JPWO2009031290A1 - 弾性波デバイス - Google Patents

弾性波デバイス Download PDF

Info

Publication number
JPWO2009031290A1
JPWO2009031290A1 JP2009531109A JP2009531109A JPWO2009031290A1 JP WO2009031290 A1 JPWO2009031290 A1 JP WO2009031290A1 JP 2009531109 A JP2009531109 A JP 2009531109A JP 2009531109 A JP2009531109 A JP 2009531109A JP WO2009031290 A1 JPWO2009031290 A1 JP WO2009031290A1
Authority
JP
Japan
Prior art keywords
wave device
acoustic wave
piezoelectric substrate
path plate
transport path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009531109A
Other languages
English (en)
Other versions
JP5283232B2 (ja
Inventor
近藤 淳
淳 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
Original Assignee
Shizuoka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC filed Critical Shizuoka University NUC
Priority to JP2009531109A priority Critical patent/JP5283232B2/ja
Publication of JPWO2009031290A1 publication Critical patent/JPWO2009031290A1/ja
Application granted granted Critical
Publication of JP5283232B2 publication Critical patent/JP5283232B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/36Devices for manipulating acoustic surface waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • B01L3/502792Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics for moving individual droplets on a plate, e.g. by locally altering surface tension
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/08Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors using travelling waves, i.e. Rayleigh surface waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0654Lenses; Optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0867Multiple inlets and one sample wells, e.g. mixing, dilution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/089Virtual walls for guiding liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0433Moving fluids with specific forces or mechanical means specific forces vibrational forces
    • B01L2400/0436Moving fluids with specific forces or mechanical means specific forces vibrational forces acoustic forces, e.g. surface acoustic waves [SAW]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0433Moving fluids with specific forces or mechanical means specific forces vibrational forces
    • B01L2400/0439Moving fluids with specific forces or mechanical means specific forces vibrational forces ultrasonic vibrations, vibrating piezo elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Non-Mechanical Conveyors (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

圧電基板の洗浄作業を不要として被搬送物質の搬送作業の効率を向上させることができるとともに、幅広い種類の被搬送物質を取り扱うことができ、かつ弾性表面波の伝播方向に沿って物理的に離れて存在する2つ以上の被搬送物質を同時に搬送可能とすることで弾性波デバイスの適用範囲・適応分野を拡大することができる弾性波デバイスを提供する。弾性波デバイス100は、圧電効果により弾性表面波を発生する圧電基板101上に、同弾性表面波を励振するための励振電極102を備えている。圧電基板101上には、励振電極102に隣接して搬送路プレート105が水層Wを介して配置されている。励振電極102が通電されると、圧電基板101上には弾性表面波が発生する。弾性表面波は、水層Wに縦波を放射し減衰する。水層W内に放射された縦波は搬送路プレート105に伝播され、同搬送路プレート105上に配置された液滴Dpを放射圧によって変位させる。

Description

本発明は、圧電効果により基板上に発生させた弾性表面波を利用して被搬送物質を搬送するとともに、同搬送される被搬送物質のセンシングを行うことができる弾性波デバイスに関する。
従来から、弾性表面波を利用して液滴などの被搬送物質を搬送する弾性波デバイスがある。被搬送物質を搬送する弾性波デバイスは、例えば、下記特許文献1に示されるように、圧電効果により弾性表面波を発生する圧電基板に同弾性表面波を励振するための励振電極を配置して構成されている。そして、励振電極に高周波信号を印加することにより圧電基板上に弾性表面波を発生させて、圧電基板上に配置した被搬送物質を変位させる。なお、弾性表面波(Surface Acoustic Wave:SAW)とは、弾性体の表面を伝播する縦波と横波からなる波である。また、圧電効果とは、水晶などの結晶に力または電場を加えると、応力または電場に応じた電圧または歪が生じる現象である。
特開2006−248751号公報
しかしながら、このような被搬送物質を搬送する弾性波デバイスにおいては、圧電基板上に被搬送物質を配置して搬送するため、被搬送物質の搬送ごとに被搬送物質が搬送される搬送経路を洗浄する必要がある。特に、被搬送物質が液体の場合においては、搬送経路上に搬送した被搬送物質の一部が残存し易いため、洗浄作業が煩雑である。このため、被搬送物質を弾性デバイスによって搬送する作業全体の効率が悪いという問題があった。また、圧電基板を劣化または損傷させる性質を有する被搬送物質の搬送が困難であり、実質的に被搬送物質の選択の幅が制限されるという問題あった。
さらに、従来の弾性波デバイスにおいては、弾性表面波の伝播方向に沿って物理的に離れて存在する2つ以上の被搬送物質を同時に搬送することができない。これは、弾性表面波が伝播する上流側に位置する被搬送物質によって弾性表面波が減衰するためと考えられる。このため、弾性波デバイスの適用範囲・適応分野が制限されるという問題もあった。
なお、搬送経路の洗浄作業の煩雑性を解消するため、下記特許文献2には、圧電基板上における被搬送物質の搬送経路上に同被搬送物質の物理量を検出するセンシング領域を設けるとともに、同搬送経路およびセンシング領域に洗浄液を供給するための励振電極を備えた弾性波デバイスが提案されている。しかしながら、搬送経路およびセンシング領域に洗浄液を通過させるのみでは充分な洗浄効果が発揮されないことがあるとともに、搬送経路およびセンシング領域に残存した洗浄液を除去する作業が必要であり、洗浄作業の煩雑性を解消する解決手法としては不十分である。
特開2006−226942号公報
本発明は上記問題に対処するためなされたもので、その目的は、圧電基板の洗浄作業を不要として被搬送物質の搬送作業の効率を向上させることができるとともに、幅広い種類の被搬送物質を取り扱うことができ、かつ弾性表面波の伝播方向に沿って物理的に離れて存在する2つ以上の被搬送物質を同時に搬送可能とすることで弾性波デバイスの適用範囲・適応分野を拡大することができる弾性波デバイスを提供することにある。
上記目的を達成するため、本発明の特徴は、圧電効果により弾性表面波を発生する圧電基板と、圧電基板の表面に弾性表面波を励振する励振電極と、励振電極により圧電基板の表面に発生した弾性表面波を用いて被搬送物質を搬送する弾性波デバイスにおいて、被搬送物質の搬送路を構成する搬送路プレートを、圧電基板の表面に発生した弾性表面波が伝播する伝播面に液層を介して配置したことにある。
この場合、前記弾性波デバイスにおいて、前記液層は、例えば、数μm以上ないし数十μm以下の厚さで形成するとよい。また、前記液層は、揮発し難い非圧縮性流体、例えば、水で構成するとよい。この場合、非圧縮性流体とは、圧縮率が15℃の雰囲気中において概ね2×10−9(1/N/m)以下の流体である。なお、圧縮率とは体積歪/圧力(1/N/m)であり、体積歪は圧縮による流体の体積変化/流体の圧縮前の体積である。また、水の圧縮率は、15℃で雰囲気中において5×10−10(1/N/m)である。
このように構成した本発明の特徴によれば、被搬送物質の搬送路を構成する搬送路プレートを弾性表面波が伝播する伝播面上に液層を介して配置している。これによれば、圧電基板の表面に発生させた弾性表面波は、液層を介して搬送路プレートに伝播して同搬送路プレート上の被搬送物質を変位させる。この場合、搬送路プレートは、液層の表面張力によって伝播面上に固定されているだけである。すなわち、伝播面上に対する搬送路プレートの脱着は極めて容易である。したがって、複数の被搬送物質を順次搬送する場合においては、被搬送物質の搬送ごとに新たな搬送路プレートに取り替えることによって新たな搬送路を容易に形成することができる。また、被搬送物質の特性に応じて搬送プレートを用意することができるため、従来のように圧電基板を劣化・損傷させる物質であっても搬送することができる。この結果、圧電基板の洗浄作業が不要となり被搬送物質の搬送作業の効率が向上するとともに、幅広い種類の被搬送物質を取り扱うことができる。
また、圧電基板に発生させた弾性表面波は水層Wに縦波を放射する。この縦波は、水層内を伝播しながら搬送プレートに伝播される。すなわち、搬送路プレートには、水層と接している部分から縦波が伝播される。このため、弾性表面波が伝播する下流側に位置する被搬送物質であっても変位させることができる。この結果、弾性表面波の伝播方向に沿って物理的に離れて存在する2つ以上の被搬送物質を同時に搬送することができ、弾性波デバイスの適用範囲・適応分野を拡大することができる。
また、この場合、前記弾性波デバイスにおいて、前記搬送路プレートは、例えば、光線を透過する物体で構成するとよい。これによれば、被搬送物質の搬送後、搬送路プレートを伝播面から取り外して被搬送物質に光を照射して被搬送物質の特性を調べることができる。また、被搬送物質を顕微鏡等で観察することもできる。さらに、使用済みの搬送路プレートを洗浄して再利用する場合においても、搬送プレートの劣化・損傷・洗浄の程度を確認し易い。これらにより、弾性波デバイスの適用範囲・適用分野を拡げることができる。
また、本発明の他の特徴は、前記弾性波デバイスにおいて、さらに、搬送路プレート上の被搬送物質に関する物理量を検出するセンサを備えたことにある。この場合、被搬送物質に関する物理量とは、被測定対象物固有の客観的に計測できる量、またはその量から計算できる量であり、例えば、質量、長さ、温度、位置、速度、磁界、電気抵抗や電気容量などの電気的特性、光の透過率・反射率などの光学的特性、放射能量などのX線的特性などである。
このように構成した本発明の他の特徴によれば、上記した効果に加えて、被搬送物質の搬送に加えて被搬送物質の性状を調べることができ、弾性波デバイスの適用範囲・適用分野を拡げることができる。
また、この場合、前記弾性波デバイスにおいて、前記センサは、例えば、搬送路プレート上に配置するとよい。これによれば、被搬送物質の計測の種類ごとに搬送路プレートを用意しておけば、励振電極が配置された圧電基板を複数の計測に共通して用いることができる。すなわち、経済的に被搬送物質の各種計測を行うことができる。
また、この場合、前記弾性波デバイスにおいて、さらに、搬送路プレート上に配置されたセンサに対応する圧電基板上の位置に、励振電極を配置するとよい。これによれば、被搬送物質を計測する位置が同計測位置に被測定物質を搬送する励振電極から離れていた場合であっても、計測後の被搬送物質を更に次の領域に搬送することができる。これにより、弾性波デバイスの適用範囲・適用分野を拡げることができる。
また、この場合、前記弾性波デバイスにおいて、さらに、前記励振電極および前記センサの作動を制御する制御装置を備えるようにするとよい。これによれば、被搬送物質の計測領域への搬送、同計測領域での計測、および同計測領域からの排出を自動化することができる。これにより、弾性波デバイスによる計測を効率的に行うことができるとともに、弾性波デバイスの適用範囲・適用分野を拡げることができる。
また、前記した各弾性波デバイスにおいて、前記搬送路プレートは、例えば、伝播面から張り出した状態で配置してもよい。これによれば、被搬送物質の搬送可能範囲が圧電基板上に限定されていた従来の弾性波デバイスに比べて、経済的に被搬送物質の搬送範囲を拡げることができる。この結果、弾性波デバイスの適用範囲・適用分野を拡げることができる。
また、前記した各弾性波デバイスにおいて、前記励振電極は、例えば、圧電基板に複数配置してもよい。これによれば、例えば、複数の被搬送物質ごとに励振電極を設けることにより、各被搬送物質ごとに搬送することができるとともに、各被搬送物質を混合して搬送することもできる。また、この場合、前記複数の励振電極は、互いに異なる励振電極によりそれぞれ励起された弾性表面波の合成または組み合わせによって搬送物質を搬送するための位置および向きで配置されるとよい。これによれば、例えば、複数の励振電極による複数の弾性表面波を合成または組み合わせることにより、被搬送物質の搬送方向を制御することができる。
なお、この場合、弾性表面波を合成して被搬送物質を搬送する場合とは、伝播方向や大きさの異なる2つ以上の弾性表面波を同時に特定の被搬送物質に与えるとことにより、同搬送物質の搬送方向および搬送速度を調整しながら搬送することである。また、弾性表面波を組み合わせて被搬送物質を搬送する場合とは、伝播方向や大きさの異なる2つ以上の弾性表面波を互いに異なるタイミングで被搬送物質に与えるとことにより、同搬送物質の搬送方向および搬送速度を調整しながら搬送することである。これらの結果、弾性波デバイスの適用範囲・適用分野を拡げることができる。
また、前記した各弾性波デバイスにおいて、前記搬送路プレートは、例えば、被搬送物質を所定の方向に導くためのガイドを備えるとよい。この場合、ガイドとしては、例えば、案内溝がある。また、被搬送物質が液体の場合には、親水性の物質を搬送路プレート上における搬送路に沿って塗布することができる。これによれば、被搬送物質を精度良く搬送することができる。
(A),(B)は本発明の一実施形態に係る弾性波デバイスの構成を模式的に示しており、(A)は弾性波デバイスの概略平面図であり、(B)は(A)に示す弾性波デバイスをA−A線方向から見た断面形状を示す概略断面図である。 本発明の他の実施形態に係る弾性波デバイスの構成を模式的に概略平面図である。 本発明の変形例に係る弾性波デバイスの構成を模式的に概略断面図である。 本発明の他の変形例に係る弾性波デバイスの構成を模式的に概略平面図である。 本発明の他の変形例に係る弾性波デバイスの構成を模式的に概略断面図である。 本発明の他の変形例に係る弾性波デバイスの構成を模式的に概略平面図である。 本発明の他の変形例に係る弾性波デバイスの構成を模式的に概略断面図である。 本発明の他の変形例に係る弾性波デバイスの構成を模式的に概略平面図である。
符号の説明
Dp…液滴、W…水層、100,200,300,400…弾性波デバイス、101…圧電基板、102…励振電極、103…電気配線、104…交流電源、105,205…搬送路プレート、107…ガイド、108a…レーザ光源、108b…フォトディテクタ、206a,206b…電極、207…LCRメータ。
以下、本発明に係る弾性波デバイスの一実施形態について図面を参照しながら説明する。図1(A),(B)は、本発明に係る弾性波デバイス100の構成を模式的に示す概略図である。なお、図1(A),(B)を含む各実施形態および各変形例に示す図は模式図であり、本発明の理解を容易にするために一部の構成要素を誇張して表わすなど、各構成要素間の寸法や比率は異なっている。この弾性波デバイス100は、弾性表面波を利用して液滴Dpを所定の方向(図示矢印方向)に搬送する装置である。ここで、弾性表面波(Surface Acoustic Wave:SAW)とは、弾性体の表面を伝播する縦波と横波からなる波である。
弾性波デバイス100は、四角板状に形成された圧電基板101を備えている。圧電基板101は、圧電効果によって弾性表面波または擬似弾性波を発生させる結晶体、例えば、ニオブ酸リチウム(LiNbo)、タンタル酸リチウム(LiTao)、水晶、ランガサイトなどにより構成されている。なお、圧電基板101は、縦波を含む弾性波を発生する基板、例えば、PZTなどの圧電セラミックスや酸化亜鉛(ZnO)、窒化アルミニウム(AlN)などからなる圧電薄膜をガラスやシリコンなどからなる基板表面の全面または部分的に積層したものを用いてもよい。また、圧電効果を生じる高分子基板を用いることもできる。なお、圧電効果とは、水晶などの結晶に力または電場を加えると、応力または電場に応じた電圧または歪が生じる現象であるが、本実施形態では、圧電基板101に電場を加えることにより電場に応じた電歪が生じる現象をいう。
圧電基板101の一方の端部(図示左側)の上面には、一対の励振電極102が設けられている。励振電極102は、圧電基板101に弾性表面波を励振するための電極であり、2つの櫛状の電極によって構成されている。具体的には、直線状に延びる基部から直交する方向に互いに平行に延びる複数の電極指によって構成された2つの電極が、互いの電極指間に入り込んだ状態で形成されている。この励振電極102は、Al,Au,Cu,Cr,Ti,Ptなどの金属単体、またはこれらの合金によって構成されており、液滴Dpを搬送する方向に弾性表面波を励振させる向きで設けられている。励振電極102は、フォトリソグラフィー、スパッタ法などにより圧電基板102の表面に形成される。
励振電極102には、電気配線103を介して交流電源104が接続されている。交流電源104は、所定の周波数の交流電気信号を出力する電源装置である。本実施形態においては、50kHzの周波数による交流電気信号を出力する。なお、これらの電気配線103および交流電源104は、図1(B)以後の図面においてその記載を省略する。
圧電基板101上における励振電極102により励振される弾性表面波の進行方向上には、水層Wを介して搬送路プレート105が配置されている。搬送路プレート105は、液滴Dpが搬送される面を構成する板材であり、四角板状に形成されたガラス材により構成されている。この搬送路プレート105と圧電基板101との間に設けられている水層Wは、厚さ約50μmの水の層である。この搬送路プレート105は、水層Wの表面張力によって圧電基板101上に固定されている。
次に、このように構成した弾性波デバイスの作動について説明する。まず、作業者は、搬送路プレート105と水とを用意する。そして、作業者は、搬送路プレート105における液滴Dpが載置される面とは反対の面に水を塗布した後、同水を塗布した面を圧電基板101の上面に対向する状態で載置する。これにより、圧電基板101と搬送路プレート105との間に水層Wが形成されるとともに、同水層Wの表面張力によって搬送路プレート105が圧電基板101上に固定されている。
次に、作業者は、搬送路プレート105上における励振電極102側の端部に液滴Dpを配置する。本実施形態においては、直径約3mmの水滴を液滴Dpとする。そして、作業者は、搬送路プレート105上に載置した液滴Dpの搬送を開始する。本実施形態においては、液滴Dpを搬送路プレート105における図示左端から図示右端に向けて搬送する。作業者は、交流電源104の作動を開始させることにより、圧電基板101上に弾性表面波を発生させる。圧電基板101上に発生した弾性表面波は、圧電基板101の表面を搬送路プレート105側(図示左側)に向かって伝播する。そして、水層Wに達した弾性表面波は、水層Wに縦波を放射しながら5〜10波長で減衰し消滅する。
水層Wに伝播した縦波は、水層W内において圧電基板101と搬送路プレート105との間を反射しながら図示左側に向けて伝播する。この場合、水層W中を伝播する縦波の一部が搬送路プレート105を介して搬送路プレート105上の液滴Dpに達する。これにより、液滴Dpは、同液滴Dp内に生じた放射圧によって搬送路プレート105上を図示左側に向かって変位を開始する。本発明者の実験によれば、液滴Dpは約1cm/sの速さで変位した。変位を開始した液滴Dpは、弾性表面波が生じている間図示左側に向かって変位を続ける。したがって、作業者は、液滴Dpが搬送路プレート105上における所望する位置(液滴Dpを二点鎖線で示した位置)に達した際には、交流電源104の作動を停止させることにより弾性表面波の発生を停止させる。これにより、変位を続ける液滴Dpの変位が停止する。
作業者は、停止した液滴Dpに対して所定の処理、例えば、顕微鏡による観察や各種計測などを行う。そして、新たな液滴Dpを搬送させる場合には、作業者は、圧電基板101に固定された搬送路プレート105を取り外し、新たな搬送路プレート105を圧電基板101上に固定する。この場合、圧電基板101に固定された搬送路プレート105は、水層Wの表面張力によって固定されているのみであるため、容易に取り外すことができる。また、新たな搬送路プレート105を圧電基板101上にセットする際には、前記と同様に新たな搬送路プレート105における液滴Dpが載置される面とは反対の面に水を塗布した後、同水を塗布した面を圧電基板101の上面に対向する状態で載置する。この場合、先に取り外した搬送路プレート105の水層Wによって圧電基板101の表面が濡れていることがある。このため、新たな搬送路プレート105を載置する前に圧電基板101の表面を拭き取った後、新たな搬送路プレート105を載置するようにするとよい。
上記作動説明からも理解できるように、上記実施形態によれば、液滴Dpの搬送路を構成する搬送路プレート105を弾性表面波が伝播する圧電基板101上に液層Wを介して配置している。これによれば、圧電基板101の表面に発生させた弾性表面波は、液層Wを介して搬送路プレート105に伝播して同搬送路プレート105上の液滴Dpを変位させる。この場合、搬送路プレート105は、液層Wの表面張力によって圧電基板101上に固定されているだけである。すなわち、圧電基板101に対する搬送路プレート105の脱着は極めて容易である。したがって、複数の液滴Dpを順次搬送する場合においては、液滴Dpの搬送ごとに新たな搬送路プレート105に取り替えることによって新たな搬送路を容易に形成することができる。また、液滴Dpの特性に応じて搬送プレート105を用意することができるため、従来例のように圧電基板101を劣化・損傷させる物質であっても搬送することができる。この結果、圧電基板101の洗浄作業が不要となり液滴Dpの搬送作業の効率が向上するとともに、幅広い種類の液滴Dpを取り扱うことができる。
次に、本発明の他の実施形態について説明する。上記実施形態においては、液滴Dpを搬送するための弾性波デバイス100について説明した。しかし、液滴Dpの搬送に加えて搬送路プレート105上にて同液滴Dpを計測することも可能である。搬送路プレート105上にて液滴Dpを計測することができる弾性波デバイス200を図2に示す。図2において、上記実施形態における弾性波デバイス100と同様の構成部分については同一の符号を付し、その説明は省略する。
この弾性波デバイス200における圧電基板101上には、前記搬送路プレート105と同様に、水層Wを介して搬送路プレート205が配置されている。搬送路プレート205は、前記搬送路プレート105と同様の四角板状に形成されたガラス材により構成されている。搬送路プレート205上における上面中央部には、図示上下方向に対向した状態で一対の電極206a,206bがそれぞれ設けられている。これらの電極206a,206bには、LCRメータ207が接続されている。LCRメータ207は、電極206aと電極206bとの間に位置した物質に通電することにより、同物質の電気的特性、具体的には、リアクタンスL,キャパシタンスC,レジスタンスRをそれぞれ測定する測定器である。すなわち、電極206a,206bは、液滴Dpの電気的特性を計測するためのセンサである。
このように構成した弾性波デバイス200を作動について説明する。まず、作業者は、上記実施形態と同様にして搬送路プレート205を圧電基板101上にセットする。そして、搬送路プレート205における電極206a,206bをLCRメータ207に半田付けなどによりそれぞれ接続する。次に、作業者は、上記実施形態と同様にして搬送路プレート205上における励振電極102側の端部に液滴Dpを配置する。そして、作業者は、上記実施形態と同様にして搬送路プレート205上に載置した液滴Dpの搬送を開始する。すなわち、作業者は、交流電源104の作動を開始させることにより、圧電基板101上に弾性表面波を発生させて液滴Dpの変位を開始させる。
次に、作業者は、液滴Dpを電極206a,206b上、すなわち、計測領域に位置決めする。具体的には、作業者は、搬送路プレート205上を変位する液滴Dpが電極206a,206b上に位置したとき、交流電源104の作動を停止させて液滴Dpの変位を停止させる(図において中央の二点鎖線で示す)。次に、作業者は、LCRメータ207を操作して液滴Dpに電流を流すことによりリアクタンスL,キャパシタンスC,レジスタンスRを測定する。これにより、作業者は、液滴Dpの電気的特性に基づいて同液滴Dpの性状を調べることができる。次に、作業者は、再び、交流電源104の作動を開始させることにより、圧電基板101上に弾性表面波を発生させて液滴Dpの変位を開始させる。これにより、液滴Dpは、計測領域外に搬送される(図において右端の二点鎖線で示す)。
そして、新たな液滴Dpについて計測する場合においては、上記実施形態と同様に、搬送路プレート205を新たなものに取り替えた後、前記と同様にして計測を行う。すなわち、電極206a,206からLCRメータ207を取り外した後、搬送路プレート205を圧電基板101から取り外す。そして、新たな搬送路プレート205を圧電基板101上にセットするとともに、電極206a,206bにLCRメータ207をそれぞれ接続する。
上記作動説明からも理解できるように、上記他の実施形態によれば、搬送路プレート205は、液層Wの表面張力によって圧電基板101上に固定されているだけである。すなわち、圧電基板101に対する搬送路プレート205の脱着は極めて容易である。したがって、複数の液滴Dpを順次搬送する場合においては、液滴Dpの搬送ごとに新たな搬送路プレート205に取り替えることによって新たな搬送路を容易に形成することができる。また、この新たな搬送路プレート205においては、先に計測した液滴Dpが付着していることが全くないため、新たな液滴Dpを精度良く測定することができる。さらに、上記実施形態と同様に、液滴Dpの特性に応じた搬送プレート205を用意することができるため、従来例のように圧電基板101を劣化・損傷させる物質であっても搬送および計測を行うことができる。この結果、圧電基板101の洗浄作業が不要となり液滴Dpの搬送作業および計測作業の効率が向上するとともに、幅広い種類の液滴Dpを取り扱うことができる。
さらに、本発明の実施にあたっては、上記各実施形態に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の応用・変更が可能である。
上記各実施形態においては、圧電基板101上に水層Wを介して搬送路プレート105,205を配置した。しかし、搬送路プレート105,205は、圧電基板101によって生じた弾性表面波が伝播する面であれば、その配置位置は限定されるものではない。例えば、図3に示すように、圧電基板101に同圧電基板101によって生じた弾性表面波が伝播可能な部材106を接続し、同部材106上に搬送路プレート105(205)を配置するように構成してもよい。これによっても、上記各実施形態と同様の効果が期待できる。
また、上記各実施形態においては、水層Wを水で構成した。しかし、水層Wは、弾性表面波から放射された縦波を伝播できる液体であれば、これに限定されるものではない。具体的には、揮発し難い液体であって非圧縮性の液体であればよい。この場合、非圧縮性流体とは、圧縮率が15℃の雰囲気中において概ね2×10−9(1/N/m)以下の流体である。なお、圧縮率とは体積歪/圧力(1/N/m)であり、体積歪は圧縮による流体の体積変化/流体の圧縮前の体積である。したがって、例えば、油圧装置内に用いられる油圧用の油などを用いることもできる。
また、液層Wの厚さも弾性表面波から放射された縦波を搬送路プレート105,205に伝播できる厚さであれば、上記各実施形態に限定されるものではない。本発明者による種々の実験によれば、直径が数mmの液滴Dpを周波数約50kHzの交流電気信号で搬送する場合、液層Wの厚さは、数μm以上ないし数十μm以下が好適であった。
また、上記各実施形態においては、液滴Dpが搬送される搬送面を平滑に形成した搬送路プレート105,205を用いた。しかし、液滴Dpを精度良く搬送するために搬送路プレート105,205上における液滴Dpの搬送面上に液滴Dpを案内するためのガイドを設けるようにしてもよい。例えば、図4に示すように、搬送路プレート105(205)上に液滴Dpを搬送させる搬送路に沿って親水性の物質からなるガイド107を設ける。これによれば、搬送路プレート105(205)上を変位する液滴Dpはガイド107に沿って変位するため、液滴Dpを精度良く目的位置(図において二点鎖線で示した位置)に導くことができる。また、この場合、搬送路プレート105(205)におけるガイド107が設けられた以外の部分に疎水性の物質を塗布しておいてもよい。これによれば、疎水性物質が塗布された部分における液滴Dpが弾かれ、より精度良く液滴Dpを目的位置に導くことができる。なお、被搬送物質が粒子などの固体である場合には、親水性のガイド107に代えて凹状形成した案内溝をガイド107とすることができる。このようなガイド107は、被搬送物質の搬送方向を変化させながら搬送する場合に特に有効である。
また、上記各実施形態においては、搬送路プレート105,205は圧電基板101の上面内に収まるように配置した。しかし、搬送路プレート105,205の配置位置は、圧電基板101で生じた弾性表面波に起因する縦波が伝播されるように配置されていれば、これに限定されるものではない。すなわち、図5に示すように、搬送路プレート105(205)を圧電基板101の端部から張り出した状態で配置してもよい。これによれば、液滴Dpの搬送可能範囲が圧電基板101上に限定されていた従来の弾性波デバイスに比べて、経済的に液滴Dpの搬送範囲を拡げることができる。この結果、弾性波デバイス100,200の適用範囲・適用分野を拡げることができる。
例えば、前記図5に示すように、搬送路プレート105(205)における圧電基板101の端部から張り出した部分の下方にレーザ光源108aを配置するとともに、同張り出した部分の上方にフォトディテクタ108bを配置する。そして、搬送路プレート105(205)における圧電基板101の端部から張り出した部分に搬送した液滴Dp(図において二点鎖線で示す)に対してレーザ光源108aからレーザ光を照射するとともに、液滴Dpを透過したレーザ光の光量をフォトディテクタ108bにて受光する。これにより、液滴Dpの光学的特性を計測することができる。すなわち、液滴Dpの光学的特性に基づいて液滴Dpの性状を調べることができる。なお、このような液滴Dpの光学的特性を計測できるセンサとして、前記レーザ光源108aおよびフォトディテクタ108bの他に表面プラズモンセンサなどを用いることができる。
また、上記各実施形態においては、搬送路プレート105,205を透明なガラス材で構成した。しかし、搬送路プレート105,205は、圧電基板101で生じた弾性表面波に起因する放射圧によって液滴Dpを変位させることができる物質であれば、これに限定されるものではない。すなわち、ガラス系の材料以外に、鉄系、非鉄系の材料によって搬送路プレート105,205を構成してもよい。これらによっても、上記各実施形態と同様の効果が期待できる。なお、弾性波デバイス100,200による搬送後に、液滴Dpに対して光学的計測または顕微鏡観察などを行う場合には、搬送路プレート105,205は、光線を透過する材料で構成するとよい。また、使用済みの搬送路プレート105,205を洗浄して再利用する場合においても、搬送プレート105,205の劣化・損傷・洗浄の程度を確認し易く都合がよい。
また、上記各実施形態においては、搬送路プレート105,205上に一滴の液滴Dpを配置して搬送するように構成した。しかし、本発明に係る弾性波デバイス100,200においては、弾性表面波の伝播方向に沿って物理的に離れて存在する2つ以上の液滴Dpを同時に搬送することも可能である。具体的には、例えば、前記図2に示す弾性波デバイス200において、電極206a,206bに液滴Dpを位置(図において中央の二点鎖線で示す)させた状態で、新たな液滴Dpを搬送路プレート205の図示左端(図において実線で示す)に配置する。そして、交流電源104を作動させることにより、圧電基板101から弾性表面波を発生させる。これにより、水層Wに放射された縦波は、水層W内を伝播しながら搬送プレート205に伝播される。すなわち、搬送路プレート205には、水層Wと接している部分から縦波が伝播される。このため、弾性表面波が伝播する下流側に位置する液滴Dp(電極206a,206b上に位置する液滴Dp)は、同液滴Dpより上流側から伝播する縦波によって変位する。このため、弾性表面波の伝播方向に沿って物理的に離れて存在する2つ以上の液滴Dpを同時に搬送することができる。これによれば、搬送路プレート205上に連続的に液滴Dpを供給することができるため、液滴Dpの搬送および計測を効率的に行うことができる。この結果、弾性波デバイス200(100)の適用範囲・適応分野を拡大することができる。
また、上記各実施形態においては、圧電基板101上に一つの励振電極102を設けた構成としたが、これに限定されるものではない。すなわち、複数の励振電極102を圧電基板101上に配置した構成であってもよい。例えば、図6には、前記図2に示した弾性波デバイス200における圧電基板101上に3つの励振電極102a,102b,102cを設けた弾性波デバイス300を示している。これら3つの励振電極102a,102b,102cには、図示しない交流電源104が接続されており、それぞれ独立して作動が制御できるように構成されている。また、この弾性波デバイス300における圧電基板101上には、励振電極102a,102b,102c側から電極206a,206bに向けて前記親水性を有するガイド107が設けられている。
このように構成された弾性波デバイス300を使用するに際しては、作業者は、励振電極102a,102b,102cの配置位置に対応する搬送路プレート205上に液滴Dp1,Dp2,Dp3をそれぞれ配置する。そして、作業者は、交流電源104の作動を開始させることにより、圧電基板101上に弾性表面波を発生させる。これにより、搬送路プレート205上の液滴Dp1,Dp2,Dp3は、ガイド107に沿って変位を開始する。そして、励振電極102a,102b,102c側から延びるガイド107が合流する点Pにて3つの液滴Dp1,Dp2,Dp3が一つの液滴Dp(図において左端の二点鎖線で示す)となる。この場合、一体となった液滴Dpは、搬送路プレート205に伝播される縦波により均一に撹拌され混合される。
次に、作業者は、交流電源104を操作して励振電極102b,102cの作動を停止させる。これにより、液滴Dpは、励振電極102aによって生じる弾性表面波のみによって電極206a,206bに向けて搬送される(図において中央の二点鎖線で示す)。以後の作動については、上記他の実施形態と同様であるので、その説明は省略する。このように、液滴Dp1,Dp2,Dp3ごとに励振電極102a,102b,102cを設けることにより、各液滴Dp1,Dp2,Dp3ごとに搬送することができるとともに、各液滴Dp1,Dp2,Dp3を混合して搬送することもできる。
また、上記変形例に代えて、または加えて、複数の励振電極102によって生じる各弾性表面波を合成することにより液滴Dpを搬送することもできる。この場合、各励振電極102により生じさせる弾性表面波の伝播方向や強度をそれぞれ調整することにより、搬送する液滴Dpの搬送方向や搬送速度を変更することも可能である。また、さらに、上記変形例に代えて、または加えて、複数の励振電極102によって生じる各弾性表面波を組み合わせて液滴Dpを搬送することもできる。例えば、液滴Dpの搬送方向ごとに励振電極102を配置することにより、所定の経路を辿って液滴Dpを搬送することもできる。これらの結果、弾性波デバイス300の適用範囲・適用分野を拡げることができる。
また、さらに、上記各変形例に代えて、または加えて、搬送路プレート105,205が配置される圧電基板101上に励振電極102を設けてもよい。例えば、図7に示すように、前記図2に示す弾性波デバイス200における搬送路プレート205に設けられた電極206a,206bの配置位置に対応する圧電基板101上の位置に励振電極102dを設けてもよい。これによれば、電極206a,206bによる液滴Dpの計測後(図において左側の二点鎖線で示す)、励振電極102dを作動させることにより電極206a,206b上の液滴Dpを変位させることができる(図において右側の二点鎖線で示す)。このように搬送路プレート105,205が配置される圧電基板101上に励振電極102を設ける構成は、励振電極102から離れた位置、換言すれば励振電極102によって生じる弾性表面波が伝播し難い位置に位置する液滴Dpを更に次の領域に搬送する場合に特に有効である。これにより、弾性波デバイス100,200の適用範囲・適用分野を拡げることができる。
また、上記各実施形態においては、直径約3mmの液滴Dpを被搬送物質とした。しかし、弾性表面波を利用して搬送路プレート105,205上で搬送可能な物質であれば、これに限定されるものではい。例えば、粒子状、粉状の被搬送物質を複数または単数で搬送することも可能である。これらによっても、上記各実施形態と同様の効果が期待できる。
また、上記各実施形態においては、搬送路プレート105,205の略全面に水層Wが接するように水層Wを形成した。しかし、搬送路プレート105,205上に配置した液滴Dpを変位させることが可能であれば、必ずしも搬送路プレート105,205の略全面に水層Wが接するように水層Wを形成する必要はない。すなわち、液滴Dpの搬送経路に応じて部分的に水層Wを形成するように構成してもよい。これによっても、上記各実施形態と同様の効果が期待できる。
また、上記実施形態においては、交流電源104から出力される交流電気信号の周波数を50kHzとしたが、当然、これに限定されるものではない。交流電源104から出力される交流電気信号の周波数は、弾性波デバイス100,200,300,400を構成する各部材、搬送の対象となる被搬送物質(液滴)Dpの特性、および搬送速度などの搬送条件などに応じて適宜設定されるものである。
また、上記他の実施形態においては、液滴Dpの電気的特性を計測するためにLCRメータ207を用いるとともに、同LCRメータ207のセンサを構成する電極206a,206bを搬送路プレート205上に配置した。しかし、LCRメータ207および電極206a,206bは、液滴Dpの物理的特性を計測する一例であり、これらに限定されるものではない。すなわち、計測装置やセンサは、液滴Dpについて計測を望む物理量に応じて適宜選定されるものである。ここで、液滴Dpに関する物理量には、液滴Dp固有の客観的に計測できる量、またはその量から計算できる量であり、例えば、質量、長さ、温度、位置、速度、磁界、電気抵抗や電気容量などの電気的特性、光の透過率・反射率などの光学的特性、放射能量などのX線的特性などがある。
例えば、上記他の実施形態において、液滴Dpを変位させる前に予めLCRメータ207を作動させておく。そして、作業者は、液滴Dpの変位を開始させLCRメータ207によるリアクタンスL,キャパシタンスC,レジスタンスRの各測定値の変化を監視することにより、液滴Dpが電極206a,206b上に位置したことを確認することができる。すなわち、電極206a,206bは、搬送プレート207上を変位する液滴Dpの位置を検出するためのセンサとしても用いることができる。
したがって、例えば、前記図5に示すように、液滴Dpを透過する光線の光量を測定するためにレーザ光源108aおよびフォトディテクタ108bを搬送路プレート105とは異なる部分に配置して弾性波デバイス100の構成の一部として用いることもできる。これらによれば、液滴Dpの搬送に加えて同液滴Dpの性状を調べることができ、弾性波デバイス100の適用範囲・適用分野を拡げることができる。なお、液滴Dpを計測する種類が複数存在する場合においては、上記他の実施形態のように、液滴Dpの計測の種類ごとに搬送路プレート205を用意するとともに同搬送路プレート205にセンサを配置すれば、励振電極102が配置された圧電基板101を複数の計測に共通して用いることができる。すなわち、経済的に液滴Dpの各種計測を行うことができる。また、複数のセンサを一つの搬送路プレート205上に配置することもできる。これによれば、一つの搬送路プレート205上にて複数の計測を行うことができ、一つの液滴Dpに対して様々な性状を調べることができる。
また、上記他の実施形態においては、交流電源104およびLCRメータ207の各作動を作業者による手動操作により制御した。しかし、これらの各作動をコンピュータにより総合的に制御することも可能である。すなわち、液滴Dpの計測領域への搬送、同計測領域での計測、および同計測領域からの排出をコンピュータ制御によって自動化することができる。これによれば、弾性波デバイス200による計測作業を効率的に行うことができるとともに、弾性波デバイス200の適用範囲・適用分野を拡げることができる。
なお、本発明において、上記した実施形態、他の実施形態および各変形例は、適宜組み合わせて実施できることは当然である。例えば、図8に示す弾性波デバイス400は、前記図6に示す弾性波デバイス300を2つ用意し、搬送路プレート205を共通として2つの弾性波デバイス300,300’を互いに対向した向きで配置するとともに、搬送路プレート205の中央部を挟むように前記レーザ光源108aおよびフォトディテクタ108bを配置して構成したものである。換言すれば、弾性波デバイス400は、弾性波デバイス300と弾性デバイス300’とに搬送路プレート205を架設したブリッジ状に構成されている。
この弾性波デバイス400は、図示左側の励振電極102a,102b,102cによる弾性表面波によって液滴Dp1,Dp2,Dp3を搬送し混合して液滴Dp(図において左端の二点鎖線で示す)を生成するとともに、同生成した液滴Dpを更に搬送して電極206a,206bにて電気的特性を計測する。その後、液滴Dpは更に搬送されて搬送路プレート205の中央部に位置決めされる(図において中央の二点鎖線で示す)。一方、弾性波デバイス400は、図示右側の励振電極102a’,102b’,102c’による弾性表面波によって液滴Dp1’,Dp2’,Dp3’を搬送し混合して液滴Dp’
(図において右端の二点鎖線で示す)を生成するとともに、同生成した液滴Dp’を更に搬送して電極206a’,206b’にて電気的特性を計測する。その後、液滴Dp’は更に搬送されて搬送路プレート205の中央部に位置決めされる(図において中央の二点鎖線で示す)。
すなわち、液滴Dpと液滴Dp’は、搬送路プレート205の中央部にて混合される(図において中央の二点鎖線で示す)。そして、同混合された液滴Dp’’は、レーザ光源108aおよびフォトディテクタ108bによって光学的特性が計測される。このように、上記した実施形態、他の実施形態および各変形例は、適宜組み合わせることにより、更に弾性波デバイス100,200,300,400の適用範囲・適用分野を拡げることができる。

Claims (12)

  1. 圧電効果により弾性表面波を発生する圧電基板と、
    前記圧電基板の表面に前記弾性表面波を励振する励振電極と、
    前記励振電極により前記圧電基板の表面に発生した前記弾性表面波を用いて被搬送物質を搬送する弾性波デバイスにおいて、
    前記被搬送物質の搬送路を構成する搬送路プレートを、前記圧電基板の表面に発生した前記弾性表面波が伝播する伝播面に液層を介して配置したことを特徴とする弾性波デバイス。
  2. 請求項1に記載した弾性波デバイスにおいて、さらに、
    前記搬送路プレート上の前記被搬送物質に関する物理量を検出するセンサを備える弾性波デバイス。
  3. 請求項2に記載した弾性波デバイスにおいて、
    前記センサは、前記搬送路プレート上に配置された弾性波デバイス。
  4. 請求項3に記載した弾性波デバイスにおいて、さらに、
    前記搬送路プレート上に配置されたセンサに対応する前記圧電基板上の位置に、前記励振電極を配置した弾性波デバイス。
  5. 請求項2ないし請求項4のうちのいずれか1つに記載した弾性波デバイスにおいて、さらに、
    前記励振電極および前記センサの作動を制御する制御装置を備えた弾性波デバイス。
  6. 請求項1ないし請求項5のうちのいずれか1つに記載した弾性波デバイスにおいて、
    前記搬送路プレートは、前記伝播面から張り出した状態で配置された弾性波デバイス。
  7. 請求項1ないし請求項6のうちのいずれか1つに記載した弾性波デバイスにおいて、
    前記励振電極は、前記圧電基板に複数配置された弾性波デバイス。
  8. 請求項7に記載した弾性波デバイスにおいて、
    前記複数の励振電極は、互いに異なる前記励振電極によりそれぞれ励起された前記弾性表面波の合成または組み合わせによって前記搬送物質を搬送するための位置および向きで配置される弾性波デバイス。
  9. 請求項1ないし請求項8のうちのいずれか1つに記載した弾性波デバイスにおいて、
    前記搬送路プレートは、前記被搬送物質を所定の方向に導くためのガイドを備える弾性波デバイス。
  10. 請求項1ないし請求項9のうちのいずれか1つに記載した弾性波デバイスにおいて、
    前記搬送路プレートは、光線を透過する物体で構成された弾性波デバイス。
  11. 請求項1ないし請求項10のうちのいずれか1つに記載した弾性波デバイスにおいて、
    前記液層は、水である弾性波デバイス。
  12. 請求項1ないし請求項11のうちのいずれか1つに記載した弾性波デバイスにおいて、
    前記液層は、数μm以上ないし数十μm以下の厚さで形成された弾性波デバイス。
JP2009531109A 2007-09-03 2008-09-01 弾性波デバイス Expired - Fee Related JP5283232B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009531109A JP5283232B2 (ja) 2007-09-03 2008-09-01 弾性波デバイス

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007228404 2007-09-03
JP2007228404 2007-09-03
JP2009531109A JP5283232B2 (ja) 2007-09-03 2008-09-01 弾性波デバイス
PCT/JP2008/002392 WO2009031290A1 (ja) 2007-09-03 2008-09-01 弾性波デバイス

Publications (2)

Publication Number Publication Date
JPWO2009031290A1 true JPWO2009031290A1 (ja) 2010-12-09
JP5283232B2 JP5283232B2 (ja) 2013-09-04

Family

ID=40428614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009531109A Expired - Fee Related JP5283232B2 (ja) 2007-09-03 2008-09-01 弾性波デバイス

Country Status (3)

Country Link
US (1) US8118156B2 (ja)
JP (1) JP5283232B2 (ja)
WO (1) WO2009031290A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011006525A1 (en) * 2009-07-13 2011-01-20 Foss Analytical A/S Analysis of an acoustically separated liquid
GB0914762D0 (en) 2009-08-24 2009-09-30 Univ Glasgow Fluidics apparatus and fluidics substrate
GB201103211D0 (en) 2011-02-24 2011-04-13 Univ Glasgow Fluidics apparatus, use of fluidics apparatus and process for the manufacture of fluidics apparatus
GB201108462D0 (en) * 2011-05-19 2011-07-06 Univ Glasgow Sample nebulization
US8785855B2 (en) * 2012-10-16 2014-07-22 Uvic Industry Partnerships Inc. Interlaced terahertz transceiver using plasmonic resonance
KR101602172B1 (ko) * 2014-01-29 2016-03-10 한국해양과학기술원 자기장과 토네이도 와류 기술을 이용한 장거리 준설토 운송 시스템 및 그 제어방법
DE102014109314A1 (de) * 2014-07-03 2016-01-07 Afag Holding Ag Schwingförderer
GB201420061D0 (en) 2014-11-11 2014-12-24 Univ Glasgow Nebulisation of liquids
US9620006B2 (en) 2014-11-21 2017-04-11 At&T Intellectual Property I, L.P. Systems, methods, and computer readable storage devices for controlling an appearance of a surface using sound waves
US9889564B2 (en) 2015-07-08 2018-02-13 Empire Technology Development Llc Stable grasp point selection for robotic grippers with machine vision and ultrasound beam forming
WO2017136509A1 (en) * 2016-02-02 2017-08-10 Sensor Electronic Technology, Inc. Curing ultraviolet sensitive polymer materials
US10054501B2 (en) * 2016-03-16 2018-08-21 Nissan North America, Inc. In-situ stress detector for an electrode and a method of use
CN109731621B (zh) * 2019-01-02 2020-07-24 京东方科技集团股份有限公司 微流控基板及其制备方法、微流控面板

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106453A (ja) 1987-10-19 1989-04-24 Mitsubishi Electric Corp リードフレームの製造方法
JPH01106453U (ja) * 1988-01-06 1989-07-18
JPH10327590A (ja) * 1997-05-22 1998-12-08 Yoshikazu Matsui 弾性表面波アクチュエータ
KR20040096614A (ko) * 2002-03-11 2004-11-16 가부시기가이샤 아이 에이 아이 초음파 부상장치
CA2391171C (en) * 2002-06-20 2010-01-12 Cashcode Company Inc. Motion sensor for flat objects
JP2004173409A (ja) 2002-11-20 2004-06-17 Yamanashi Tlo:Kk 弾性表面波の干渉を利用した液膜の流動制御方法および装置
DE10352944A1 (de) * 2003-11-11 2005-06-23 Technische Universität München Vorrichtung zum berührungslosen Transportieren, Handhaben und Lagern von Bauteilen und Materialien
JP2006009727A (ja) * 2004-06-28 2006-01-12 Fuji Xerox Co Ltd 液体制御ユニット及び液体制御装置
JP4733404B2 (ja) 2005-02-21 2011-07-27 日本無線株式会社 弾性波センサ
JP4860935B2 (ja) 2005-03-14 2012-01-25 日本無線株式会社 搬送システム
JP4886332B2 (ja) 2005-07-19 2012-02-29 パナソニック電工株式会社 弾性表面波アクチュエータ
JP2007068334A (ja) * 2005-08-31 2007-03-15 Japan Radio Co Ltd 搬送システム
JP2007129788A (ja) * 2005-11-01 2007-05-24 Japan Radio Co Ltd 弾性波デバイス
US7764005B2 (en) * 2006-08-08 2010-07-27 Palo Alto Research Center Incorporated Traveling wave grids with agitated surface using piezoelectric effect and acoustic traveling waves
JP2008101969A (ja) * 2006-10-18 2008-05-01 Japan Radio Co Ltd 液体搬送方法および液体搬送装置

Also Published As

Publication number Publication date
WO2009031290A1 (ja) 2009-03-12
US8118156B2 (en) 2012-02-21
JP5283232B2 (ja) 2013-09-04
US20100206696A1 (en) 2010-08-19

Similar Documents

Publication Publication Date Title
JP5283232B2 (ja) 弾性波デバイス
US8998483B2 (en) Concentration and dispersion of small particles in small fluid volumes using acoustic energy
EP2221614A1 (en) Microstructure inspecting device, and microstructure inspecting method
KR100706561B1 (ko) 마이크로 음향 센서 장치를 작동시키기 위한 방법 및 장치
JP6362533B2 (ja) 残留応力評価方法及び残留応力評価装置
JP2003340386A (ja) 超音波洗浄装置及び超音波洗浄方法
JP6596786B2 (ja) 弾性表面波センサおよび検出方法
CN110470731B (zh) 传感器装置
JP2007225546A (ja) 弾性表面波センサ
Davaji et al. Towards a surface and bulk excited SAW gyroscope
JP2017187420A (ja) 音振感知装置
JP2005331445A (ja) フローセル型qcmセンサ
JP4628075B2 (ja) センサ
JP2010185772A (ja) センサー素子およびそれを備えたセンサー装置
Ghosh et al. Acousto-optic modulation in lithium niobate on silicon nitride heterogeneous waveguides
JP2005351799A (ja) 表面弾性波素子、バイオセンサー装置及び表面弾性波素子による測定方法
JP6544687B2 (ja) 液滴検出装置及び液滴検出方法
JP6150372B2 (ja) 非接触液滴分注装置及び非接触液滴分注方法
JP2006038584A (ja) 化学センサー及び測定装置
Li et al. Heating of Rayleigh surface acoustic wave devices in 128 YX LiNbO 3 and ST X quartz substrates
WO2004054704A1 (ja) 微粒子のハンドリング方法及び装置
US20230304970A1 (en) Submersible environmental sensor incorporating anti-fouling means
JP4860935B2 (ja) 搬送システム
JP2017187421A (ja) 超音波送受波装置
SU864114A1 (ru) Способ возбуждени сдвиговых волн в изделии

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130524

R150 Certificate of patent or registration of utility model

Ref document number: 5283232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees