JPWO2008041749A1 - Epoxy resin, phenol resin, production method thereof, epoxy resin composition and cured product - Google Patents

Epoxy resin, phenol resin, production method thereof, epoxy resin composition and cured product Download PDF

Info

Publication number
JPWO2008041749A1
JPWO2008041749A1 JP2008537550A JP2008537550A JPWO2008041749A1 JP WO2008041749 A1 JPWO2008041749 A1 JP WO2008041749A1 JP 2008537550 A JP2008537550 A JP 2008537550A JP 2008537550 A JP2008537550 A JP 2008537550A JP WO2008041749 A1 JPWO2008041749 A1 JP WO2008041749A1
Authority
JP
Japan
Prior art keywords
epoxy resin
phenol resin
general formula
phenol
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008537550A
Other languages
Japanese (ja)
Other versions
JP5515058B2 (en
Inventor
中原 和彦
和彦 中原
梶 正史
正史 梶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2008537550A priority Critical patent/JP5515058B2/en
Publication of JPWO2008041749A1 publication Critical patent/JPWO2008041749A1/en
Application granted granted Critical
Publication of JP5515058B2 publication Critical patent/JP5515058B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/28Chemically modified polycondensates
    • C08G8/30Chemically modified polycondensates by unsaturated compounds, e.g. terpenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/063Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols with epihalohydrins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/302Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O

Abstract

流動性、フィラー高充填性、耐湿性、耐熱性、難燃性に優れた硬化物を与え、電子部品の封止、回路基板材料等の用途に好適なエポキシ樹脂及びその組成物を提供する。このエポキシ樹脂は、下記一般式(2)で表されるビスフェノール化合物1モルに対して、0.2〜6.0モルのインデン又はアセナフチレンを反応させて得られるフェノール樹脂とエピクロルヒドリンを反応させることにより得られ、下記一般式(3)で表される。(但し、Xは、単結合、−CH2−、−CH(CH3)−、−C(CH3)2−、−CO−、−O−、−S−、−SO2−を示し、R1〜R4は、H又は水素原子又はインデン又はアセナフチレンから生じる置換基である。)An epoxy resin suitable for applications such as sealing of electronic parts and circuit board materials and a composition thereof are provided by providing a cured product excellent in fluidity, high filler filling, moisture resistance, heat resistance and flame retardancy. This epoxy resin is obtained by reacting a phenol resin obtained by reacting 0.2 to 6.0 moles of indene or acenaphthylene with epichlorohydrin with respect to 1 mole of a bisphenol compound represented by the following general formula (2). And is represented by the following general formula (3). (X represents a single bond, —CH 2 —, —CH (CH 3) —, —C (CH 3) 2 —, —CO—, —O—, —S—, —SO 2 —, wherein R 1 to R 4 are , H or a hydrogen atom or a substituent derived from indene or acenaphthylene.)

Description

本発明は、低粘度性に優れるとともに、耐湿性、耐熱性、難燃性等にも優れた硬化物を与えるエポキシ樹脂、その中間体として適するフェノール樹脂、それらの製造方法並びにこのエポキシ樹脂を用いたエポキシ樹脂組成物及びその硬化物に関するものであり、半導体封止、プリント配線板等の電気電子分野の絶縁材料等に好適に使用される。   The present invention is an epoxy resin that provides a cured product that is excellent in low viscosity and also excellent in moisture resistance, heat resistance, flame retardancy, and the like, a phenol resin suitable as an intermediate thereof, a method for producing them, and the use of this epoxy resin The present invention relates to an epoxy resin composition and a cured product thereof, and is suitably used for insulating materials in the electric and electronic fields such as semiconductor sealing and printed wiring boards.

半導体封止材料には、エポキシ樹脂を主剤とする樹脂組成物が広く用いられてきているが、プリント基板への部品の実装の方法として、従来の挿入方式から表面実装方式への移行が進展している。表面実装方式においては、パッケージ全体が半田温度まで加熱され、吸湿した水分の急激な体積膨張により引き起こされるパッケージクラックが大きな問題点となってきている。更に、半導体素子の高集積化、素子サイズの大型化、配線幅の微細化が急速に進展しており、パッケージクラックの問題が一層深刻化してきている。パッケージクラックを防止する方法として樹脂構造の強靱化、無機フィラーの高充填化による高強度化、低吸水率化等の方法がある。   Resin compositions based on epoxy resins have been widely used as semiconductor encapsulating materials, but the transition from the conventional insertion method to the surface mounting method has progressed as a method for mounting components on printed circuit boards. ing. In the surface mounting method, the entire package is heated to the solder temperature, and a package crack caused by a rapid volume expansion of moisture absorbed has become a serious problem. Furthermore, high integration of semiconductor elements, increase in element size, and miniaturization of wiring width are rapidly progressing, and the problem of package cracks is becoming more serious. As a method for preventing package cracks, there are methods such as toughening the resin structure, increasing strength by increasing the filling of inorganic filler, and reducing water absorption.

中でも、無機フィラーの高充填化が強く指向されており、そのためには低吸湿性、高耐熱性に優れ、かつ低粘度であるエポキシ樹脂が望まれている。低粘度エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等が一般に広く用いられているが、これらのエポキシ樹脂において低粘度のものは常温で液状であり、トランスファー成形用の樹脂組成物とすることは困難である。更に、これらのエポキシ樹脂は耐熱性、機械的強度、耐湿性の点で十分ではない。   In particular, high filling of inorganic fillers is strongly directed, and for this purpose, an epoxy resin that is excellent in low hygroscopicity, high heat resistance and low viscosity is desired. As low-viscosity epoxy resins, bisphenol A-type epoxy resins, bisphenol F-type epoxy resins and the like are generally widely used. Of these epoxy resins, low-viscosity resins are liquid at room temperature, and are resin compositions for transfer molding. It is difficult to make things. Furthermore, these epoxy resins are not sufficient in terms of heat resistance, mechanical strength, and moisture resistance.

上記背景から低吸湿性、高耐熱性に優れたものとして、ビフェニル系エポキシ樹脂(特開昭58−39677号公報)、ビスフェノール系エポキシ樹脂(特開平6−345850号公報)が提案されているが、金属基材との密着性の点で十分ではない。また、密着性向上の観点から、硫黄原子を含有するスルフィド構造を有するエポキシ樹脂(特開平6−145300号公報)が提案されているが、耐熱性が十分ではない。また、従来より知られたスルホン構造を有するエポキシ樹脂は高い耐熱性を有するものの、吸水率が高くかつ密着性も十分ではない。   From the above background, biphenyl type epoxy resins (Japanese Patent Laid-Open No. 58-39677) and bisphenol type epoxy resins (Japanese Patent Laid-Open No. 6-345850) have been proposed as being excellent in low moisture absorption and high heat resistance. In terms of adhesion to the metal substrate, it is not sufficient. Further, from the viewpoint of improving adhesion, an epoxy resin having a sulfide structure containing a sulfur atom (Japanese Patent Laid-Open No. 6-145300) has been proposed, but the heat resistance is not sufficient. Moreover, although the epoxy resin which has a conventionally known sulfone structure has high heat resistance, its water absorption is high and its adhesiveness is not sufficient.

特開昭58−39677号公報JP 58-39677 A 特開平6−345850号公報JP-A-6-345850 特開平6−145300号公報JP-A-6-145300

したがって、本発明の目的は、流動性、フィラー高充填性、耐湿性、耐熱性、難燃性等に優れた硬化物を与える半導体素子の電子部品封止用に好適に使用されるエポキシ樹脂及びその組成物を提供することにある。   Accordingly, an object of the present invention is to provide an epoxy resin suitably used for electronic component sealing of a semiconductor element that gives a cured product excellent in fluidity, high filler filling property, moisture resistance, heat resistance, flame retardancy, and the like. It is to provide the composition.

すなわち、本発明は、下記一般式(3)で表されるエポキシ樹脂に関する。

Figure 2008041749
(但し、R〜Rは、独立に水素原子又は下記式(a)若しくは(b)で表される置換基を示すが、少なくとも1つは上記置換基である。Xは、単結合、−CH−、−CH(CH)−、−C(CH−、−CO−、−O−、−S−又は−SO−を示し、nは、0〜50の数を示す。)
Figure 2008041749
That is, this invention relates to the epoxy resin represented by following General formula (3).
Figure 2008041749
(However, R 1 to R 4 independently represent a hydrogen atom or a substituent represented by the following formula (a) or (b), at least one of which is the above substituent. X is a single bond, —CH 2 —, —CH (CH 3 ) —, —C (CH 3 ) 2 —, —CO—, —O—, —S— or —SO 2 — is shown, and n is a number from 0 to 50. Show.)
Figure 2008041749

また、本発明は、下記一般式(1)で表されるフェノール樹脂に関する。

Figure 2008041749
(但し、R〜R及びXは、式(3)と同じ意味を有する。)Moreover, this invention relates to the phenol resin represented by following General formula (1).
Figure 2008041749
(However, R 1 to R 4 and X have the same meaning as in formula (3).)

また、本発明は、下記一般式(2)、

Figure 2008041749
(但し、Xは、式(3)と同じ意味を有する。)で表されるビスフェノール化合物1モルに対して、インデン又はアセナフチレンから選ばれる芳香族オレフィン0.2〜4モルを反応させることを特徴とする上記式(a)又は(b)で表される置換基を有するフェノール樹脂の製造方法に関する。Further, the present invention provides the following general formula (2),
Figure 2008041749
(However, X has the same meaning as in the formula (3).) 0.2 mol to 4 mol of an aromatic olefin selected from indene or acenaphthylene is reacted with 1 mol of the bisphenol compound represented by the formula (3). It relates to a method for producing a phenol resin having a substituent represented by the above formula (a) or (b).

更に、本発明は、上記一般式(1)で表されるフェノール樹脂又は上記フェノール樹脂の製造方法で得られたフェノール樹脂と、エピクロルヒドリンを反応させることを特徴とするエポキシ樹脂の製造方法である。また、このエポキシ樹脂の製造方法によって得られたエポキシ樹脂に関する。   Furthermore, this invention is a manufacturing method of the epoxy resin characterized by making the phenol resin represented by the said General formula (1) or the phenol resin obtained by the manufacturing method of the said phenol resin react with epichlorohydrin. Moreover, it is related with the epoxy resin obtained by the manufacturing method of this epoxy resin.

更に、本発明は、エポキシ樹脂及び硬化剤よりなるエポキシ樹脂組成物であって、エポキシ樹脂成分として上記のエポキシ樹脂を配合したことを特徴とするエポキシ樹脂組成物及びこれを硬化させて得られる硬化物に関する。   Furthermore, the present invention is an epoxy resin composition comprising an epoxy resin and a curing agent, wherein the epoxy resin composition is blended with the above epoxy resin as an epoxy resin component, and curing obtained by curing the epoxy resin composition. Related to things.

まず、本発明のエポキシ樹脂について説明する。
本発明のエポキシ樹脂は、上記一般式(3)で表される。ここで、R〜Rは水素原子又は上記式(a)若しくは(b)で表される置換基を示すが、少なくとも1つは式(a)若しくは(b)で表される置換基である。低粘度性の観点から、R1〜R4は一般式(a)で表される置換基が好ましく、低吸湿性、難燃性の観点からは、一般式(b)の置換基が好ましい。なお、上記一般式(3)において、括弧内のR1とR及びRとRは入れ替わっていてもよい。
First, the epoxy resin of this invention is demonstrated.
The epoxy resin of this invention is represented by the said General formula (3). Here, R 1 to R 4 represent a hydrogen atom or a substituent represented by the above formula (a) or (b), but at least one is a substituent represented by the formula (a) or (b). is there. From the viewpoint of low viscosity, R 1 to R 4 are preferably a substituent represented by the general formula (a), and from the viewpoint of low hygroscopicity and flame retardancy, a substituent of the general formula (b) is preferable. In the general formula (3), R 1 and R 3 and R 2 and R 4 in parentheses may be interchanged.

なお、R〜Rは、水素原子と式(a)で表される置換基とからなってもよく、水素原子と式(b)で表される置換基とからなってもよく、水素原子と式(a)と式(b)で表される置換基とからなってもよく、式(a)と式(b)で表される置換基からなってもよく、式(a)で表される置換基のみ又は式(b)で表される置換基のみからなってもよい。R 1 to R 4 may be composed of a hydrogen atom and a substituent represented by the formula (a), may be composed of a hydrogen atom and a substituent represented by the formula (b), It may consist of an atom and a substituent represented by formula (a) and formula (b), may consist of a substituent represented by formula (a) and formula (b), and in formula (a) You may consist only of the substituent represented only by the substituent represented by Formula (b).

また、Xは、単結合、−CH−、−CH(CH)−、−C(CH−、−CO−、−O−、−S−又は−SO−から選ばれた連結基を示す。低粘度性の観点からは、単結合、−CH−、−O−又は−S−が好適に選択される。X is selected from a single bond, —CH 2 —, —CH (CH 3 ) —, —C (CH 3 ) 2 —, —CO—, —O—, —S— or —SO 2 —. A linking group is shown. From the viewpoint of low viscosity, a single bond, —CH 2 —, —O— or —S— is preferably selected.

nは、0〜50の数を表し、好ましいnの値は、適用する用途に応じて異なる。例えば、フィラーの高充填率化が要求される半導体封止材の用途には、低粘度であるものが望ましく、nの値は、0〜5、好ましくは0.1〜2、更に好ましくは、nが0のものが50wt%以上含まれるものである。本発明のエポキシ樹脂がnの値が異なる混合物である場合は、nは平均値(数平均)を意味する。この場合、より好ましくはnが0.1〜1のものである。また、プリント配線板等の用途には、高分子量のエポキシ樹脂が好適に使用され、この場合のnの値は、2〜50、好ましくは2〜40である。nの値が異なる混合物である場合は、平均値nとして上記の範囲がよい。この場合、平均値が50以下となれば、nが50以上の整数となる分子が含まれてもよい。   n represents a number from 0 to 50, and a preferable value of n varies depending on the application to be applied. For example, for a semiconductor encapsulant application that requires a high filling rate of the filler, a material having a low viscosity is desirable, and the value of n is 0 to 5, preferably 0.1 to 2, and more preferably, Those in which n is 0 are contained in an amount of 50 wt% or more. When the epoxy resin of this invention is a mixture from which the value of n differs, n means an average value (number average). In this case, n is more preferably from 0.1 to 1. Moreover, a high molecular weight epoxy resin is used suitably for uses, such as a printed wiring board, The value of n in this case is 2-50, Preferably it is 2-40. In the case of a mixture having different values of n, the above range is preferable as the average value n. In this case, if the average value is 50 or less, a molecule where n is an integer of 50 or more may be included.

本発明のエポキシ樹脂は、例えば、上記一般式(2)で表されるビスフェノール化合物にインデン又はアセナフチレンから選ばれる芳香族オレフィン(以下、単に芳香族オレフィンということもある)を反応させて得られるフェノール樹脂を中間体として得て、このフェノール樹脂とエピクロルヒドリンを反応させるなどの方法により製造することができる。インデン、アセナフチレンは、芳香族オレフィンの1種であるので、フリーデルクラフツ反応により、一般式(2)で表されるビスフェノール化合物のベンゼン環に置換可能である。そして、式(a)又は(b)で表される置換基(以下、単に置換基ということもある)として、ベンゼン環に置換する。なお、この置換基は立体障害により1つのベンゼン環に2つまでが置換可能である。式(a)表される置換基は、インデンから1個の水素原子がとれた構造であり、式(b)表される置換基は、アセナフチレンから1個の水素原子がとれた構造であり、それぞれインデン又はアセナフチレンから生ずる基ということができる。   The epoxy resin of the present invention is, for example, a phenol obtained by reacting a bisphenol compound represented by the general formula (2) with an aromatic olefin selected from indene or acenaphthylene (hereinafter sometimes referred to simply as an aromatic olefin). A resin can be obtained as an intermediate and can be produced by a method such as reacting this phenol resin with epichlorohydrin. Since indene and acenaphthylene are one kind of aromatic olefin, they can be substituted for the benzene ring of the bisphenol compound represented by the general formula (2) by Friedel-Crafts reaction. Then, the benzene ring is substituted as a substituent represented by the formula (a) or (b) (hereinafter sometimes simply referred to as a substituent). Note that up to two of these substituents can be substituted on one benzene ring due to steric hindrance. The substituent represented by formula (a) is a structure in which one hydrogen atom is removed from indene, and the substituent represented by formula (b) is a structure in which one hydrogen atom is removed from acenaphthylene, It can be said that each group is derived from indene or acenaphthylene.

本発明のフェノール樹脂は、上記一般式(1)で表される。一般式(1)において、R〜R及びXは、一般式(3)のR〜R及びXと対応する。したがって、好ましいR〜R及びX等も一般式(3)のR〜R及びXと同様である。The phenol resin of the present invention is represented by the above general formula (1). In the general formula (1), R 1 to R 4 and X corresponds to the R 1 to R 4 and X in the general formula (3). Accordingly, the same as the R 1 to R 4 and X of preferred R 1 to R 4 and X or the like is also the general formula (3).

一般式(2)で、Xは、単結合、−CH−、−CH(CH)−、−C(CH−、−CO−、−O−、−S−又は−SO−を示すが、低粘度性の観点からは、単結合、−CH−、−O−又は−S−が好適に選択される。一般式(2)において、水酸基の置換位置は、連結基Xに対して、4,4’−位、3,4’−位、3,3’−位、2,4’−、2,3’−位、2,2’−位のものがある。これらは、単一異性体からなる化合物であってもよいし、これらの異性体の混合物であってもよいが、上記式(a)又は(b)の立体障害が大きいため、エポキシ樹脂とした際の反応性の観点からは、2,4’−体又は2,2’−体が含まれているものが好ましい。この場合、2,4’−体と2,2’−体の合計量が全体の30モル%以上、好ましくは50モル%以上であることがよい。なお、上記は一般式(1)及び(3)のXについても、同様である。In the general formula (2), X is a single bond, —CH 2 —, —CH (CH 3 ) —, —C (CH 3 ) 2 —, —CO—, —O—, —S— or —SO 2. - are illustrated, from the viewpoint of low viscosity, single bond, -CH 2 -, - O-or -S- is preferably selected. In the general formula (2), the substitution position of the hydroxyl group is 4,4′-position, 3,4′-position, 3,3′-position, 2,4′-, 2,3 with respect to the linking group X. Some are in the '-position and the 2,2'-position. These may be a compound consisting of a single isomer or a mixture of these isomers. However, since the steric hindrance of the above formula (a) or (b) is large, an epoxy resin is used. From the viewpoint of reactivity at the time, those containing 2,4′-isomer or 2,2′-isomer are preferable. In this case, the total amount of the 2,4′-isomer and the 2,2′-isomer is preferably 30 mol% or more, and preferably 50 mol% or more. The same applies to X in the general formulas (1) and (3).

本発明のフェノール樹脂は、上記一般式(2)で表されるビスフェノール化合物にインデン又はアセナフチレンから選ばれる芳香族オレフィンを、ビスフェノール化合物1モルに対し芳香族オレフィンを1〜4モル反応させるなどして得ることができる。   In the phenol resin of the present invention, an aromatic olefin selected from indene or acenaphthylene is reacted with 1 to 4 mol of an aromatic olefin with respect to 1 mol of the bisphenol compound to the bisphenol compound represented by the general formula (2). Obtainable.

本発明のフェノール樹脂の製造方法は、上記一般式(2)で表されるビスフェノール化合物にインデン又はアセナフチレンから選ばれる芳香族オレフィンを、ビスフェノール化合物1モルに対し芳香族オレフィンを0.2〜4モル反応させることにより、上記置換基をベンゼン環に置換させる方法である。   In the method for producing a phenol resin of the present invention, an aromatic olefin selected from indene or acenaphthylene is added to the bisphenol compound represented by the general formula (2), and the aromatic olefin is added to 0.2 to 4 mol per 1 mol of the bisphenol compound. In this method, the benzene ring is substituted with the above substituent by reacting.

本発明のフェノール樹脂の製造方法において、ビスフェノール化合物1モルに対する芳香族オレフィンの反応量は0.2〜4.0モルの範囲であるが、好ましくは、0.5〜4.0モル、更に好ましくは、1.0〜3.0モルの範囲である。これより少ないと、エポキシ樹脂とした際の耐湿性、難燃性の向上効果が十分に発現されない。逆に、これより多いと粘度が高くなりフィラーの高充填性や成形性が低下する。   In the method for producing a phenol resin of the present invention, the reaction amount of the aromatic olefin with respect to 1 mol of the bisphenol compound is in the range of 0.2 to 4.0 mol, preferably 0.5 to 4.0 mol, more preferably Is in the range of 1.0 to 3.0 moles. When less than this, the improvement effect of moisture resistance and a flame retardance at the time of setting it as an epoxy resin is not fully expressed. On the other hand, when the amount is larger than this, the viscosity becomes high and the high filling property and moldability of the filler are lowered.

一方、ビスフェノール化合物と芳香族オレフィンを反応させる際の反応原料として使用量は、目的とする置換モル数(ビスフェノール化合物1モルに対する、置換基のモル数)とほぼ対応するので、それによって使用量を定めればよい。なお、いずれかの原料が未反応で残る反応条件を採用することもできるが、この場合でもビスフェノール化合物1モルに対する芳香族オレフィンの使用量は0.2〜6.0モルの範囲とすることがよい。いずれかの原料が未反応で残る場合は、それを分離することが望ましいが、少量であれば残存したままでも差し支えない。また、芳香族オレフィンを多量に使用すると、未反応の芳香族オレフィンが残存するとか、芳香族オレフィンのホモオリゴマーが生成することがあり、エポキシ樹脂としての耐熱性や難燃性を低下させる原因となる。したがって、ビスフェノール化合物1モルに対する芳香族オレフィンの原料としての使用量は多くとも6.0モルである。   On the other hand, the amount used as a reaction raw material when reacting the bisphenol compound and the aromatic olefin substantially corresponds to the desired number of substituted moles (number of moles of substituents relative to 1 mole of bisphenol compound). You just have to decide. In addition, although reaction conditions in which any of the raw materials remain unreacted can be employed, the amount of the aromatic olefin used per 1 mol of the bisphenol compound may be in the range of 0.2 to 6.0 mol even in this case. Good. If any of the raw materials remain unreacted, it is desirable to separate them, but they can remain as long as they are in small amounts. In addition, if a large amount of aromatic olefin is used, unreacted aromatic olefin may remain or a homo-oligomer of aromatic olefin may be generated, which causes a decrease in heat resistance and flame retardancy as an epoxy resin. Become. Therefore, the amount of the aromatic olefin used as a raw material per 1 mol of the bisphenol compound is at most 6.0 mol.

ビスフェノール化合物に反応させる芳香族オレフィンとしては、インデン、アセナフチレン又はこれらの混合物である。低粘度性の観点からは、インデンを主成分とするものが好ましく、難燃性の観点からは、アセナフチレンを主成分とするものが好ましい。   The aromatic olefin to be reacted with the bisphenol compound is indene, acenaphthylene, or a mixture thereof. From the viewpoint of low viscosity, those containing indene as the main component are preferred, and those containing acenaphthylene as the main component are preferred from the viewpoint of flame retardancy.

反応に用いる芳香族オレフィン中には、他の反応性成分として、スチレン、α−メチルスチレン、ジビニルベンゼン、クマロン、ベンゾチオフェン、インドール、ビニルナフタレン等の不飽和結合含有成分を含んでいても良いが、全反応成分中のインデン及びアセナフチレンの含有率が50wt%以上、好ましくは70wt%以上のものが使用される。これより少ないと、耐熱性、難燃性の向上効果が小さい。また、芳香族オレフィン中には、トルエン、ジメチルベンゼン、トリメチルベンゼン、インダン、ナフタレン、メチルナフタレン、ジメチルナフタレン、アセナフテン等の非反応性の化合物が含まれていても良いが、エポキシ樹脂とした際の耐熱性、難燃性等の特性向上の観点から、これら非反応性の化合物は系外に除いた方が良い。好ましくは、全体の5wt%以下、更に好ましくは、2wt%以下となるまで除かれる。除去方法としては、一般的には、減圧蒸留等の方法が適用される。   The aromatic olefin used in the reaction may contain an unsaturated bond-containing component such as styrene, α-methylstyrene, divinylbenzene, coumarone, benzothiophene, indole, and vinylnaphthalene as other reactive components. In addition, the indene and acenaphthylene contents in all reaction components are 50 wt% or more, preferably 70 wt% or more. If it is less than this, the effect of improving heat resistance and flame retardancy is small. The aromatic olefin may contain non-reactive compounds such as toluene, dimethylbenzene, trimethylbenzene, indane, naphthalene, methylnaphthalene, dimethylnaphthalene, and acenaphthene. From the viewpoint of improving properties such as heat resistance and flame retardancy, these non-reactive compounds should be excluded from the system. Preferably, the total amount is 5 wt% or less, more preferably 2 wt% or less. As a removal method, generally, a method such as vacuum distillation is applied.

反応に用いる芳香族オレフィン中には、他の反応性成分として、スチレン、α−メチルスチレン、ジビニルベンゼン、クマロン、ベンゾチオフェン、インドール、ビニルナフタレン等の不飽和結合含有成分を含む場合、得られるフェノール樹脂にはこれらから生ずる基がベンゼン環に置換した化合物が含まれることになる。本発明のフェノール樹脂の製造方法で得られるフェノール樹脂は、このような置換基を有するフェノール樹脂を含み得る。同様に、本発明のエポキシ樹脂の製造方法で得られるエポキシ樹脂は、このような置換基を有するエポキシ樹脂を含み得る。   When the aromatic olefin used for the reaction contains an unsaturated bond-containing component such as styrene, α-methylstyrene, divinylbenzene, coumarone, benzothiophene, indole, and vinylnaphthalene as other reactive components, the resulting phenol The resin contains a compound in which a group derived therefrom is substituted on the benzene ring. The phenol resin obtained by the method for producing a phenol resin of the present invention may include a phenol resin having such a substituent. Similarly, the epoxy resin obtained by the method for producing an epoxy resin of the present invention can include an epoxy resin having such a substituent.

ビスフェノール化合物と芳香族オレフィンとの反応は、酸触媒等の公知のフリーデルクラフツ触媒を使用する反応方法等が採用できる。この反応によりビスフェノール化合物のベンゼン環に上記置換基が置換したフェノール樹脂が得られる。このフェノール樹脂は通常、置換基の数や置換位置の異なる混合物であるが、平均として0.4〜4個、好ましくは1〜4の置換基を有することがよい。ビスフェノール化合物と芳香族オレフィンとの反応終了後は、必要により触媒又は未反応成分の除去をして、次のエポキシ化反応に供する。しかし、エポキシ化反応を阻害しない成分や酸触媒のような中和可能な成分は除去しなくともよく、また、エポキシ化反応後に行われる洗浄、蒸留等の精製工程で除去される場合やエポキシ樹脂に含まれても差し支えない場合も、除去しなくともよい。ビスフェノール化合物と芳香族オレフィンとの反応終了後の反応生成物をそのままエポキシ化反応も使用することは精製工程が1つ減るという点で有利である。なお、フェノール樹脂を目的物として精製又は単離することもできる。   For the reaction between the bisphenol compound and the aromatic olefin, a reaction method using a known Friedel-Crafts catalyst such as an acid catalyst can be employed. By this reaction, a phenol resin in which the above substituent is substituted on the benzene ring of the bisphenol compound is obtained. This phenol resin is usually a mixture having a different number of substituents and different substitution positions, but it has an average of 0.4 to 4, preferably 1 to 4 substituents. After completion of the reaction between the bisphenol compound and the aromatic olefin, the catalyst or unreacted components are removed if necessary, and the resultant is subjected to the next epoxidation reaction. However, components that do not inhibit the epoxidation reaction and components that can be neutralized such as an acid catalyst do not have to be removed, and when they are removed by a purification process such as washing and distillation performed after the epoxidation reaction, or epoxy resins Even if it is included in the case, it may not be removed. Use of the reaction product after completion of the reaction between the bisphenol compound and the aromatic olefin as it is for the epoxidation reaction is advantageous in that one purification step is reduced. In addition, it can also refine | purify or isolate a phenol resin as a target object.

本発明のエポキシ樹脂の製造方法は、上記一般式(1)で表されるフェノール樹脂又は上記フェノール樹脂の製造方法で得られたフェノール樹脂(以下、両者を区別する必要がないときは、単にフェノール樹脂ともいう)と、エピクロルヒドリンとを反応させることにより得られる。   The production method of the epoxy resin of the present invention is the phenol resin represented by the general formula (1) or the phenol resin obtained by the production method of the phenol resin (hereinafter, when it is not necessary to distinguish both, the phenol resin is simply phenol. Resin) and epichlorohydrin.

フェノール樹脂とエピクロルヒドリンとの反応には、フェノール樹脂中の水酸基に対して0.80〜1.20倍当量、好ましくは0.85〜1.05倍当量の水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物が用いられる。これより少ないと残存する加水分解性塩素の量が多くなり好ましくない。金属水酸化物としては、水溶液、アルコール溶液又は固体の状態で使用される。   For the reaction between the phenol resin and epichlorohydrin, an alkali such as sodium hydroxide, potassium hydroxide, etc., having 0.80 to 1.20 times equivalent, preferably 0.85 to 1.05 times equivalent to the hydroxyl group in the phenol resin. Metal hydroxide is used. If it is less than this, the amount of remaining hydrolyzable chlorine increases, which is not preferable. The metal hydroxide is used in the form of an aqueous solution, alcohol solution or solid.

反応に際しては、フェノール樹脂に対しては過剰量のエピクロルヒドリンが使用される。通常、フェノール樹脂中の水酸基1モルに対して、1.5〜15倍モルのエピクロルヒドリンが使用されるが、好ましくは2〜8倍モルの範囲である。これより多いと生産効率が低下し、これより少ないとエポキシ樹脂の高分子量体の生成量が増え、粘度が高くなる。   In the reaction, an excessive amount of epichlorohydrin is used with respect to the phenol resin. Usually, 1.5 to 15 times mole of epichlorohydrin is used with respect to 1 mole of hydroxyl group in the phenol resin, but preferably in the range of 2 to 8 times mole. If the amount is higher than this, the production efficiency is lowered.

反応は、通常、120℃以下の温度で行われる。反応の際、温度が高いと、いわゆる難加水分解性塩素量が多くなり高純度化が困難になる。好ましくは100℃以下であり、更に好ましくは85℃以下の温度である。   The reaction is usually performed at a temperature of 120 ° C. or lower. If the temperature is high during the reaction, the amount of so-called hardly hydrolyzable chlorine increases and it becomes difficult to achieve high purity. Preferably it is 100 degrees C or less, More preferably, it is the temperature of 85 degrees C or less.

反応の際、四級アンモニウム塩あるいはジメチルスルホキシド、ジグライム等の極性溶媒を用いてもよい。四級アンモニウム塩としては、例えばテトラメチルアンモニウムクロライド、テチラブチルアンモニウムクロライド、ベンジルトリエチルアンモニウムクロライド等があり、その添加量としては、フェノール樹脂に対して、0.1〜2.0wt%の範囲が好ましい。これより少ないと四級アンモニウム塩添加の効果が小さく、これより多いと難加水分解性塩素の生成量が多くなり、高純度化が困難になる。また、極性溶媒の添加量としては、フェノール樹脂に対して、10〜200wt%の範囲が好ましい。これより少ないと添加の効果が小さく、これより多いと容積効率が低下し、経済上好ましくない。   In the reaction, a quaternary ammonium salt or a polar solvent such as dimethyl sulfoxide or diglyme may be used. Examples of the quaternary ammonium salt include tetramethylammonium chloride, tetirabutylammonium chloride, benzyltriethylammonium chloride, and the addition amount is preferably in the range of 0.1 to 2.0 wt% with respect to the phenol resin. . If the amount is less than this, the effect of adding a quaternary ammonium salt is small. Moreover, as an addition amount of a polar solvent, the range of 10-200 wt% is preferable with respect to a phenol resin. If the amount is less than this, the effect of addition is small.

反応終了後、過剰のエピクロルヒドリンや溶媒を留去し、残留物をトルエン、メチルイソブチルケトン等の溶剤に溶解し、濾過し、水洗して無機塩や残存溶媒を除去し、次いで溶剤を留去することによりエポキシ樹脂とすることができる。   After completion of the reaction, excess epichlorohydrin and solvent are distilled off, the residue is dissolved in a solvent such as toluene and methyl isobutyl ketone, filtered, washed with water to remove inorganic salts and residual solvent, and then the solvent is distilled off. It can be set as an epoxy resin.

有利には、得られたエポキシ樹脂を更に、残存する加水分解性塩素に対して、1〜30倍量の水酸化ナトリウム又は水酸化カリウム等のアルカリ金属水酸化物を加え、再閉環反応が行われる。この際の反応温度は、通常、100℃以下であり、好ましくは90℃以下である。   Advantageously, the obtained epoxy resin is further added with 1 to 30 times the amount of alkali metal hydroxide such as sodium hydroxide or potassium hydroxide with respect to the remaining hydrolyzable chlorine, and a re-ring closure reaction is carried out. Is called. The reaction temperature at this time is usually 100 ° C. or lower, preferably 90 ° C. or lower.

本発明のエポキシ樹脂の製造方法で得られたエポキシ樹脂は、上記一般式(3)で表されるエポキシ樹脂又はこれを主成分(50wt%以上)とするエポキシ樹脂であることが好ましい。しかし、全体として上記一般式(3)において、上記置換基をベンゼン環1個当たり、平均0.1〜2.0、好ましくは0.5〜2.0有するものであってもよい。同様に、本発明のフェノール樹脂の製造方法で得られたフェノール樹脂は、上記一般式(1)で表されるフェノール樹脂又はこれを主成分とするフェノール樹脂であることが好ましい。しかし、全体として上記一般式(3)において、上記置換基をベンゼン環1個当たり、平均0.1〜2.0、好ましくは0.5〜2.0有するものであってもよい。   The epoxy resin obtained by the method for producing an epoxy resin of the present invention is preferably an epoxy resin represented by the above general formula (3) or an epoxy resin containing this as a main component (50 wt% or more). However, as a whole, in the general formula (3), the substituent may have an average of 0.1 to 2.0, preferably 0.5 to 2.0, per benzene ring. Similarly, the phenol resin obtained by the method for producing a phenol resin of the present invention is preferably a phenol resin represented by the above general formula (1) or a phenol resin mainly composed thereof. However, as a whole, in the general formula (3), the substituent may have an average of 0.1 to 2.0, preferably 0.5 to 2.0, per benzene ring.

本発明のエポキシ樹脂組成物は、上記一般式(1)で表されるエポキシ樹脂又はこのエポキシ樹脂を主成分とするエポキシ樹脂又は上記エポキシ樹脂の製造方法で得られたエポキシ樹脂(以下、これらを総称して本エポキシ樹脂ともいう。)と硬化剤を必須成分とする。本発明のエポキシ樹脂組成物に配合する硬化剤としては、一般にエポキシ樹脂の硬化剤として知られているものはすべて使用できる。例えば、ジシアンジアミド、多価フェノール類、酸無水物類、芳香族及び脂肪族アミン類等がある。   The epoxy resin composition of the present invention comprises an epoxy resin represented by the above general formula (1), an epoxy resin mainly composed of this epoxy resin, or an epoxy resin obtained by a method for producing the above epoxy resin (hereinafter referred to as these). Collectively, this epoxy resin is also called) and a curing agent as essential components. As a hardening | curing agent mix | blended with the epoxy resin composition of this invention, what is generally known as a hardening | curing agent of an epoxy resin can be used. Examples include dicyandiamide, polyhydric phenols, acid anhydrides, aromatic and aliphatic amines.

具体的に例示すれば、多価フェノール類としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4’−ビフェノール、2,2’−ビフェノール、ハイドロキノン、レゾルシン、ナフタレンジオール等の2価のフェノール類、あるいは、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノールノボラック、o−クレゾールノボラック、ナフトールノボラック、ポリビニルフェノール等に代表される3価以上のフェノール類がある。更には、フェノール類、ナフトール類等の1価のフェノール類や、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4’−ビフェノール、2,2’−ビフェノール、ハイドロキノン、レゾルシン、ナフタレンジオール等の2価のフェノール類と、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p−ヒドロキシベンズアルデヒド、p−キシリレングリコール等の縮合剤により合成される多価フェノール性化合物等がある。また、これらのフェノール性硬化剤にインデン又は、アセナフチレンを反応させたものを硬化剤に用いても良い。   Specifically, examples of the polyhydric phenols include bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4′-biphenol, 2,2′-biphenol, hydroquinone, resorcin, and naphthalenediol. Divalent phenols, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol novolac, o-cresol novolak, naphthol novolak, polyvinylphenol, etc. There are representative trihydric or higher phenols. Furthermore, monohydric phenols such as phenols and naphthols, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4'-biphenol, 2,2'-biphenol, hydroquinone, resorcin, naphthalenediol, etc. And polyhydric phenolic compounds synthesized by a condensing agent such as formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, p-xylylene glycol, and the like. Moreover, you may use what made indene or acenaphthylene react with these phenolic hardening | curing agents for a hardening | curing agent.

酸無水物としては、無水フタル酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチル無水ハイミック酸、無水ナジック酸、無水トリメリット酸等がある。   Examples of the acid anhydride include phthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyl hymic anhydride, nadic anhydride, and trimellitic anhydride.

また、アミン類としては、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルプロパン、4,4’−ジアミノジフェニルスルホン、m−フェニレンジアミン、p−キシリレンジアミン等の芳香族アミン類、エチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等の脂肪族アミン類がある。   Examples of amines include aromatic amines such as 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenylsulfone, m-phenylenediamine, and p-xylylenediamine. There are aliphatic amines such as ethylenediamine, hexamethylenediamine, diethylenetriamine, and triethylenetetramine.

本発明のエポキシ樹脂組成物には、これら硬化剤の1種又は2種以上を混合して用いることができる。   In the epoxy resin composition of the present invention, one or more of these curing agents can be mixed and used.

また、本発明のエポキシ樹脂組成物中には、エポキシ樹脂成分として、本エポキシ樹脂以外に別種のエポキシ樹脂を配合してもよい。この場合の別種のエポキシ樹脂としては、分子中にエポキシ基を2個以上有する通常のエポキシ樹脂が使用できる。例を挙げれば、ビスフェノールA、ビスフェノールS、フルオレンビスフェノール、4,4’−ビフェノール、2,2’−ビフェノール、ハイドロキノン、レゾルシン等の2価のフェノール類、あるいは、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノールノボラック、o−クレゾールノボラック等の3価以上のフェノール類又はテトラブロモビスフェノールA等のハロゲン化ビスフェノール類から誘導されるグルシジルエーテル化物等がある。これらのエポキシ樹脂は、1種又は2種以上を混合して用いることができる。そして、本エポキシ樹脂を必須成分とするエポキシ樹脂組成物の場合、本エポキシ樹脂の配合量はエポキシ樹脂全体中、5〜100wt%、好ましくは60〜100wt%の範囲であることがよい。   Moreover, you may mix | blend another kind of epoxy resin other than this epoxy resin as an epoxy resin component in the epoxy resin composition of this invention. As another kind of epoxy resin in this case, a normal epoxy resin having two or more epoxy groups in the molecule can be used. Examples include divalent phenols such as bisphenol A, bisphenol S, fluorene bisphenol, 4,4′-biphenol, 2,2′-biphenol, hydroquinone, resorcin, or tris- (4-hydroxyphenyl) methane. , Glucidyl derived from trivalent or higher phenols such as 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol novolak, o-cresol novolak or halogenated bisphenols such as tetrabromobisphenol A There are etherified products. These epoxy resins can be used alone or in combination of two or more. And in the case of the epoxy resin composition which uses this epoxy resin as an essential component, the compounding quantity of this epoxy resin is 5-100 wt% in the whole epoxy resin, Preferably it is good to be the range of 60-100 wt%.

必要に応じて、本発明のエポキシ樹脂組成物には、無機充填材が配合され得る。無機充填材としては、例えば、球状あるいは、破砕状の溶融シリカ、結晶シリカ等のシリカ粉末、アルミナ粉末、ガラス粉末等が挙げられる。半導体封止材に応用する場合、無機充填材の使用量は、通常、75wt%以上であるが、低吸湿性、高半田耐熱性の点からは、80wt%以上であることが好ましい。   If necessary, an inorganic filler can be blended in the epoxy resin composition of the present invention. Examples of the inorganic filler include spherical or crushed fused silica, crystalline silica or other silica powder, alumina powder, glass powder, and the like. When applied to a semiconductor encapsulant, the amount of inorganic filler used is usually 75 wt% or more, but is preferably 80 wt% or more from the viewpoint of low moisture absorption and high solder heat resistance.

更に、本発明のエポキシ樹脂組成物中には、ポリエステル、ポリアミド、ポリイミド、ポリエーテル、ポリウレタン、石油樹脂、インデンクマロン樹脂、フェノキシ樹脂等のオリゴマー又は高分子化合物を適宜配合してもよいし、顔料、難然剤、揺変性付与剤、カップリング剤、流動性向上剤等の添加剤を配合してもよい。顔料としては、有機系又は無機系の体質顔料、鱗片状顔料等がある。揺変性付与剤としては、シリコン系、ヒマシ油系、脂肪族アマイドワックス、酸化ポリエチレンワックス、有機ベントナイト系等を挙げることができる。また更に必要に応じて、本発明のエポキシ樹脂組成物には、カルナバワックス、OPワックス等の離型剤、γ−グリシドキシプロピルトリメトキシシラン等のカップリング剤、カーボンブラック等の着色剤、三酸化アンチモン等の難燃剤、シリコンオイル等の低応力化剤、ステアリン酸カルシウム等の滑剤等を使用できる。   Furthermore, in the epoxy resin composition of the present invention, an oligomer or a polymer compound such as polyester, polyamide, polyimide, polyether, polyurethane, petroleum resin, indene coumarone resin, phenoxy resin may be appropriately blended, You may mix | blend additives, such as a pigment, a refractory agent, a thixotropic agent, a coupling agent, and a fluid improvement agent. Examples of the pigment include organic or inorganic extender pigments and scaly pigments. Examples of the thixotropic agent include silicon-based, castor oil-based, aliphatic amide wax, polyethylene oxide wax, and organic bentonite. Furthermore, if necessary, the epoxy resin composition of the present invention includes a release agent such as carnauba wax and OP wax, a coupling agent such as γ-glycidoxypropyltrimethoxysilane, a colorant such as carbon black, Flame retardants such as antimony trioxide, low stress agents such as silicone oil, lubricants such as calcium stearate, and the like can be used.

更に必要に応じて、本発明のエポキシ樹脂組成物には、公知の硬化促進剤を用いることができる。例を挙げれば、アミン類、イミダゾール類、有機ホスフィン類、ルイス酸等がある。添加量としては、通常、エポキシ樹脂100重量部に対して、0.2から5重量部の範囲である。また、硬化剤の添加量としては、通常、エポキシ樹脂100重量部に対して、10〜100重量部の範囲である。   Furthermore, a known hardening accelerator can be used for the epoxy resin composition of this invention as needed. Examples include amines, imidazoles, organic phosphines, Lewis acids and the like. The addition amount is usually in the range of 0.2 to 5 parts by weight with respect to 100 parts by weight of the epoxy resin. Moreover, as addition amount of a hardening | curing agent, it is the range of 10-100 weight part normally with respect to 100 weight part of epoxy resins.

本発明の樹脂組成物を硬化させて得られる本発明の硬化物は、上記エポキシ樹脂組成物を注型、圧縮成形、トランスファー成形等の方法により、成形加工し得ることができる。この際の温度は通常、120〜220℃の範囲である。   The cured product of the present invention obtained by curing the resin composition of the present invention can be molded by a method such as casting, compression molding, transfer molding or the like. The temperature at this time is usually in the range of 120 to 220 ° C.

エポキシ樹脂Aの赤外吸収スペクトルInfrared absorption spectrum of epoxy resin A エポキシ樹脂AのH−NMRスペクトル 1 H-NMR spectrum of epoxy resin A

以下実施例により本発明を更に具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

実施例1
1LフラスコにビスフェノールF(本州化学製、4,4’体(31%)、2,4’体(49%)、2,2’体(20%))200g(1.0モル)を仕込み175℃まで昇温させた。溶融後、撹拌しながらp-トルエンスルホン酸 0.1gを仕込み、175℃においてインデン 232g(2.0モル)を約3時間かけて滴下した。更に全還流下において3時間反応を継続した。その後、減圧下で低沸点成分を除去し、インデン付加フェノール樹脂413gを得た(フェノール樹脂A)。OH当量は216g/eq.であり、軟化点は78℃、150℃での溶融粘度は0.06Pa・sであった。
Example 1
Bisphenol F (4,4 ′ form (31%), 2,4 ′ form (49%), 2,2 ′ form (20%)) 200 g (1.0 mol) charged to a 1 L flask 175 The temperature was raised to ° C. After melting, 0.1 g of p-toluenesulfonic acid was charged with stirring, and 232 g (2.0 mol) of indene was added dropwise at about 175 ° C. over about 3 hours. Further, the reaction was continued for 3 hours under total reflux. Thereafter, low-boiling components were removed under reduced pressure to obtain 413 g of indene-added phenol resin (phenol resin A). The OH equivalent is 216 g / eq. The softening point was 78 ° C., and the melt viscosity at 150 ° C. was 0.06 Pa · s.

実施例2
1LフラスコにビスフェノールF 200g(1.0モル)を175℃まで昇温させた。溶融後、撹拌しながらp-トルエンスルホン酸 0.15gを仕込み、175℃においてインデン 348g(3.0モル)を約3時間かけて滴下した。その後、減圧下で低沸点成分を除去し、インデン付加フェノール樹脂527gを得た(フェノール樹脂B)。OH当量は274g/eq.であり、軟化点は86℃、150℃での溶融粘度は0.15Pa・sであった。
Example 2
In a 1 L flask, 200 g (1.0 mol) of bisphenol F was heated to 175 ° C. After melting, 0.15 g of p-toluenesulfonic acid was charged with stirring, and 348 g (3.0 mol) of indene was added dropwise at about 175 ° C. over about 3 hours. Thereafter, low-boiling components were removed under reduced pressure to obtain 527 g of indene-added phenol resin (phenol resin B). The OH equivalent is 274 g / eq. The softening point was 86 ° C., and the melt viscosity at 150 ° C. was 0.15 Pa · s.

実施例3
1LフラスコにビスフェノールF 200g(1.0モル)を仕込み180℃まで昇温させた。溶融後、撹拌しながらp-トルエンスルホン酸 0.04gを仕込み、180℃においてアセナフチレン 304g(2.0モル)を約3時間かけて滴下した。その後、減圧下200℃に昇温し、低沸点成分を除去し、アセナフチレン付加フェノール樹脂491gを得た(フェノール樹脂C)。OH当量は252g/eq.であり、軟化点は99℃、150℃での溶融粘度は0.59Pa・sであった。
なお、実施例1〜3において、インデンの反応率は約100%であった。
Example 3
In a 1 L flask, 200 g (1.0 mol) of bisphenol F was charged and the temperature was raised to 180 ° C. After melting, 0.04 g of p-toluenesulfonic acid was charged with stirring, and 304 g (2.0 mol) of acenaphthylene was added dropwise at 180 ° C. over about 3 hours. Then, it heated up at 200 degreeC under pressure reduction, the low boiling point component was removed, and 491 g of acenaphthylene addition phenol resin was obtained (phenol resin C). The OH equivalent is 252 g / eq. The softening point was 99 ° C., and the melt viscosity at 150 ° C. was 0.59 Pa · s.
In Examples 1 to 3, the reaction rate of indene was about 100%.

実施例4
3Lの4口セパラブルフラスコに、実施例1で合成したフェノール樹脂A300g、エピクロルヒドリン900g及びジグライム135gに溶解した後、減圧下、60℃にて48%水酸化ナトリウム水溶液116gを4時間かけて滴下した。この間、生成する水はエピクロルヒドリンとの共沸により系外に除き、留出したエピクロルヒドリンは系内に戻した。滴下終了後、更に1時間反応を継続した。その後、エピクロルヒドリン及びジグライムを減圧留去し、メチルイソブチルケトン987gに溶解した後、水洗により生成した塩を除いた。その後、12%水酸化ナトリウム水溶液64gを加え、80℃で2時間反応させた。反応後、水洗を行った後、溶媒であるメチルイソブチルケトンを減圧留去し、淡黄色のエポキシ樹脂 346gを得た(エポキシ樹脂A)。このエポキシ樹脂Aのエポキシ当量は278g/eq.であり、加水分解性塩素は420ppm、軟化点は58℃、150℃での溶融粘度は0.045Pa・sであった。
Example 4
After dissolving in 300 g of phenol resin A synthesized in Example 1, 900 g of epichlorohydrin and 135 g of diglyme in a 3 L 4-neck separable flask, 116 g of 48% aqueous sodium hydroxide solution was added dropwise at 60 ° C. over 4 hours under reduced pressure. . During this time, the generated water was removed from the system by azeotropy with epichlorohydrin, and the distilled epichlorohydrin was returned to the system. After completion of dropping, the reaction was continued for another hour. Thereafter, epichlorohydrin and diglyme were distilled off under reduced pressure and dissolved in 987 g of methyl isobutyl ketone, and then the salt produced by washing with water was removed. Thereafter, 64 g of a 12% aqueous sodium hydroxide solution was added and reacted at 80 ° C. for 2 hours. After the reaction, after washing with water, methyl isobutyl ketone as a solvent was distilled off under reduced pressure to obtain 346 g of a light yellow epoxy resin (epoxy resin A). The epoxy equivalent of this epoxy resin A is 278 g / eq. The hydrolyzable chlorine was 420 ppm, the softening point was 58 ° C., and the melt viscosity at 150 ° C. was 0.045 Pa · s.

ここで、加水分解性塩素とは、試料0.5gをジオキサン30mlに溶解後、1N-KOH、10mlを加え30分間煮沸還流した後、室温まで冷却し、更に80%アセトン水100mlを加えたものを、0.002N-AgNO水溶液で電位差滴定を行うことにより測定された値である。また、軟化点とはボール&リング法により昇温速度5℃/分で得られる値であり、粘度はブルックフィールド社製コーンプレート型粘度計を用いて測定した。Here, hydrolyzable chlorine is obtained by dissolving 0.5 g of a sample in 30 ml of dioxane, adding 10 ml of 1N KOH, boiling and refluxing for 30 minutes, cooling to room temperature, and further adding 100 ml of 80% acetone water. Is a value measured by performing potentiometric titration with 0.002N-AgNO 3 aqueous solution. The softening point is a value obtained by a ball & ring method at a heating rate of 5 ° C./min, and the viscosity was measured using a corn plate viscometer manufactured by Brookfield.

GPC測定条件は、装置;MODEL151(ウオーターズ(株)製)、カラム;TSK-GEL2000×3本及びTSK-GEL4000×1本(いずれも東ソー(株)製)、溶媒;テトラヒドロフラン、流量;1 ml/min、温度;38℃、検出器;RIの条件で行った。赤外吸収スペクトルはKBr錠剤成形法により求め、H−NMRスペクトルは、装置;JNM-LA400、日本電子(株)製)を用い、アセトン-d6中で測定した。
エポキシ樹脂Aの赤外吸収スペクトルを図1、H−NMRスペクトルを図2に示す。
GPC measurement conditions were as follows: apparatus; MODEL 151 (manufactured by Waters Co., Ltd.), column; TSK-GEL2000 × 3 and TSK-GEL4000 × 1 (both manufactured by Tosoh Corp.), solvent; tetrahydrofuran, flow rate: 1 ml / min, temperature; 38 ° C., detector; RI. The infrared absorption spectrum was determined by the KBr tablet molding method, and the 1 H-NMR spectrum was measured in acetone-d6 using an apparatus; JNM-LA400, manufactured by JEOL Ltd.
The infrared absorption spectrum of the epoxy resin A is shown in FIG. 1, and the 1 H-NMR spectrum is shown in FIG.

実施例5
3Lの4口セパラブルフラスコに、実施例2で合成したフェノール樹脂B300gをエピクロルヒドリン810g及びジグライム122gに溶解した後、減圧下、60℃にて48%水酸化ナトリウム水溶液96gを用いて、実施例4と同様に反応を行い、淡黄色のエポキシ樹脂 335gを得た(エポキシ樹脂B)。エポキシ当量は336g/eq.であり、加水分解性塩素は340ppm、軟化点は76℃、150℃での溶融粘度は0.136Pa・sであった。
Example 5
In a 3 L 4-neck separable flask, 300 g of the phenol resin B synthesized in Example 2 was dissolved in 810 g of epichlorohydrin and 122 g of diglyme, and then 96 g of 48% sodium hydroxide aqueous solution was used at 60 ° C. under reduced pressure. The reaction was conducted in the same manner as above to obtain 335 g of a light yellow epoxy resin (epoxy resin B). Epoxy equivalent was 336 g / eq. The hydrolyzable chlorine was 340 ppm, the softening point was 76 ° C., and the melt viscosity at 150 ° C. was 0.136 Pa · s.

実施例6
3Lの4口セパラブルフラスコに、実施例3で合成したフェノール樹脂C300gをエピクロルヒドリン810g及びジグライム122gに溶解した後、減圧下、60℃にて48%水酸化ナトリウム水溶液99gを用いて、実施例4と同様に反応を行い、淡黄色のエポキシ樹脂 230gを得た(エポキシ樹脂C)。エポキシ当量は318g/eq.であり、加水分解性塩素は330ppm、軟化点は83℃、150℃での溶融粘度は0.226Pa・sであった。
Example 6
In a 3 L four-necked separable flask, 300 g of phenol resin C synthesized in Example 3 was dissolved in 810 g of epichlorohydrin and 122 g of diglyme, and then 99 g of 48% sodium hydroxide aqueous solution was used at 60 ° C. under reduced pressure. Then, 230 g of a light yellow epoxy resin was obtained (epoxy resin C). Epoxy equivalent was 318 g / eq. The hydrolyzable chlorine was 330 ppm, the softening point was 83 ° C., and the melt viscosity at 150 ° C. was 0.226 Pa · s.

実施例7〜11及び比較例1〜2
エポキシ樹脂成分として、実施例4〜6で合成したエポキシ樹脂A〜C、ビスフェノールF型エポキシ樹脂(エポキシ樹脂D;東都化成製、YDF−170、エポキシ当量169)、ビフェニル型エポキシ樹脂(エポキシ樹脂E;ジャパンエポキシレジン製、YX−4000H、エポキシ当量 195、融点105℃)、硬化剤としてフェノールノボラック(硬化剤A;OH当量107、軟化点 82℃)、フェノールアラルキル樹脂(硬化剤B;三井化学製、XL-225-LL、OH当量175、軟化点74℃)を用い、充填剤としてシリカ(平均粒径、22μm)、硬化促進剤としてトリフェニルホスフィンを表1に示す配合で混練しエポキシ樹脂組成物を得た。このエポキシ樹脂組成物を用いて175℃にて成形し、175℃にて12時間ポストキュアを行い、硬化物試験片を得た後、各種物性測定に供した。なお、表1に示す配合量は重量部である。
Examples 7-11 and Comparative Examples 1-2
As epoxy resin components, epoxy resins A to C synthesized in Examples 4 to 6, bisphenol F type epoxy resin (epoxy resin D; manufactured by Tohto Kasei, YDF-170, epoxy equivalent 169), biphenyl type epoxy resin (epoxy resin E) Made by Japan Epoxy Resin, YX-4000H, epoxy equivalent 195, melting point 105 ° C., phenol novolak (curing agent A; OH equivalent 107, softening point 82 ° C.) as a curing agent, phenol aralkyl resin (curing agent B; manufactured by Mitsui Chemicals) , XL-225-LL, OH equivalent 175, softening point 74 ° C.), silica (average particle size, 22 μm) as a filler, and triphenylphosphine as a curing accelerator are kneaded with the composition shown in Table 1 to form an epoxy resin composition I got a thing. This epoxy resin composition was molded at 175 ° C. and post-cured at 175 ° C. for 12 hours to obtain a cured product test piece, which was then subjected to various physical property measurements. In addition, the compounding quantity shown in Table 1 is a weight part.

ガラス転移点(Tg)は、熱機械測定装置により、昇温速度10℃/分の条件で求めた。吸水率は、本エポキシ樹脂組成物を用いて、直径50mm、厚さ3mmの円盤を成形し、ポストキュア後、85℃、相対湿度85%の条件で100時間吸湿させたときのものである。接着強度は、42アロイ板2枚の間に25mm×12.5mm×0.5mmの成形物を圧縮成型機により175℃で成形し、175℃、12時間ポストキュアを行った後、引張剪断強度を求めることにより評価した。難燃性は、厚さ1/16インチの試験片を成形し、UL94V−0規格によって評価した。燃焼時間とは、n=5の試験での合計燃焼時間である。表2に評価結果を示す。   The glass transition point (Tg) was determined by a thermomechanical measuring device under a temperature rising rate of 10 ° C./min. The water absorption rate is obtained when a disk having a diameter of 50 mm and a thickness of 3 mm is formed using the epoxy resin composition, and after post-curing, the moisture is absorbed for 100 hours under the conditions of 85 ° C. and relative humidity of 85%. The adhesive strength was 25 mm × 12.5 mm × 0.5 mm between two 42 alloy plates, molded at 175 ° C. with a compression molding machine, post-cured at 175 ° C. for 12 hours, and then tensile shear strength Was evaluated. The flame retardancy was evaluated by the UL94V-0 standard by molding a test piece having a thickness of 1/16 inch. The burning time is the total burning time in a test with n = 5. Table 2 shows the evaluation results.

Figure 2008041749
Figure 2008041749

Figure 2008041749
Figure 2008041749

産業上の利用の可能性Industrial applicability

本発明のエポキシ樹脂及び本発明の製造方法で得られるエポキシ樹脂は、エポキシ樹脂組成物に応用した場合、優れた成形性、フィラー高充填性を有するとともに、耐湿性、耐熱性及び難燃性に優れた硬化物を与え、電気・電子部品類の封止、回路基板材料等の用途に好適に使用することが可能である。特に、難燃性に優れ、環境負荷のある難燃剤の使用を不要とさせ又は減少させる。   When applied to an epoxy resin composition, the epoxy resin obtained by the epoxy resin of the present invention and the production method of the present invention has excellent moldability, high filler filling property, moisture resistance, heat resistance and flame retardancy. It provides an excellent cured product and can be suitably used for applications such as sealing electric and electronic parts, circuit board materials, and the like. In particular, the use of a flame retardant having excellent flame retardancy and environmental impact is made unnecessary or reduced.

Claims (8)

下記一般式(1)で表されるフェノール樹脂。
Figure 2008041749
ここで、R〜Rは、独立に水素原子又は下記式(a)若しくは(b)で表される置換基を示すが、少なくとも1つは上記置換基である。Xは、単結合、−CH−、−CH(CH)−、−C(CH−、−CO−、−O−、−S−又は−SO−を示す;
Figure 2008041749
A phenol resin represented by the following general formula (1).
Figure 2008041749
Here, R 1 to R 4 independently represent a hydrogen atom or a substituent represented by the following formula (a) or (b), at least one of which is the above substituent. X represents a single bond, —CH 2 —, —CH (CH 3 ) —, —C (CH 3 ) 2 —, —CO—, —O—, —S— or —SO 2 —;
Figure 2008041749
下記一般式(2)、
Figure 2008041749
ここで、Xは、単結合、−CH−、−CH(CH)−、−C(CH−、−CO−、−O−、−S−又は−SO−を示す;
で表されるビスフェノール化合物1モルに対して、インデン又はアセナフチレンから選ばれる芳香族オレフィン0.2〜4モルを反応させることを特徴とする下記式(a)又は(b)
Figure 2008041749
で表される置換基を有するフェノール樹脂の製造方法。
The following general formula (2),
Figure 2008041749
Here, X represents a single bond, —CH 2 —, —CH (CH 3 ) —, —C (CH 3 ) 2 —, —CO—, —O—, —S— or —SO 2 —;
The following formula (a) or (b), wherein 0.2 to 4 mol of an aromatic olefin selected from indene or acenaphthylene is reacted with 1 mol of a bisphenol compound represented by the formula:
Figure 2008041749
The manufacturing method of the phenol resin which has a substituent represented by these.
下記一般式(3)で表されるエポキシ樹脂。
Figure 2008041749
ここで、R〜Rは、独立に水素原子又は下記式(a)若しくは(b)で表される置換基を示すが、少なくとも1つは上記置換基であり、Xは、単結合、−CH−、−CH(CH)−、−C(CH−、−CO−、−O−、−S−又は−SO−を示し、nは、0〜50の数を示す;
Figure 2008041749
An epoxy resin represented by the following general formula (3).
Figure 2008041749
Here, R 1 to R 4 independently represent a hydrogen atom or a substituent represented by the following formula (a) or (b), at least one of which is the above substituent, and X is a single bond, —CH 2 —, —CH (CH 3 ) —, —C (CH 3 ) 2 —, —CO—, —O—, —S— or —SO 2 — is shown, and n is a number from 0 to 50. Show;
Figure 2008041749
請求項1に記載のフェノール樹脂とエピクロルヒドリンを反応させることを特徴とする請求項3に記載のエポキシ樹脂の製造方法。   4. The method for producing an epoxy resin according to claim 3, wherein the phenol resin according to claim 1 is reacted with epichlorohydrin. 請求項2に記載のフェノール樹脂の製造方法で得られたフェノール樹脂とエピクロルヒドリンを反応させることを特徴とするエポキシ樹脂の製造方法。   A method for producing an epoxy resin, comprising reacting a phenol resin obtained by the method for producing a phenol resin according to claim 2 with epichlorohydrin. 請求項5に記載のエポキシ樹脂の製造方法によって得られたことを特徴とするエポキシ樹脂。   An epoxy resin obtained by the method for producing an epoxy resin according to claim 5. エポキシ樹脂及び硬化剤よりなるエポキシ樹脂組成物であって、エポキシ樹脂成分として請求項3に記載のエポキシ樹脂を配合したことを特徴とするエポキシ樹脂組成物。   An epoxy resin composition comprising an epoxy resin and a curing agent, wherein the epoxy resin composition according to claim 3 is blended as an epoxy resin component. 請求項7に記載のエポキシ樹脂組成物を硬化させて得られたことを特徴とする硬化物。   A cured product obtained by curing the epoxy resin composition according to claim 7.
JP2008537550A 2006-10-04 2007-10-04 Epoxy resin, phenol resin, production method thereof, epoxy resin composition and cured product Expired - Fee Related JP5515058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008537550A JP5515058B2 (en) 2006-10-04 2007-10-04 Epoxy resin, phenol resin, production method thereof, epoxy resin composition and cured product

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006272566 2006-10-04
JP2006272566 2006-10-04
PCT/JP2007/069482 WO2008041749A1 (en) 2006-10-04 2007-10-04 Epoxy resin, phenol resin, their production methods, epoxy resin composition and cured product
JP2008537550A JP5515058B2 (en) 2006-10-04 2007-10-04 Epoxy resin, phenol resin, production method thereof, epoxy resin composition and cured product

Publications (2)

Publication Number Publication Date
JPWO2008041749A1 true JPWO2008041749A1 (en) 2010-02-04
JP5515058B2 JP5515058B2 (en) 2014-06-11

Family

ID=39268601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008537550A Expired - Fee Related JP5515058B2 (en) 2006-10-04 2007-10-04 Epoxy resin, phenol resin, production method thereof, epoxy resin composition and cured product

Country Status (5)

Country Link
JP (1) JP5515058B2 (en)
KR (1) KR101423170B1 (en)
CN (1) CN101522739B (en)
TW (1) TWI427093B (en)
WO (1) WO2008041749A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5276031B2 (en) * 2010-02-26 2013-08-28 新日鉄住金化学株式会社 Crystalline epoxy resin, method for producing the same, epoxy resin composition using the same, and cured product
EP2599812A4 (en) * 2010-07-30 2015-03-18 Dainippon Ink & Chemicals Curing resin composition, cured product thereof, phenolic resin, epoxy resin, and semiconductor sealing material
KR101410919B1 (en) * 2010-09-27 2014-06-24 신닛테츠 수미킨 가가쿠 가부시키가이샤 Polyhydric hydroxy resin, epoxy resin, production method therefor, epoxy resin composition and cured product thereof
MY156450A (en) 2010-09-29 2016-02-26 Dainippon Ink & Chemicals Curable resin composition, cured product thereof, phenolic resin, epoxy resin, and semiconductor sealing material
JP6183918B2 (en) * 2012-06-12 2017-08-23 新日鉄住金化学株式会社 Polyhydroxy polyether resin, method for producing polyhydroxy polyether resin, resin composition containing polyhydroxy polyether resin, and cured product obtained therefrom
WO2020017399A1 (en) * 2018-07-19 2020-01-23 パナソニックIpマネジメント株式会社 Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate and wiring board
CN114149659B (en) * 2021-12-31 2023-07-14 苏州生益科技有限公司 Resin composition and use thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE785914A (en) * 1971-07-08 1973-01-08 Munchen Michael H PROCESS FOR MANUFACTURING FILM-GENERATED CONDENSATION PRODUCTS WHICH CAN BE USED AS BINDERS IN PRINTING INKS
GB1403895A (en) * 1971-10-08 1975-08-28 Hoechst Ag Process for the preparation of natural resin products
JP4150104B2 (en) * 1998-05-13 2008-09-17 新日本石油株式会社 Anticorrosion paint composition
JPH11343386A (en) * 1998-06-01 1999-12-14 Nippon Steel Chem Co Ltd Phenol resin composition and epoxy resin composition containing the same
JP4408978B2 (en) * 1999-01-12 2010-02-03 新日鐵化学株式会社 Production method of polyvalent hydroxy resin and epoxy resin
JP2001151861A (en) 1999-11-25 2001-06-05 Matsushita Electric Works Ltd Epoxy resin composition and semiconductor device
JP4237137B2 (en) * 2002-06-11 2009-03-11 新日鐵化学株式会社 Acenaphthylene-modified phenolic resin and epoxy resin composition

Also Published As

Publication number Publication date
TW200833728A (en) 2008-08-16
WO2008041749A1 (en) 2008-04-10
JP5515058B2 (en) 2014-06-11
KR20090075826A (en) 2009-07-09
CN101522739A (en) 2009-09-02
CN101522739B (en) 2012-09-05
TWI427093B (en) 2014-02-21
KR101423170B1 (en) 2014-07-25

Similar Documents

Publication Publication Date Title
JP5320130B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP5931234B2 (en) Method for producing epoxy resin composition
JP5515058B2 (en) Epoxy resin, phenol resin, production method thereof, epoxy resin composition and cured product
JP2013209503A (en) Epoxy resin composition and cured product thereof
JP6462295B2 (en) Modified polyvalent hydroxy resin, epoxy resin, epoxy resin composition and cured product thereof
JP5548562B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP6124865B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JPWO2008050879A1 (en) Epoxy resin composition and cured product
JP2017066268A (en) Polyhydric hydroxy resin, epoxy resin, methods of producing them, epoxy resin composition and cured article thereof
JP4188022B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product using them
JP5139914B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product using them
JP7277136B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP5841947B2 (en) Epoxy resin composition and cured product
JP5734603B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
JP2004123859A (en) Polyhydric hydroxy resin, epoxy resin, method for producing the same, epoxy resin composition using the same and cured product
JP5276031B2 (en) Crystalline epoxy resin, method for producing the same, epoxy resin composition using the same, and cured product
JP5548792B2 (en) Polyvalent hydroxy resin, production method thereof, epoxy resin composition and cured product thereof
JP7158228B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP2004010724A (en) Epoxy resin, method for producing the same, epoxy resin composition and cured product of the composition
JP2011016926A (en) Epoxy compound, epoxy resin composition, and cured material thereof
JP2005226004A (en) Method for producing epoxy resin, epoxy resin composition and cured product
JP5390491B2 (en) Epoxy resin, production method thereof, epoxy resin composition and cured product
JP2007039501A (en) Epoxy resin, method for producing the same, epoxy resin composition, and cured product
JP2020105331A (en) Polyhydric hydroxy resin, epoxy resin, epoxy resin composition, and cured material thereof
JP2006188606A (en) New epoxy resin, method for producing the same, epoxy resin composition and cured product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140307

R150 Certificate of patent or registration of utility model

Ref document number: 5515058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees