発明は上記ガラス板の製造方法において、前記測定工程は、前記撮影を行ったガラスリボン上の位置と、該撮影により得られた画像データから求められる前記数値データまたは前記残留応力値と、を対応付けて記憶装置に記憶させる第3ステップを含み、前記切断工程は、前記記憶装置に記憶された前記位置と前記数値データまたは前記残留応力値との対応関係に基づいて決定した切断位置でガラスリボンを切断する工程である。
この発明では、色相または残留応力の測定結果に応じてガラスリボンを切断するので、残留応力に異常のある部分を取り除いて品質の良いガラス板を製造することが可能である。
また、本発明は上記ガラス板の製造方法において、前記光学系は、前記ガラスリボンにその幅方向を横断する線状の光を照射する光源と、該照射される光を直線偏波とする偏光子と、前記ガラスリボンを通過した光を入力する鋭敏色板と、前記偏光子に対し直交ニコルの配置とされた検光子と、前記検光子を通った前記光源からの光の撮像手段と、を有する。
また、本発明は、ガラス物品の残留応力を測定する残留応力測定方法であって、測定対象のガラス物品を鋭敏色法による光学系を用いて撮影し、該ガラス物品の残留応力分布を反映して鋭敏色が変化する様子を表す画像データを得るステップと、前記画像データから、色相を含んで表現される所定の色空間における色相の値を表す数値データを求めるステップと、前記光学系における色相と該色相を反映する位相差との対応を示すデータベースを参照することによって、前記求めた数値データに基づき前記位相差とそれに基づくガラス物品の残留応力値を求めるステップと、を含むものである。
本発明によれば、製造ライン上を流れるガラスリボンの残留応力を光源および測定を行う周囲の明暗などに影響を受けることなく精度良く且つ簡易な方法を用いて短時間にしかも大面積に対して測定することができる。この測定結果を製造ラインの上流側の成形工程、徐冷工程、または製造ライン下流の切断工程での製造条件に迅速に反映して製造条件の変更をすれば、品質の良いガラス板を高い歩留まりで製造することが可能となる。特に、切断工程において所定の良品限界値より大きい残留応力を有する部分を含むガラス板の寸法や形状を、目的とするガラス板の寸法や形状よりも小さくするように切断して、廃棄される不良ガラス板の面積を低減させることにより、品質の良いガラス板の歩留まりを向上させることができる。
また、本発明によれば、ガラスリボン以外の大面積のガラス物品において、残留応力を光源および測定を行う周囲の明暗などに影響を受けることなく精度良く且つ簡易な方法を用いて短時間で測定することができる。
本発明の一実施形態によるガラス板の製造方法が適用されるガラス板の製造ラインの概略上面図である。 図1のガラス板の製造ラインにおける残留応力測定部の概略的な構成を示す図である。 色相/位相差データベースの一例である。 残留応力の測定結果の一例を示す図である。 ガラスリボンの全幅面での鋭敏色の撮像画像の一例を示す図である。
符号の説明
1…溶解窯下流部 2…溶融錫 3…溶融錫浴 4…ガラスリボン 5…トップロール 8…リフトアウトロール 9…金属ロール 10…徐冷炉 11…残留応力測定部 12…ガラスリボン切断部 101…蛍光灯(光源) 102…偏光子 103…撮像部 104…鋭敏色板 105…検光子 106…カメラ(撮像手段) 201…変換部 202…色相/位相差データベース 203…残留応力値算出部 204…記憶部 205…カメラ駆動制御部 206…切断制御部
以下、図面を参照しながら本発明の実施形態について詳しく説明する。
図1は、本発明の一実施形態によるガラス板の製造方法が適用されるガラス板の製造ラインの概略上面図である。本発明のガラス板の製造方法は、原材料を溶解して溶融ガラスを得る溶融工程と、溶融ガラスを板状に連続したガラスリボンに成形する成形工程と、ガラスリボンを移動させながら徐々に冷却して応力を除去する徐冷工程と、ガラスリボンの残留応力を測定する測定工程と、ガラスリボンを切断する切断工程と、を有する。成形工程には、フロート法、ロールアウト法、ダウンドロー法、フュージョン法など種々のものがあり、本発明はこれらのうちいずれか、あるいはその他の方法を適宜用いることができる。本実施形態の図1では、フロート法を用いる場合を例に説明をする。
溶融工程では、珪砂、石灰石、ソーダ灰等の原材料をガラス製品の組成に合わせて調合し混合したバッチを溶解窯に投入し、ガラスの種類に応じて約1400℃以上の温度に加熱溶融して溶融ガラスを得る。例えば、溶解窯の一端から溶解窯内へバッチを投入し、重油を燃焼して得られる火炎あるいは天然ガスを空気と混合して燃焼して得られる火炎をこのバッチに吹きつけて、約1550℃以上の温度に加熱してバッチを溶かすことによって溶融ガラスを得る。また、電気溶解炉を用いて溶融ガラスを得てもよい。
成形工程では、溶融工程で得られた溶融ガラスを溶解窯下流部1から溶融錫浴3へと導入し、溶融錫2上に溶融ガラスを浮かせて図中の搬送方向に進行させることによって連続した板状のガラスリボン4とする。このとき、所定の板厚のガラスリボン4を成形するために、ガラスリボン4の両サイド部分に回転するロール(トップロール5)を押圧し、ガラスリボン4を幅方向(搬送方向に直角な方向)外側に引き伸ばす。
徐冷工程では、上記成形されたガラスリボン4をリフトアウトロール8によって溶融錫浴3から引き出し、このガラスリボン4を金属ロール9を用いて徐冷炉10内で図中の搬送方向に移動させて、ガラスリボン4の温度を徐々に冷却して下げ、引き続き徐冷炉10から出て切断工程に至る間でさらに常温近くまで冷却させる。徐冷炉10は、燃焼ガスや電気ヒータによって制御された熱量を供給して徐冷を行うための機構を炉内の必要位置に備えている。徐冷炉10から出た段階のガラスリボンの温度は、ガラスリボンのガラスの歪点以下の温度となっており、ガラスの種類にもよるが通常は150〜250℃まで冷却されている。この徐冷工程は、ガラスリボン4内部の残留応力を取り除くことと、ガラスリボンの温度を下げる目的で実施される。徐冷工程において、ガラスリボンは残留応力測定部11を通り、さらにその後ガラスリボン切断部12まで搬送される。ガラスリボン切断部12において常温近くまで徐冷されたガラスリボンが切断される(切断工程)。なお、ガラスリボン切断部12におけるガラスリボンの温度は、その場所の雰囲気温度〜50℃であることが通例である。
測定工程におけるガラスリボンの撮影位置(すなわち、残留応力測定部11の位置)は、ガラスリボン4の温度がそのガラスの歪点以下の温度にある位置である。通常、残留応力測定部11は、徐冷炉10のガラスリボン出口から搬送方向下流の位置に設けられ、さらにガラスリボン4の温度が200℃以下にある位置に設けられることが好ましい。後述する偏光子102などのガラスリボンに近接する部材の材料が樹脂などの耐熱性の低い材料からなる場合は、残留応力測定部11はガラスリボン4の温度が100℃以下にある位置に設けられることが好ましい。さらに、ガラスリボン4に無視できない一時的な応力(ガラスリボンに発生する温度分布による弾性変形によって一時的に発生する弾性応力)が発生するおそれがある場合には、より常温に近い温度で、しかも温度変化が小さいことが好ましい。また、残留応力測定部11は、切断工程の直前に設けることもできるが、測定工程から得られるデータを切断工程に反映させるためには、ガラスリボン4の移動速度にもよるが、切断位置から30cm以上、特に1m以上離れた位置に残留応力測定部11を設けることが好ましい。
次に、測定工程と切断工程の詳細について図2を用いて説明する。図2は、残留応力測定部11の概略的な構成を示す図であり、ガラスリボン切断部12側から徐冷炉10側を眺めた様子を描いたものである。なお、変換部201、色相/位相差データベース202、残留応力値算出部203、記憶部204、カメラ駆動制御部205、切断制御部206の各部は、例えばパーソナルコンピュータと適宜作成したソフトウェアとを組み合わせた制御装置によって実現されるものである。
残留応力測定部11には、搬送されるガラスリボン4の下部に、光源としての蛍光灯101と、蛍光灯101からの光を所定の偏光軸方向に振動する直線偏光に変換してガラスリボン4の側へ通過させる偏光子102(偏光フィルム)とが設けられる。また、ガラスリボン4の上部に、ガラスリボン4の幅方向(搬送方向に直角な方向)に移動可能な撮像部103が設けられる。この場合、ガラスリボン4の移動速度に応じて、得られる残留応力は、ガラスリボン4の幅方向に対して角度を有する線上で得られる。得られる残留応力をガラスリボン4の幅方向に平行な線上、いわゆるガラスリボンの横切りと呼ばれる切断方向で得るためには、撮像部103を、その移動速度とガラスリボン4の移動速度とを考慮してガラスリボン4の幅方向に対して所定の角度を有する方向に、移動させればよい。
この撮像部103は、基準波長の光に対して1波長の光路差を有する1波長板である鋭敏色板104と、所定の偏光軸方向に振動する成分の光を透過させる検光子105と、検光子105および鋭敏色板104を介してガラスリボン4を撮影するカメラ106とがこの順に配置されて構成される。なお、ガラスリボン4の幅PQは通常数メートル程度の大きさであり、光源としての蛍光灯101と偏光子102は、この幅PQを覆う程度の大きさを備えるようにする。但し、蛍光灯101については、小型の蛍光灯を複数用いてガラスリボン4上を照明するようにしてもよい。光源は蛍光灯以外であってもよく、白色光源でもよい。また、光源は線状光源を形成でき、位相差と関連づける意味から光源のスペクトルが既知の光源が好ましい。さらに、光源のスペクトルは、同様に位相差と関連づける意味から平坦であればあるほどよい。いずれにしても、光源が違えば、色相とその色相を反映する位相差との関係が変化する。偏光子102は、図2に示したようにガラスリボン4の幅方向にわたる長尺体でもよいが、必要に応じて分割してもよい。ただし、分割した場合には、各偏光子間の隙間によって、色相分布や残留応力分布に、後述する図4に見られるような局所的に急峻な立ち上がりが発生する場合がある。これに対しては、偏光子間の位置を考慮して、この部分のデータを補正できる。
偏光子102は、その偏光軸の方向をどちらの方向に向けて配置しても構わないが、本実施形態では、ガラスリボン4の搬送方向に対して45°の角度をなすように配置することとする。鋭敏色板104の光学軸は、偏光子102の偏光軸と45°の角度をなすように、また検光子105の偏光軸は、偏光子102の偏光軸と90°の角度をなす(直交ニコルの配置)ようにして、それぞれ配置する。
上記構成の光学系において撮像手段としてのカメラ106でガラスリボン4を撮影すると、その像は、鋭敏色法の原理により、ガラスリボン4内の残留応力の分布が色の変化となって現れる模様となる。即ち、ガラスリボン4に残留応力がない場所では、偏光子102を通過した各波長の直線偏光のうち鋭敏色板104に固有の所定の基準波長の光は、鋭敏色板104を通過することにより正確に1波長分の位相差を与えられるので検光子105を通過できなくなるが、基準波長以外の光は、与えられる位相差が1波長からずれるため検光子105を通過可能である。この結果、検光子105を通過した後の光は、基準波長の成分が欠如することとなるため該基準波長に応じた発色(鋭敏色)を呈する。一方、ガラスリボン4に残留応力が存在する場所では、ガラスリボン4と鋭敏色板104とによって丁度1波長分の位相差を与えられる光の波長が、残留応力の大きさに応じた量だけ上記の基準波長からシフトする。このため、検光子105を通過した後の光は、ガラスリボン4の残留応力を反映した色に発色する。こうして、カメラ106で得られる画像は、ガラスリボン4の場所ごとの残留応力に応じて異なる鋭敏色を有するものとなる。
ここで、カメラ106が1回の撮影で撮影する画像はガラスリボン4上の一部の領域Aの画像であるため、カメラ駆動制御部205とカメラ駆動手段(図示しない)によって撮像部103をガラスリボン4の幅方向にPからQの位置まで動かしながら複数枚の画像を撮影することで、幅方向全体(PからQまで)の画像を得るようにすることが好ましい。
また、領域Aの周縁部分は中央部分A’よりも光がガラスリボン4を通過する光路長が長く、正しい鋭敏色が得られない。このため、カメラ106で撮影した各画像のうち中央部分A’だけを以下の処理に利用するようにすることが更に好ましい。また、カメラ106をガラスリボン4のエッジ付近(点PまたはQの近傍)に固定して、搬送されるガラスリボン4のエッジ付近のみを連続的に撮影するようにしてもよい。ガラス板の製造ではガラスリボン4のエッジ付近に残留応力が発生しやすいからである。カメラ106は、エリアセンサーカメラが好ましく、ラインセンサーカメラがより好ましい。
カメラ106によって撮影された画像は、各画素についてRGB(赤・緑・青)各色の階調(明るさ)を表す数値を持った画像データとして変換部201へ送られる。変換部201は、RGBの値をHSV色空間における色相の値Hに変換する。ここで、HSV色空間は、色相(Hue)と彩度(Saturation)と明度(Value)とによって表される色空間であり、RGB色空間の赤,緑,青の各値R,G,Bを色相,彩度,明度の各値H,S,Vに変換する変換式は次式で与えられる。
Figure 2009063756
但し、MAX,MINはそれぞれ値R,G,Bのうちの最大値と最小値である。
色相Hは色合いを表す変数であって明るさを示す情報を含まないので、蛍光灯101の明暗が変化してもその値は変化しない。また、鋭敏色は光に含まれる各波長の混合割合即ち色合いを表すものであるので、色相Hと一対一に対応する。したがって、色相Hのみを用いることによって、光源および測定している周囲の明暗に影響を受けることなく精度良く残留応力(鋭敏色)を測定することが可能となる。
なお、変換部201はRGBの値を色合いを示す色相に変換する機能を有するものであれば、上記構成に限定されない。即ち変換部201は、RGBの値を、色相を含んで表現される所定の色空間における色相の値に変換するものであればよい。このような色空間として、HSV色空間のほかに例えばHLS色空間がある。HLS色空間は、色相(Hue)と彩度(Saturation)と輝度(Luminance)とによって表される色空間であり、RGB色空間から色相H,彩度S,輝度Lへの変換式は、YCC色空間の各成分Y,C1,C2を用いて次式で表される。
Figure 2009063756
色相/位相差データベース202は、色相の値Hとその値に対応する位相差の値Rとを表形式で記憶するデータベースである。色相の値Hと位相差の値Rとは必ずしも線形関係にないことから、このようなデータベースが必要となる。なお、位相差の値Rと残留応力値Tとは、線形関係にある。このデータベースは、予め、値の分かっている位相差を有する基準サンプルガラスを用いて対応する色相の値Hを求めることによって、構築しておくものである。色相の値Hと位相差の値Rとの関係は、例えば、光源の種類を決め、色相と厚みが既知のガラス板のサンプルの残留応力を、例えば残留応力を精度よく求めることが可能な歪標準器、精密歪計、あるいはセルナモン法によって測定し、後述する数式3に基づいて既知の厚み、すなわち光路長と、ガラスの種類に応じた後述する光弾性定数と、から位相差の値を逆算して求めればよい。この方法によって、種々の色相と位相差との関係を得ることによってデータベースを構築できる。図3は色相/位相差データベース202の一例であり、例えば色相の値がh1と得られたとすると、その色相は位相差r1に対応することを知ることができる。
残留応力算出部203は、色相/位相差データベース202を参照することにより、変換部201によって得られた色相Hに対応する位相差Rによって、次式を用いて残留応力Tを計算する。
Figure 2009063756
但し、Cは光弾性係数、dは光路長、すなわちガラスリボンの測定位置での厚みである。Cはガラスの種類によって変わる値である。例えば、一般的なソーダライムガラスでは、2.6×10−12m/m/Paである。色相の値の測定位置に対するdは、公知技術であるレーザー光線を利用する測定方法等によって、色相の測定にあわせて製造ライン上の流れるガラスリボンに対して測定できる。そして、残留応力算出部203は、残留応力値Tの算出を、上述のようにカメラ106が時系列に撮影した複数の画像の各画素について行うことによって、ガラスリボン4上の各点における残留応力値、即ちガラスリボン4内の残留応力分布を得る。
図4に、このようにして得られた残留応力の測定結果の一例を示す。同図において、縦軸は残留応力値を相対値で表したものであり、横軸はガラスリボン4上の幅方向位置である。この測定例では、撮像部103をガラスリボン4の幅方向に移動させながら測定を行っており、ガラスリボン4の点PからQまでにわたって幅方向における残留応力の分布が求められている(横軸における幅方向の位置は、画像中の画素位置に対応して定まる)。撮像部103を繰り返して幅方向に移動させれば、流れるガラスリボン4に対して搬送方向の各位置で図4と同様の残留応力分布を得ることができる。そして、撮像部103の移動を連続的に繰り返せばガラスリボン4の全面について残留応力分布が得られる。
また、撮像部103の移動を所定の時間間隔で繰り返せば必要に応じて残留応力の定期的な測定を行うことができる。さらに、図4の横軸がガラスリボン4の搬送方向となるように測定を行って、搬送方向における残留応力の分布を得るようにしてもよい。図5には、図4のもとになったデータであり、実際にガラスリボン4に対して撮像部103の移動を連続的に繰り返し、ガラスリボン4の全幅面での鋭敏色を撮像した結果を示す。ただし、図は鋭敏色の画像をグレースケールで示したものである。画像の左右がガラスリボンの幅方向で、画像の上から下にガラスリボンが流れている場合を示している。この図から、ガラスリボンの全面に分布する残留応力に対応する鋭敏色の分布がわかる。この画像に基づいて、各位置での色相を数値化し、最終的には残留応力を定量化できる。なお、画像において局所的に上下に走る白い線は、前述した偏光子間の隙間によるものである。
記憶部204は、残留応力算出部203によって得られた残留応力値Tまたは残留応力分布を、ガラスリボン4の搬送方向における測定位置(カメラ106で画像を撮影した位置)の情報とともに記憶する。測定位置の情報は、カメラ駆動制御部205から取得可能である。なお、通常ガラスリボン4には絶対的な位置を示す目印は存在しないので、ここでの測定位置の情報として、相対的な測定位置を表す情報、例えば測定時刻(撮影時刻)の情報を用いることとしてもよい。測定時刻とガラスリボン4の搬送速度(既知の一定値とする)がわかれば、残留応力を測定した箇所が、ガラスリボン4が流れることによりその後どこに位置しているか、を把握することができる。
切断制御部206は、記憶部204に記憶された色相の値H、残留応力値T、または残留応力分布と測定位置との対応関係に基づいて、適宜、適切な切断位置でガラスリボン4を切断するようにガラスリボン切断部12に備わるカッターを制御する。例えば、色相の値または残留応力値が所定の良品限界値より大きく、残留応力が異常と判断される部分を排除するようにガラスリボン4を切断する。すなわち、切断により所望の寸法や形状のガラス板を得る場合、残留応力が異常と判断される部分を含むガラス板の寸法や形状を、目的とするガラス板の寸法や形状よりも小さくするように切断し、廃棄されるこの残留応力異常部分を含むガラス板の面積を低減することにより、相対的にガラスリボンから得られる良品のガラス板の歩留まりを向上させることができる。これにより、ガラスリボン4から所望の寸法、形状であり残留応力が少ない良質のガラス板が採取される。
上述したように本発明の実施形態によって、製造ライン上を流れるガラスリボンの残留応力を精度良く且つ簡易な方法を用いて短時間でしかも大面積に対して測定できるので、この測定結果を製造ラインの上流側または下流側の製造条件に迅速に反映して製造条件を変更すれば、残留応力の小さいガラス板を製造することが可能となる。例えば、製造ラインの上流側の成形工程では、残留応力の測定結果でガラスリボンの幅方向の均一性が低下していれば、ガラスリボンの幅方向の温度分布の均一性を向上するように製造条件を変更し、温度差に起因する残留応力を下げることができる。また、製造ラインの上流側の徐冷工程では、残留応力が高ければ、徐冷の温度を全体的に上げるなど製造条件を変更し、残留応力を下げることができる。さらに、製造ラインの下流側の切断工程では、残留応力の測定結果に基づいて、前述したように残留応力の高い部分を除外することによって、上流側の工程で好ましくない残留応力のガラスリボンが発生しても、所望の残留応力レベルの良質のガラス板を得ることができる。また、測定した残留応力を反映して迅速に製造条件を変更する操作ができるので、従来の製造方法に比べて、生産歩留まりが向上する可能性もある。
以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。以下に主な変形例を示す。
(1)上記実施形態では、製造ライン上を流れるガラス板が連続するガラスリボンの残留応力の測定を対象として説明したが、その他の実施形態として、対象をガラスリボン以外の大面積のガラス物品、例えばガラスリボンを切断して得られるガラス板、すなわち切断されたガラス板の残留応力を測定する残留応力測定方法にも適用できる。
(2)上記実施形態では、残留応力値算出部203が色相/位相差データベース202を参照して残留応力値を算出したが、この処理を省略することもできる。即ち、変換部201によって得られた色相の値Hは、上述したようにガラスリボン4の鋭敏色に対応し残留応力を反映するものである。つまり、色相の値Hは相対的な残留応力値を表すものであるので、色相の値Hから、図4と同様なガラスリボン4上における色相の分布を得ることができ、この色相の分布から残留応力の分布を定性的に把握することができる。上記実施形態のように残留応力値を算出すれば絶対的な残留応力を知ることができるが、ガラス板の製造において求められる残留応力測定の精度によっては、本変形例のような方法で相対的な残留応力を知るだけでも十分に実用となる。また、対象をガラスリボン以外の大面積のガラス物品、例えば切断されたガラス板の残留応力を測定する残留応力測定方法に対しても、上述の変形例のような方法で相対的な残留応力を知るだけでも十分に実用となる。
(3)上記実施形態では、色相/位相差データベース202を参照して残留応力値を算出したが、色相/残留応力データベースに置き換えることもできる。即ち、色相/残留応力データベースは、光源の種類、ガラスの種類、および板厚が決まれば残留応力が決まるので、データベースの容量として大きくなるが、光源の種類、ガラスの種類、板厚と、残留応力とを結びつけるデータを蓄積するものである。この色相/残留応力データベースを参照して、求めた色相の値に基づき、残留応力の値を求めることもできる。
(4)変換部201は、カメラ106で撮影した画像から直ちに色相Hへの変換を実行してもよいし、最初に撮影のみを必要に応じ連続して行って画像のデータをメモリ等に記憶しておき、切断工程等の所望のタイミングでメモリから画像のデータを複数読み出して一括して色相Hへの変換を実行してもよい。
(5)切断制御部206は省略することができる。ガラスリボン4における残留応力異常部分の位置を決定し、ガラスリボン4を所望の寸法、形状に切断した後、得られたガラス板が前記残留応力異常部分を含むガラス板であるか否かを判断し、前記残留応力異常部分を含むガラス板を排除することにより、残留応力が少ない良質のガラス板が得られる。
本発明は、ガラス板の製造ライン上のガラスリボンおよび該ガラスリボンから切断されたガラス板などのガラス物品の残留応力測定に有効であり、特にガラスリボンの残留応力の測定結果をガラス板製造ラインの制御に反映させることによって残留応力を抑制したガラス板の生産性を向上させることができる。

なお、2007年11月12日に出願された日本特許出願2007−293162号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (7)

  1. 原材料を溶解して溶融ガラスを得る溶融工程と、前記溶融ガラスを連続した板状のガラスリボンに成形する成形工程と、前記ガラスリボンを移動させながら徐々に冷却する徐冷工程と、冷却された前記ガラスリボンを切断する切断工程と、を含むガラス板の製造方法において、
    移動する前記ガラスリボンを鋭敏色法による光学系を用いて撮影し、該ガラスリボン内の残留応力分布を反映して鋭敏色が変化する様子を表す画像データを得る第1ステップと、前記画像データから色相を含んで表現される所定の色空間における色相の値を表す数値データを求める第2ステップと、を実施することにより、前記移動するガラスリボンに対して時系列でその残留応力を示す色相を測定する測定工程を有し、
    前記ガラスリボンの撮影におけるガラスリボンの撮影位置が、前記ガラスリボンの温度がそのガラスの歪点以下の温度にある位置である、
    ガラス板の製造方法。
  2. 前記測定工程において、更に、前記光学系における色相と該色相を反映する位相差との対応を示すデータベースを参照することによって、前記求めた数値データに基づき前記移動するガラスリボンに対して時系列で、前記位相差とそれに基づく残留応力値を求める請求項1に記載のガラス板の製造方法。
  3. 前記第1ステップは、前記移動するガラスリボンに対してその幅方向に位置をずらしながら撮影を行うことにより複数枚の画像データを得るステップであり、
    前記測定工程は、前記複数枚の画像データから前記移動するガラスリボンの幅方向における色相または残留応力の分布を得る工程である、請求項1または2に記載のガラス板の製造方法。
  4. 前記第2ステップは、前記各画像データの一部分であって、前記ガラスリボンの幅方向において中央部分となる一部分のデータのみに基づいて色相の値を表す前記数値データを求めるステップである、請求項1から3のいずれか1項に記載のガラス板の製造方法。
  5. 前記測定工程は、前記撮影を行ったガラスリボン上の位置と、該撮影により得られた画像データから求められる前記数値データまたは前記残留応力値と、を対応付けて記憶装置に記憶させる第3ステップを含み、
    前記切断工程は、前記記憶装置に記憶された前記位置と前記数値データまたは前記残留応力値との対応関係に基づいて決定した切断位置でガラスリボンを切断する工程である、請求項1から4のいずれか1項に記載のガラス板の製造方法。
  6. 前記光学系は、前記ガラスリボンにその幅方向を横断する線状の光を照射する光源と、該照射される光を直線偏波とする偏光子と、前記ガラスリボンを通過した光を入力する鋭敏色板と、前記偏光子に対し直交ニコルの配置とされた検光子と、前記検光子を通った前記光源からの光の撮像手段と、を有する請求項1から5のいずれか1項に記載のガラス板の製造方法。
  7. ガラス物品の残留応力を測定する残留応力測定方法であって、
    測定対象のガラス物品を鋭敏色法による光学系を用いて撮影し、該ガラス物品の残留応力分布を反映して鋭敏色が変化する様子を表す画像データを得るステップと、
    前記画像データから、色相を含んで表現される所定の色空間における色相の値を表す数値データを求めるステップと、
    前記光学系における色相と該色相を反映する位相差との対応を示すデータベースを参照することによって、前記求めた数値データに基づき前記位相差とそれに基づくガラス物品の残留応力値を求めるステップと、
    を含む、ガラス物品の残留応力測定方法。
JP2009541092A 2007-11-12 2008-10-30 ガラス板の製造方法およびガラス物品の残留応力測定方法 Pending JPWO2009063756A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007293162 2007-11-12
JP2007293162 2007-11-12
PCT/JP2008/069807 WO2009063756A1 (ja) 2007-11-12 2008-10-30 ガラス板の製造方法およびガラス物品の残留応力測定方法

Publications (1)

Publication Number Publication Date
JPWO2009063756A1 true JPWO2009063756A1 (ja) 2011-03-31

Family

ID=40638608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009541092A Pending JPWO2009063756A1 (ja) 2007-11-12 2008-10-30 ガラス板の製造方法およびガラス物品の残留応力測定方法

Country Status (2)

Country Link
JP (1) JPWO2009063756A1 (ja)
WO (1) WO2009063756A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2282186B1 (en) * 2009-08-05 2015-09-09 Emhart Glass S.A. Glass container stress measurement using fluorescence
JP5896338B2 (ja) * 2011-01-18 2016-03-30 日本電気硝子株式会社 強化用ガラスの製造方法及び強化ガラス板の製造方法
US8459062B2 (en) * 2011-09-27 2013-06-11 Corning Incorporated Apparatus and methods for producing a glass ribbon
MY167607A (en) * 2011-09-28 2018-09-20 Hoya Corp Method of manufacturing a glass substrate for hard disk drive
US9261429B2 (en) 2014-05-21 2016-02-16 Corning Incorporated Prism-coupling systems and methods for characterizing large depth-of-layer waveguides
JP2017532556A (ja) * 2014-10-14 2017-11-02 ヘレーウス テネーヴォ エルエルシーHeraeus Tenevo Llc その粘度に基づく母材または管引抜のための機器及び方法
CN105352640B (zh) * 2015-10-20 2018-09-11 重庆大学 切条法测弯曲条残余应力的夹直测量方法
CN105773272B (zh) * 2016-04-05 2018-04-24 广东汇兴精工智造股份有限公司 一种应用于极端环境下的工装板输送机构及其工作方法
CN112924254B (zh) * 2021-01-29 2023-05-16 中国建材检验认证集团股份有限公司 透明材料自然裂纹制备及尖端位置确定方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61112936A (ja) * 1984-11-07 1986-05-30 Toshiba Glass Co Ltd 光弾性観測装置
JPS63241452A (ja) * 1987-03-30 1988-10-06 Taiyo Yuden Co Ltd 分光光度計を用いた複屈折測定装置
JPH10332533A (ja) * 1997-06-03 1998-12-18 Unie Opt:Kk 複屈折評価装置
JP2003262553A (ja) * 2002-03-07 2003-09-19 Asahi Glass Co Ltd 透明板状体のエッジ応力測定器及び測定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61112936A (ja) * 1984-11-07 1986-05-30 Toshiba Glass Co Ltd 光弾性観測装置
JPS63241452A (ja) * 1987-03-30 1988-10-06 Taiyo Yuden Co Ltd 分光光度計を用いた複屈折測定装置
JPH10332533A (ja) * 1997-06-03 1998-12-18 Unie Opt:Kk 複屈折評価装置
JP2003262553A (ja) * 2002-03-07 2003-09-19 Asahi Glass Co Ltd 透明板状体のエッジ応力測定器及び測定方法

Also Published As

Publication number Publication date
WO2009063756A1 (ja) 2009-05-22

Similar Documents

Publication Publication Date Title
JPWO2009063756A1 (ja) ガラス板の製造方法およびガラス物品の残留応力測定方法
JP5169194B2 (ja) 板ガラス欠陥検出装置、板ガラスの製造方法
TWI572751B (zh) 石英玻璃坩堝及其應變測定裝置
KR20170053707A (ko) 금속체의 형상 검사 장치 및 금속체의 형상 검사 방법
JP6104494B2 (ja) 印刷機によって生成された印刷物を監視するための方法およびシステム
JP5615152B2 (ja) ガラス容器成形プロセスをモニタリングおよび制御する方法およびシステム
JP5905710B2 (ja) 均一光透過溶融延伸ガラスの製造方法
JP5920216B2 (ja) 形状測定装置、形状測定方法、およびガラス板の製造方法
US9903710B2 (en) Shape inspection apparatus for metallic body and shape inspection method for metallic body
US20110248168A1 (en) 3D Scanner
KR20190104324A (ko) 유리판의 검사 방법 및 그 제조 방법 및 유리판의 검사 장치
KR20120129803A (ko) 다결정 실리콘 박막 검사 방법 및 그 장치
KR102263507B1 (ko) 형상 측정 장치, 형상 측정 방법 및 유리판의 제조 방법
JP6405828B2 (ja) ルツボ測定方法
JP2016064932A (ja) シリカガラスルツボ
JP2012163339A (ja) 透明基板の検査装置、透明基板の検査方法、及びガラス基板の製造方法
WO2010117004A1 (ja) 光透過性板状物のリーム検出方法
JPH07280520A (ja) 薄膜の膜厚測定方法および測定装置ならびに光学フィルターの製造方法ならびに高分子フィルムの製造方法
JP6405827B2 (ja) シリカガラスルツボの製造方法
WO2022224636A1 (ja) 検査装置
JP2011061165A (ja) インプリント装置及び物品の製造方法
JP6336867B2 (ja) ルツボ測定装置
JP2007033223A (ja) 応力の測定方法および応力測定装置
JP2009174918A (ja) 欠陥検査装置、欠陥検査方法及び板状体の製造方法
WO2013100069A1 (ja) 炉内撮像方法、炉内撮像システムおよびガラス物品の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140819