JPWO2007058252A1 - コンドロイチンの製造方法 - Google Patents

コンドロイチンの製造方法 Download PDF

Info

Publication number
JPWO2007058252A1
JPWO2007058252A1 JP2007545287A JP2007545287A JPWO2007058252A1 JP WO2007058252 A1 JPWO2007058252 A1 JP WO2007058252A1 JP 2007545287 A JP2007545287 A JP 2007545287A JP 2007545287 A JP2007545287 A JP 2007545287A JP WO2007058252 A1 JPWO2007058252 A1 JP WO2007058252A1
Authority
JP
Japan
Prior art keywords
amino acid
sugar chain
acetylgalactosamine
transferase
galnac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007545287A
Other languages
English (en)
Inventor
杉浦 信夫
信夫 杉浦
郷嗣 下方
郷嗣 下方
木全 弘治
弘治 木全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikagaku Corp
Original Assignee
Seikagaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikagaku Corp filed Critical Seikagaku Corp
Publication of JPWO2007058252A1 publication Critical patent/JPWO2007058252A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

所望の糖鎖長からなるCHの製造方法や、実質的に単一の糖鎖長からなるCHを含有する画分の製造方法等を提供する。下記の工程、(a)グルクロン酸残基を非還元末端に持つ受容体基質(工程(b)の後に本工程を行う場合には、工程(b)によって得られた糖鎖)、N−アセチルガラクトサミン供与体及びN−アセチルガラクトサミン転移酵素を反応系中に共存させる工程、および(b)N−アセチルガラクトサミン残基を非還元末端に持つ受容体基質(工程(a)の後に本工程を行う場合には、工程(a)によって得られた糖鎖)、グルクロン酸供与体及びグルクロン酸転移酵素を反応系中に共存させる工程を含み、これらの工程を交互に行うことを特徴とする、所望の糖鎖長からなるコンドロイチンの製造方法。

Description

本発明は、所望の糖鎖長からなるコンドロイチンの新規な製造方法等に関する。
まず、本出願書類において用いる略号を説明する。
CH:コンドロイチン
CS:コンドロイチン硫酸
HA:ヒアルロン酸
GlcUA:グルクロン酸
GalNAc:N−アセチルガラクトサミン
GPC:ゲル浸透クロマトグラフィー
HPLC:高速液体クロマトグラフィー
K4CP:大腸菌K4株由来のコンドロイチンポリメラーゼ
D241K:K4CP(配列番号2に記載のアミノ酸配列を有するもの)の点変異体であって、配列番号2におけるアミノ酸番号241のアスパラギン酸残基がリジン残基に置換しているもの。この酵素はGalNAcの転移活性を実質的に有さず、GlcUAの転移活性を有している。
D521K:K4CP(配列番号2に記載のアミノ酸配列を有するもの)の点変異体であって、配列番号2におけるアミノ酸番号521のアスパラギン酸残基がリジン残基に置換しているもの。この酵素はGlcUAの転移活性を実質的に有さず、GalNAcの転移活性を有している。
MALDI−TOF−MS:
Matrix Assisted Laser Desorption/Ionization−飛行時間型−質量分析
UDP:ウリジン5’−ジリン酸
PA:アミノピリジン
CHは、GlcUA及びGalNAcがそれぞれβ1−3結合及びβ1−4結合で交互に直線上に結合したグリコサミノグリカンの一種である。CHは、動物生体内において軟骨や多くの結合組織にCSプロテオグリカンとして存在しており、細胞接着、発生、分化、神経細胞伸展、軟骨・骨形成、組織再生などにおいて重要な役割を担っている。
動物由来のCHポリメラーゼがクローニングされてはいるが、この酵素のみではCHを合成することができず、また有している酵素活性も弱いため、工業的にCH糖鎖を効率よく製造するためには十分とはいえない。一方、K4CPもクローニングされており、この酵素は単独でCHを合成する活性を有することが知られている。(特許文献1、非特許文献1)
K4CPは2つの糖転移活性部位を持つ酵素であり、UDP−GlcUA及びUDP−GalNAcをそれぞれ供与体として、糖鎖を伸長させていくポリメラーゼである。反応時間や基質の添加量を変化させることによって、合成されたCHのサイズ(糖鎖長)をある程度調整することもできるが、得られる画分は様々な分子量の糖鎖を含有する混合物であり、所望の糖鎖長のCHのみから構成される画分を得ることはできない。
また、K4CPにおける2カ所の糖転移活性部位は、それぞれUDP−GlcUAとUDP−GalNAcの一方の糖転移活性を担っている。そして一方の糖転移活性部位におけるアミノ酸を他のアミノ酸に置換した変異体は、他方の糖転移活性しか示さないことが知られている。(特許文献2)
また、動物感染性病原菌であるパストレアマルトシダ由来のHA合成酵素の点変異体を利用して、HAオリゴ糖を製造できることが知られているが、CHオリゴ等の製造に関しての開示はない。(非特許文献2)
特開2003−199583号公報 特開2005−65565号公報 ニノミヤ、T(Ninomiya, T.)ら、2002年、ジャーナル オブ バイオロジカル ケミストリー(Journal of Biological Chemistry)、第277巻、第24号、p.21567−21575 ポール、L.デアンジェリス(Paul, L. DeAngelis)ら、2003年、ジャーナル オブ バイオロジカル ケミストリー(Journal of Biological Chemistry)、第278巻、第37号、p.35199−35203
本発明は、所望の糖鎖長からなるCHの製造方法や、実質的に単一の糖鎖長からなるCHを含有する画分の製造方法等を提供することを課題とする。
本発明の発明者らは上記課題を解決すべく鋭意検討した結果、特定の糖転移酵素等を用い、特定の複数の工程を交互に行うことによって、所望の糖鎖長からなるCHの製造方法及び実質的に単一の糖鎖長からなるCHを含有する画分の製造方法等を提供するに至り、本発明を完成した。
すなわち本発明は、下記の工程(a)及び(b)を含み、かつ、これらの工程を交互に行うことを特徴とする、所望の糖鎖長からなるCHの製造方法(以下、「本発明方法1」という。)を提供する;
工程(a):GlcUA残基を非還元末端に持つ受容体基質(工程(b)の後に本工程を行う場合には、工程(b)によって得られた糖鎖)、GalNAc供与体及びGalNAc転移酵素を反応系中に共存させる工程、
工程(b):GalNAc残基を非還元末端に持つ受容体基質(工程(a)の後に本工程を行う場合には、工程(a)によって得られた糖鎖)、GlcUA供与体及びGlcUA転移酵素を反応系中に共存させる工程。
また本発明は、下記の工程(a)及び(b)を含み、かつ、これらの工程を交互に行うことを特徴とする、実質的に単一の糖鎖長からなるCHを含有する画分の製造方法(以下、「本発明方法2」という。)を提供する;
工程(a):GlcUA残基を非還元末端に持つ実質的に単一の糖鎖長からなる受容体基質(工程(b)の後に本工程を行う場合には、工程(b)によって得られた糖鎖)、GalNAc供与体及びGalNAc転移酵素を反応系中に共存させる工程、
工程(b):GalNAc残基を非還元末端に持つ実質的に単一の糖鎖長からなる受容体基質(工程(a)の後に本工程を行う場合には、工程(a)によって得られた糖鎖)、GlcUA供与体及びGlcUA転移酵素を反応系中に共存させる工程。
また本発明は、本発明方法1に記載の(a)又は(b)のいずれか一方のみの工程を含むことを特徴とする、受容体基質よりも一つ糖鎖長が増加したCHの製造方法(以下、「本発明方法3」という。)を提供する。
以下、本発明方法1〜3をまとめて単に「本発明方法」という。
本発明方法の工程(a)におけるGalNAc転移酵素及び工程(b)におけるGlcUA転移酵素は、いずれも下記(A)に示す酵素であることが好ましい。
(A)配列番号2に記載のアミノ酸配列を有する酵素。
また、本発明方法の工程(a)におけるGalNAc転移酵素が下記(B)に示す酵素であり、かつ、工程(b)におけるGlcUA転移酵素が下記(C)に示す酵素であるものも好ましい。
(B)配列番号2に記載のアミノ酸配列を有する酵素の変異体であって、配列番号2におけるアミノ酸番号435〜539で示される領域内の1〜数個のアミノ酸が他のアミノ酸に置換していることを特徴とするもの。
(C)配列番号2に記載のアミノ酸配列を有する酵素の変異体であって、配列番号2におけるアミノ酸番号153〜258で示される領域内の1〜数個のアミノ酸が他のアミノ酸に置換していることを特徴とするもの。
その中でも、「アミノ酸番号435〜539の領域」が「アミノ酸番号519〜521の領域」であり、「アミノ酸番号153〜258の領域」が「アミノ酸番号239〜241の領域」であり、かつ「1〜数個」が「1〜3個」であるものが好ましい。またその中でも、アミノ酸番号521のアミノ酸のみが他のアミノ酸に置換され、かつ、アミノ酸番号241のアミノ酸のみが他のアミノ酸に置換されているものが好ましい。
また本発明方法における工程(a)及び(b)の直後に、それぞれ、各工程において共存させた転移酵素及び供与体の少なくともいずれか一方を除去する工程をさらに含むことが好ましい。この場合、転移酵素のみを除去することが好ましい。
また、本発明方法において用いるGalNAc供与体がUDP−GalNAcであり、かつ、GlcUA供与体がUDP−GlcUAである態様も好ましい。
また、本発明方法における「共存」は、10℃〜50℃の条件下で10分間〜24時間行われることが好ましく、20℃〜40℃の条件下で30分間〜5時間行われることがより好ましく、25℃〜37℃の条件下で1時間〜4時間行われることがさらに好ましい。
また、本発明方法における工程(a)及び(b)の各工程において共存させる転移酵素は、担体に固定化されていることが好ましい。
また、本発明方法において用いる受容体基質は、CH又はその誘導体であることが好ましい。このCHの誘導体は、PAが共有結合したCHであることが好ましい。
本発明方法は、副生成物をほとんど出すことなく、所望の糖鎖長からなるCHや、実質的に単一の糖鎖長からなるCHを含有する画分等を簡便かつ安価に工業的スケールで製造できることから極めて有用である。
また、本発明方法により製造した所望の糖鎖長からなるCHや実質的に単一の糖鎖長からなるCHを含有する画分等は、今まで未開拓であった糖鎖の変化による生理活性の探求等に極めて有用な物質であり、医薬品、飲食品、化粧品等の素材としても有用である。
以下、発明を実施するための最良の形態により本発明を詳説する。
<1>本発明方法1
本発明方法1は、下記の工程(a)及び(b)を含み、かつ、これらの工程を交互に行うことを特徴とする、所望の糖鎖長からなるCHの製造方法である;
工程(a):GlcUA残基を非還元末端に持つ受容体基質(工程(b)の後に本工程を行う場合には、工程(b)によって得られた糖鎖)、GalNAc供与体及びGalNAc転移酵素を共存させる工程、
工程(b):GalNAc残基を非還元末端に持つ受容体基質(工程(a)の後に本工程を行う場合には、工程(a)によって得られた糖鎖)、GlcUA供与体及びGlcUA転移酵素を共存させる工程。
本発明方法1によれば、糖鎖長の増加をコントロールしつつCHを製造することができるため、所望の糖鎖長からなるCHを容易に製造することができる。したがって、本発明方法1には、CHの糖鎖長の増加のコントロール(調整)方法などの概念も包含される。なお、本発明方法1による製造の目的物(糖鎖長の増加のコントロール対象)たる「CH」は、GlcUA−GalNAcの繰返単位のみからなる本来のCHのみならず、CHオリゴ糖およびCHの誘導体などを含む概念である。
工程(a)は、GlcUA残基を非還元末端に持つ受容体基質(工程(b)の後に本工程を行う場合には、工程(b)によって得られた糖鎖)、GalNAc供与体及びGalNAc転移酵素を共存させる工程である。すなわち、GalNAc転移酵素を反応触媒として、GlcUA残基を非還元末端に持つ受容体基質のGlcUA残基に、GalNAc供与体のGalNAc残基を転移させ、GlcUA−GalNAcを非還元末端として有し、受容体基質よりも1残基多い糖残基数を有する糖鎖を生成させる工程である。
また工程(b)は、GalNAc残基を非還元末端に持つ受容体基質(工程(a)の後に本工程を行う場合には、工程(a)によって得られた糖鎖)、GlcUA供与体及びGlcUA転移酵素を共存させる工程である。すなわち、GlcUA転移酵素を反応触媒として、GalNAc残基を非還元末端に持つ受容体基質のGalNAc残基に、GlcUA供与体のGlcUA残基を転移させ、GalNAc−GlcUAを非還元末端として有し、受容体基質よりも1残基多い糖残基数を有する糖鎖を生成させる工程である。
ここにいう「GlcUA残基を非還元末端に持つ受容体基質」は、GlcUA残基を非還元末端に有している糖鎖(その誘導体も含む)である限りにおいて特に限定されない。また、ここにいう「GalNAc残基を非還元末端に持つ受容体基質」は、GalNAc残基を非還元末端に有している糖鎖(その誘導体も含む)である限りにおいて特に限定されない。
これらの受容体基質としては、例えば下記一般式(1)及び(2)で示される糖鎖を例示することができる。
GlcUA−GalNAc−R1 ・・・・(1)
GalNAc−GlcUA−R2 ・・・・(2)
(各式中、−はグリコシド結合を、R及びRは、同一でも異なっていてもよい任意の基をそれぞれ示す。)
「R」や「R」としては、例えば、CH骨格を有する糖鎖の残基や、HA骨格を有する糖鎖の残基等が例示される。例えばここにいう「CH骨格を有する糖鎖の残基」としてはCH残基やCS残基等が例示される。このような糖鎖残基には、さらに他の化学物質などが結合していても良い。
なお本発明方法における「GlcUA」及び「GalNAc」は、それぞれD−GlcUA及びD−GalNAcであることが好ましい。また、GlcUAとGalNAcとの間のグリコシド結合(GlcUA−GalNAc)はβ1−3結合であることが好ましく、GalNAcとGlcUAとの間のグリコシド結合(GalNAc−GlcUA)はβ1−4結合であることが好ましい。
また、受容体基質の糖鎖のサイズも特に限定されず、高分子の糖鎖から1〜20糖程度のオリゴ糖であってもよい。「GlcUA残基を非還元末端に持つ受容体基質」として具体的には、例えば、式(1)の糖鎖としてのCHの2糖、3糖、4糖、5糖、6糖、7糖、8糖、9糖、10糖などのCHオリゴ糖および高分子のCH、RとしてCSの2糖、3糖、4糖、5糖、6糖、7糖、8糖、9糖、10糖などのCSオリゴ糖および高分子のCS、HAの2糖、3糖、4糖、5糖、6糖、7糖、8糖、9糖、10糖などのHAオリゴ糖および高分子のHAを有する一般式(1)の糖鎖が挙げられる。また「GalNAc残基を非還元末端に持つ受容体基質」として具体的には、式(2)の糖鎖としてのCHの2糖、3糖、4糖、5糖、6糖、7糖、8糖、9糖、10糖などのCHオリゴ糖および高分子のCH、RとしてCSの2糖、3糖、4糖、5糖、6糖、7糖、8糖、9糖、10糖などのCSオリゴ糖および高分子のCS、HAの2糖、3糖、4糖、5糖、6糖、7糖、8糖、9糖、10糖などのHAオリゴ糖および高分子のHAを有する一般式(2)の糖鎖が挙げられる。
このような受容体基質は、公知の方法で製造することもでき、また市販のものなどを用いることもできる。また、これらの糖鎖の誘導体としては、これらの糖鎖に他の化学物質などが結合しているものを例示することができる。これらの糖鎖に結合する他の化学物質の種類等も特に限定されない。このような化学物質としては、例えばPAなどが例示される。またその化学物質と糖鎖との間の結合様式も限定されない。結合様式としては、共有結合などが例示される。なかでも、PAが糖鎖に共有結合しているものが好ましく、PAが糖鎖の還元末端に共有結合しているものがより好ましい。最も好ましいのは、CH(CHのオリゴ糖を含む)の還元末端にPAが共有結合しているものである。PAが共有結合した糖鎖は、糖鎖の還元末端に還元剤を使ってPAをアミノアルキル化する方法で調製することができる。還元剤としては、シアノボロハイドライドやジメチルアミノボラン、トリメチルアミノボラン複合体等を用いることが好ましく、特にトリメチルアミノボラン複合体を使用する方法が好ましい。
本発明方法1においては、このような受容体基質として一種類の化合物からなる受容体基質を使用して、所望の糖鎖長からなる一種類の糖鎖を製造してもよい。また、複数種類(好ましくは2〜5種類、より好ましくは2〜3種類)の受容体基質を使用して、それぞれの基質に由来する所望の糖鎖長からなる複数の糖鎖を製造してもよい。例えば、CHオリゴ10糖(糖鎖長:10糖)のみの製造を所望する場合には、10糖よりも鎖長が短い一種類のCHオリゴ糖を受容体基質として用いることができる。また例えば、CHオリゴ8糖(糖鎖長:8糖)とCHオリゴ12糖(糖鎖長:12糖)の混合物を同時に製造する場合には、それぞれ(8−n)糖及び(12−n)糖(nは1以上の整数)の鎖長からなるCHオリゴ糖を受容体基質として用いることができる。
本発明方法1は、前記の工程(a)と(b)を交互に行うことを特徴とする。したがって、工程(a)における「GlcUA残基を非還元末端に持つ受容体基質」は、工程(b)の後に本工程を行う際には「工程(b)によって得られた糖鎖」を意味することとなる。同様に、工程(b)における「GalNAc残基を非還元末端に持つ受容体基質」は、工程(a)の後に本工程を行う際には「工程(a)によって得られた糖鎖」を意味することとなる。
本発明方法1で用いる「GlcUA供与体」は、ある糖鎖分子に対してGlcUA残基を供与する能力を有する分子である限りにおいて限定されないが、GlcUAヌクレオチドが好ましい。GlcUAヌクレオチドとしては、UDP-GlcUAや、dTDP(デオキシチミジン5’−ジリン酸)−GlcUA等が例示されるが、UDP−GlcUAが好ましい。
また本発明方法1で用いる「GalNAc供与体」は、ある糖鎖分子に対してGalNAc残基を供与する能力を有する分子である限りにおいて限定されないが、GalNAcヌクレオチドが好ましい。GalNAcヌクレオチドとしては、UDP−GalNAcや、dTDP(デオキシチミジン5’−ジリン酸)−GalNAc等が例示されるが、UDP−GalNAcが好ましい。
これらの糖ヌクレオチドは、公知の方法で製造しても良く、市販のものなどを用いても良い。
また本発明方法1で用いる「GalNAc転移酵素」は、GalNAcを転移する酵素である限りにおいて限定されないが、実質的にGlcUAを転移しないものが好ましい。また本発明方法1で用いる「GlcUA転移酵素」は、GlcUAを転移する酵素である限りにおいて限定されないが、実質的にGalNAcを転移しないものが好ましい。また両転移酵素は、同一種類の酵素であっても、異なる種類の酵素であっても良い。
両酵素として同一種類の酵素を用いる場合には、下記(A)に示す酵素であることが好ましい。
(A)配列番号2に記載のアミノ酸配列を有する酵素。
また両酵素として異なる種類の酵素を用いる場合には、本発明方法の工程(a)におけるGalNAc転移酵素が下記(B)に示す酵素であり、かつ、工程(b)におけるGlcUA転移酵素が下記(C)に示す酵素であることが好ましい。
(B)配列番号2に記載のアミノ酸配列を有する酵素の変異体であって、配列番号2におけるアミノ酸番号435〜539で示される領域内の1〜数個のアミノ酸が他のアミノ酸に置換していることを特徴とするもの。
(C)配列番号2に記載のアミノ酸配列を有する酵素の変異体であって、配列番号2におけるアミノ酸番号153〜258で示される領域内の1〜数個のアミノ酸が他のアミノ酸に置換していることを特徴とするもの。
配列番号1は、配列番号2のアミノ酸配列をコードする大腸菌由来DNA配列をアミノ酸配列と共に示す。
その中でも、「アミノ酸番号435〜539の領域」が「アミノ酸番号519〜521の領域」であり、「アミノ酸番号153〜258の領域」が「アミノ酸番号239〜241の領域」であり、かつ「1〜数個」が「1〜3個」であるものが好ましい。またその中でも、アミノ酸番号521のアミノ酸のみが他のアミノ酸に置換され、かつアミノ酸番号241のアミノ酸のみが他のアミノ酸に置換されているものが好ましい。
上記領域において置換されるアミノ酸、置換されるアミノ酸の数、上記「他のアミノ酸」の種類などのアミノ酸の置換の態様は、置換後の酵素が所望の酵素活性を維持する限りにおいて特に限定されない。上記「他のアミノ酸」は、天然型アミノ酸及び非天然型アミノ酸の何れから選択してもよい。
遺伝子工学的に置換を導入する場合には、上記の「他のアミノ酸」は天然型アミノ酸(グリシン、L−アラニン、L−バリン、L−ロイシン、L−イソロイシン、L−セリン、L−スレオニン、L−アスパラギン酸、L−グルタミン酸、L−アスパラギン、L−グルタミン、L−システイン、L−メチオニン、L−リジン、L−アルギニン、L−ヒスチジン、L−フェニルアラニン、L−チロシン、L−トリプトファン、L−プロリン)から選択することが好ましい。
特に、配列番号2におけるアミノ酸番号521のアミノ酸(L−アスパラギン酸)のみを他のアミノ酸に置換する場合や、配列番号2におけるアミノ酸番号241のアミノ酸(L−アスパラギン酸)のみを他のアミノ酸に置換する場合における「他のアミノ酸」は、いずれもL−リジンであることが好ましい。以下、配列番号2におけるアミノ酸番号521のアミノ酸(L−アスパラギン酸)のみをL−リジンに置換した酵素を「D521K」と、配列番号2におけるアミノ酸番号241のアミノ酸(L−アスパラギン酸)のみをL−リジンに置換した酵素を「D241K」とそれぞれ表記することもある。
「D521K」及び「D241K」は、前記の非特許文献2に記載された方法によって取得することができる。この「D241K」は、GalNAc酸残基を非還元末端に持つCHを受容体基質とし、GlcUAヌクレオチド(UDP−GlcUA等)を供与体基質として反応させると、受容体基質の非還元末端にGlcUAを転移してグリコシド結合させる酵素であって、かつ実質的にGalNAcの転移活性を持たない酵素(変異体)である。また「D521K」は、GlcUA残基を非還元末端にもつCHを受容体基質とし、GalNAcヌクレオチド(UDP−GalNAc等)を供与体基質として反応させると、受容体基質の非還元末端にGalNAcを転移してグリコシド結合させる酵素であって、かつ実質的にGlcUAの転移活性を持たない酵素(変異体)である。
これらの酵素は、遊離の状態で用いてもよく、担体に固定化された状態(固定化酵素の状態)で用いてもよい。
工程(a)及び(b)において、受容体基質、糖供与体及び糖転移酵素を共存させる方法及び条件は、これらの分子が相互に接触し、糖転移酵素が作用する条件である限りにおいて限定されない。また共存させる際のこれらの分子の量なども、目的等に応じて当業者が適宜設定することができる。
例えば、「共存」は中性pH付近(例えばpH6.5〜8.5程度)で行われることが好ましく、当該pH下で緩衝作用を有する緩衝溶液中で行われることがより好ましい、また「共存」させるの温度や時間としては、例えば10℃〜50℃の条件下で10分間〜24時間や、20℃〜40℃の条件下で30分間〜5時間や、25℃〜37℃の条件下で1時間〜4時間などが例示される。一般に、所望の糖鎖長が長いほど、長い接触時間が必要となり、多少他のピークが見られることがある。しかしこの問題は、接触時間をさらに長くすることにより解消することができる。
また、例えば「共存」時の糖転移酵素及び受容体基質の量は、糖転移酵素90μlに対して受容体基質1nmol〜1mmol程度となるようにすることが好ましく、100nmol程度とすることがより好ましい。また「共存」時、糖供与体は受容体基質に対して1等量以上あればよいが、糖転移酵素の反応を完全に行うためにも受容体基質の1.5〜30等量存在させることが好ましく、2〜10等量存在させることがより好ましい。
また「共存」は、糖転移酵素を適当な担体(ビーズ、限外濾過膜、透析膜等)に固定化させ、これに前記の糖供与体及び受容体基質を含有する溶液を連続的に接触させることにより行ってもよい。したがって、例えばカラム型のリアクターや、膜型リアクター等を採用することもできる。また、PCT国際公開パンフレットWO00/27437号に記載された方法と同様に、受容体基質を担体に固定化させて酵素反応させることもできる。さらに、糖供与体を再生(合成)するバイオリアクター等を組み合わせてもよい。
本発明方法1は、前記の工程(a)及び(b)を少なくとも含んでいる限りにおいて、他の工程をさらに含んでいてもよい。例えば、本発明方法1における工程(a)及び(b)の直後に、それぞれ、各工程において共存させた転移酵素及び供与体の少なくともいずれか一方を除去する工程をさらに含むことが好ましい。この場合、転移酵素のみを除去することが好ましい。
本発明方法1における「除去」の語は、前記の共存系からある分子の作用を取り除くことを意味する。したがって、分子自体を物理的に取り除くことはもちろん、分子を失活させることによって当該分子の作用を取り除く態様も包含される。
転移酵素及び供与体の少なくともいずれか一方を除去する方法は特に限定されないが、転移酵素を除去する場合は、該酵素を固相に固定化しておき、該固相を適当な方法により除去することにより酵素を除去することができる。供与体は、例えば、ゲル濾過クロマトグラフィー又は限外濾過膜を用いることにより除去できる。
ただし、本発明方法1における工程(a)および(b)において受容体基質よりも1残基多い糖残基数を有する糖鎖を生成させる反応は、後述の実施例にも記載するように、反応条件(反応時間など)により制御することができるので、各工程において共存させた転移酵素及び供与体の少なくともいずれか一方を除去して各反応を独立して行うことは必ずしも必須ではない。
したがって、「除去」の程度も必ずしも100%である必要はなく、その程度は目的等に応じて当業者が適宜設定することができる。
例えば糖転移酵素を除去する場合には、熱により失活させてもよく、糖転移酵素が担体に固定化されている場合には当該担体を物理的に除去することにより行ってもよい。担体の物理的除去は、例えば濾過フィルター等を用いたり、遠心分離等を行うことによって容易に行うことができる。
またさらに、本発明方法1により得られたCH(所望の糖鎖長からなる)を精製する工程や、品質チェック工程などを含んでいても良いことは言うまでもない。
本発明方法1は、前記の工程(a)及び(b)を交互に行うことを特徴とする。したがって、工程(a)から出発して交互に行ってもよく(工程(a)、工程(b)、工程(a)、工程(b)・・・のように)、工程(b)から出発して交互に行ってもよい(工程(b)、工程(a)、工程(b)、工程(a)・・・のように)。なお、本発明方法1における「交互」の語には、2工程のみで終了する場合(例えば、工程(a)と工程(b)を行って終了する場合や、工程(b)と工程(a)を行って終了する場合)も包含される。
工程(a)又は工程(b)を1回行うことにより、糖鎖長が単糖1つ分だけ伸長する。したがって、前記の各工程を「交互」に行う回数を適宜設定することにより、所望の糖鎖長のCHを製造することができる。交互に行う回数等は、前記の各工程における各分子の共存の条件等に基づいて、当業者が適宜設定・コントロールすることができる。
本発明方法1により製造される物(所望の糖鎖長からなるCH)は、溶液状態のままでよく、固体状態(粉末等や、溶液が凍結した状態等)としてもよい。
<2>本発明方法2
本発明方法2は、下記の工程(a)及び(b)を含み、かつ、これらの工程を交互に行うことを特徴とする、実質的に単一の糖鎖長からなるCHを含有する画分の製造方法である;
工程(a):GlcUA残基を非還元末端に持つ実質的に単一の糖鎖長からなる受容体基質(工程(b)の後に本工程を行う場合には、工程(b)によって得られた糖鎖)、GalNAc供与体及びGalNAc転移酵素を共存させる工程、
工程(b):GalNAc残基を非還元末端に持つ実質的に単一の糖鎖長からなる受容体基質(工程(a)の後に本工程を行う場合には、工程(a)によって得られた糖鎖)、GlcUA供与体及びGlcUA転移酵素を共存させる工程。
本発明方法2は、本発明方法1における「受容体基質」を「一種類だけ使用」することにより、実質的に単一の糖鎖長からなるCHを含有する画分の製造方法としたものである。
したがって本発明方法2は、製造の目的物が「実質的に単一の糖鎖長からなるCHを含有する画分」である点、並びにGlcUA残基を非還元末端に持つ受容体基質及びGalNAc残基を非還元末端に持つ受容体基質が、いずれも「実質的に単一の糖鎖長からなるもの」である点を除き、本発明方法1と同じである。したがって、各工程における反応、酵素など、および反応体であるGlcUA残基を非還元末端に持つ受容体基質及びGalNAc残基を非還元末端に持つ受容体基質そのものについては本発明方法1と同様である。
ここで「実質的に単一」とは、ある画分をMALDI−TOF−MSによって分析したときに、特定の糖鎖長の糖鎖に由来するピークの高さが、これを含む全体のピークの高さの総和の7割以上を示すことをいう。MALDI−TOF−MSの分析条件は、後述の実施例を参照されたい。
本発明方法2における工程(a)および(b)で受容体基質よりも1残基多い糖残基数を有する糖鎖を生成させる反応においても、本発明方法1と同様に各工程において共存させた転移酵素及び供与体の少なくともいずれか一方を除去して各反応を独立して行うことは必ずしも必須ではないが、転移酵素及び供与体の少なくともいずれか一方を実質的に100%除去して各反応を行うことが好ましい。転移酵素及び供与体の少なくともいずれか一方を除去する方法については本発明方法1と同様である。
ここで「実質的に100%除去する」とは、1残基だけ糖残基数の多い糖鎖を生成する工程を当該酵素または基質を除去して行った場合に、1残基だけ糖残基数の多い糖鎖のピークがMALDI−TOF−MSにおいて実質的に検出されない(実質的に無視し得る)程度に除去することをいう。例えば、後述の実施例3の(2)においてD521Kを使用しない条件、即ちPA−CH6(100nmol)、20mM塩化マンガン1.2mM及び150mMNaClを含有するTris−HCl緩衝液に溶解した後、50mMUDP−GalNAcを10μl添加した溶液を30℃で2時間震盪した溶液を精製し、凍結乾燥した画分をMALDI−TOF−MSに付すと、PA−CH7のピークは実質的に検出されず(実質的に無視し得る)、このような条件を「実質的に100%除去」(この場合は酵素)された状態と考える。
<3>本発明方法3
本発明方法3は、本発明方法1に記載の(a)又は(b)のいずれか一方のみの工程を含むことを特徴とする、受容体基質よりも一つ糖鎖長が増加したCHの製造方法である。
本発明方法3は、本発明方法1における工程(a)及び(b)を交互に行うことなく、いずれか一方の工程のみを行うことによって、受容体基質よりも一つ糖鎖長が増加したCHの製造方法としたものである。
したがって本発明方法3は、製造の目的物が「受容体基質よりも一つ糖鎖長が増加したCH」である点、並びに本発明方法1における工程(a)及び(b)のいずれか一方の工程のみを行う点を除き、本発明方法1と同じである。したがって、各工程における反応、酵素、反応体などについては本発明方法1と同様である。
以下、本発明を実施例により具体的に詳説する。
(分析法)
以下の実施例で得られたCH及びCH誘導体は、MALDI−TOF−MS(ブルカー社製AutoFlex)によって構造解析した。分析には発生した陰イオンを検出するネガティブモードを用い、リフレクションモードで解析した。
(ターゲットの調製)
得られた検体 1 μl(20〜100 pmoleのCHを含有)と10 mg/mlのDHB(2,5-dihydroxy-benzoic acid)−50% アセトニトリル水溶液
1 μlとを混合し、その1μl をターゲットプレートにスポットして、速やかに窒素ガスを吹き付け乾燥させた。
酵素の固定化
NHS−activated Sepharose Beads (アマシャム社製、0.1ml)に、D241K又はD521K(それぞれ特開2005−65565号公報の実施例にしたがって得られたもの)0.5mg及びグリセロール(終濃度20%)を含有する生理的リン酸緩衝液(pH7.2)(以下、「PBS」という。)1ml溶液を添加し、4℃で6時間震盪した。反応後、1Mエタノールアミンを4μl添加し、さらに4℃で1時間震盪した。その後、20 mMTris-HCl緩衝液(pH8.0)で3回、20 mM酢酸ナトリウム緩衝液(pH4.0)で3回、20%グリセロール−PBSで3回順次洗浄して、D241K、D521Kそれぞれの固定化酵素を作成した。得られた固定化酵素は20%グリセロール−PBSで懸濁して、4℃で保存した。
また、得られた固定化酵素をそれぞれ10 μl使用し、CH6糖とUDP−[H]GalNAcを基質としてGalNAc転移活性を、CH7糖とUDP−[14C]GlcUAを基質としてGlcUA転移活性をそれぞれ測定した。その結果、D241K固定化酵素(以下、D241Kビーズという)はGlcUA転移活性のみが、D521K固定化酵素(以下、D521Kビーズという)はGalNAc転移活性のみが保持されていることを確認した。
PAが共有結合した(PA化された)CHオリゴ糖の製造
(1)CH6(CH6糖)及びCH7(CH7糖)の製造
CSを化学的に脱硫酸化したCH(生化学工業株式会社製)に、ヒツジ睾丸由来のヒアルロニダーゼ(シグマ社)を加え、NaClを含有する酢酸ナトリウム緩衝液中で限定分解することによって、非還元末端がGlcUA残基である偶数糖のオリゴ糖を得た。それらをゲル濾過及びイオン交換カラムにより精製して、CH6に相当する画分を集めて、凍結乾燥した。この得られた画分についてウロン酸含有量分析(カルバゾール法)、HPLC(GPC)、MALDI−TOF−MS、コンドロイチナーゼ処理後の二糖分析等を行った結果、還元末端がGalNAc残基で非還元末端がGlcUA残基である6糖であることを確認した。
また、上記と同様にCHをヒアルロニダーゼ処理することによって得られた複数種類の偶数糖CHオリゴ糖の混合物に、β−グルクロニダーゼ(シグマ社)を添加し、NaClを含有する酢酸ナトリウム緩衝溶液中で37℃、18時間静置した。その反応液を上記方法と同様の精製処理に付し、CH7に相当する画分を集めて凍結乾燥した。この得られた画分について前記と同様の分析を行った結果、還元末端がGalNAcで非還元末端もGalNAcであるCH7であることを確認した。
(2)PAが共有結合したCH6(PA−CH6)の製造
上記(1)で得られたCH6(10 mg)を水1 mlに溶解し、これに塩酸でpH5.6に調整したPA水溶液1 mlと、トリメチルアミノボラン複合体(アルドリッチ社製)のメタノール溶液1mlとを添加して密封し、70℃で3日間反応させた。反応液を減圧濃縮し、ついで凍結乾燥した後、再度水0.1 mlに溶解した。その後Dowex 50 WX8 陽イオン交換樹脂(ダウケミカル社製)に通した後、0.2 M 酢酸アンモニウムを展開緩衝液とするSuperdex 30 HR 16/60 カラム(アマシャム社製)でゲルろ過クロマトグラフィー(流速:2 ml/分)を行った。検出液を蛍光検出器(Ex:310nm、Em:370nm)でモニターしてPA−CH6を含有する画分を集めた。この画分をさらに、SAX Magnum 9/25HPLCカラム(ワットマン社製)を用いた30〜200mMのKHPOリニアグラディエントによるイオン交換クロマトグラフィーにより精製して、PA−CH6を得た。PA−CH6は、上記(1)と同様に分析し、構造及び純度を確認した(図1)。
所望の糖鎖長からなるPA化オリゴ糖の製造
(1)反応時間の決定
実施例2の(2)で得られたPA−CH6(100nmol)を、1.2 mlの20mM塩化マンガン及び150 mM NaClを含有する50 mM Tris-HCl緩衝液(pH7.2)に溶解し、これを実施例1で得られたD521Kビーズが入った容器に添加した。これに50mM UDP−GalNAcを10 μl及びUDP−[H]GalNAcを5pmol(0.1μCi)添加した。30℃で震盪し、1時間後にSuperdex Peptide HR 10/30カラムを用いたゲル濾過クロマトグラフィーにより反応液を分離し、シンチレーションカウンターでGalNAcの転移量を測定したところ、1時間でほぼ完全に糖転移反応が完結することを確認した。この結果より反応時間を2時間とした。
(2)PA−CH7の製造
実施例3の(1)と同様に、実施例2の(2)で得られたPA−CH6を上記と同じTris-HCl緩衝液に溶解し、実施例1で得られたD521Kビーズが入った容器に添加した。これにUDP−GalNAcを添加して、30℃で2時間震盪した。反応液(1.2ml)をフィルター(ウルトラフリーCL、ミリポア社製、孔径0.45 μm)で濾過して固定化酵素ビーズを除去し、PA−CH7を含有する濾液を得た。次の糖転移反応にはこのままこの濾液を用いた。
PA−CH7をSuperdex Peptide HR 10/30カラムを用いたゲル濾過クロマトグラフィーにより精製し、凍結乾燥した。精製された画分は、MALDI−TOF−MS分析によって高純度なPA−CH7であることを確認した(図2)。
(3)PA−CH8(PA化CH8糖)の製造
実施例3の(2)で得られたPA−CH7溶液を、D241Kビーズの入った容器に添加し、さらに50 mM UDP−GlcUAを10μlを添加して、30℃で2時間震盪した。反応液を上記(2)と同様に処理し、固定化酵素ビーズを除去して、PA−CH8を含有する濾液を得た。下記PA−CH9〜PA−CH16(PA化CH9糖〜PA化CH16糖)の製造におけるPA−CH9の製造の糖転移反応にはこの濾液をそのまま用いた。PA−CH8の精製及び分析は、上記と同様に行った(図3)。
(4)PA−CH9〜PA−CH16の製造
上記PA−CH8を含有する濾液を使用して、上記(2)と同様の操作を行うことによりPA−CH9が得られた。そのPA−CH9を含有する濾液を使用して、上記(3)と同様の操作を行うことによりPA−CH10が得られた。同様にして、上記(2)および(3)の操作を交互に繰り返すことによって、1糖ずつ糖鎖長が延長したPA化CHオリゴ糖が得られた。このようにして得られたPA−CH9〜PA−CH16の精製及び分析は上記と同様に行った(図4〜図11)。
逐次糖鎖伸長オリゴ糖の合成
実施例2の(1)で得られたCH6を使用して、実施例3と同様に所望の鎖長の糖鎖が得られるまで交互に反応を行い、CH7〜CH16(CH7糖〜CH16糖)をそれぞれ製造した。精製及び分析を上記と同様に行い、CH7〜CH16がそれぞれ得られたことを確認した。
PA−CH6のMALDI−TOF−MSスペクトルを示す図である。 PA−CH7のMALDI−TOF−MSスペクトルを示す図である。 PA−CH8のMALDI−TOF−MSスペクトルを示す図である。 PA−CH9のMALDI−TOF−MSスペクトルを示す図である。 PA−CH10のMALDI−TOF−MSスペクトルを示す図である。 PA−CH11のMALDI−TOF−MSスペクトルを示す図である。 PA−CH12のMALDI−TOF−MSスペクトルを示す図である。 PA−CH13のMALDI−TOF−MSスペクトルを示す図である。 PA−CH14のMALDI−TOF−MSスペクトルを示す図である。 PA−CH15のMALDI−TOF−MSスペクトルを示す図である。 PA−CH16のMALDI−TOF−MSスペクトルを示す図である。

Claims (16)

  1. 下記の工程(a)及び(b)を含み、かつ、これらの工程を交互に行うことを特徴とする、所望の糖鎖長からなるコンドロイチンの製造方法。
    工程(a):グルクロン酸残基を非還元末端に持つ受容体基質(工程(b)の後に本工程を行う場合には、工程(b)によって得られた糖鎖)、N−アセチルガラクトサミン供与体及びN−アセチルガラクトサミン転移酵素を反応系中に共存させる工程、
    工程(b):N−アセチルガラクトサミン残基を非還元末端に持つ受容体基質(工程(a)の後に本工程を行う場合には、工程(a)によって得られた糖鎖)、グルクロン酸供与体及びグルクロン酸転移酵素を反応系中に共存させる工程。
  2. 下記の工程(a)及び(b)を含み、かつ、これらの工程を交互に行うことを特徴とする、実質的に単一の糖鎖長からなるコンドロイチンを含有する画分の製造方法。
    工程(a):グルクロン酸残基を非還元末端に持つ実質的に単一の糖鎖長からなる受容体基質(工程(b)の後に本工程を行う場合には、工程(b)によって得られた糖鎖)、N−アセチルガラクトサミン供与体及びN−アセチルガラクトサミン転移酵素を反応系中に共存させる工程、
    工程(b):N−アセチルガラクトサミン残基を非還元末端に持つ実質的に単一の糖鎖長からなる受容体基質(工程(a)の後に本工程を行う場合には、工程(a)によって得られた糖鎖)、グルクロン酸供与体及びグルクロン酸転移酵素を反応系中に共存させる工程。
  3. 請求項1に記載の(a)又は(b)のいずれか一方のみの工程を含むことを特徴とする、受容体基質よりも一つ糖鎖長が増加したコンドロイチンの製造方法。
  4. 工程(a)におけるN−アセチルガラクトサミン転移酵素及び工程(b)におけるグルクロン酸転移酵素が、いずれも下記(A)に示す酵素である、請求項1〜3のいずれか1項に記載の製造方法。
    (A)配列番号2に記載のアミノ酸配列を有する酵素。
  5. 工程(a)におけるN−アセチルガラクトサミン転移酵素が下記(B)に示す酵素であり、かつ、工程(b)におけるグルクロン酸転移酵素が下記(C)に示す酵素である、請求項1〜3のいずれか1項に記載の製造方法。
    (B)配列番号2に記載のアミノ酸配列を有する酵素の変異体であって、配列番号2におけるアミノ酸番号435〜539で示される領域内の1〜数個のアミノ酸が他のアミノ酸に置換していることを特徴とするもの。
    (C)配列番号2に記載のアミノ酸配列を有する酵素の変異体であって、配列番号2におけるアミノ酸番号153〜258で示される領域内の1〜数個のアミノ酸が他のアミノ酸に置換していることを特徴とするもの。
  6. 「アミノ酸番号435〜539の領域」が「アミノ酸番号519〜521の領域」であり、「アミノ酸番号153〜258の領域」が「アミノ酸番号239〜241の領域」であり、かつ「1〜数個」が「1〜3個」である、請求項5に記載の製造方法。
  7. アミノ酸番号521のアミノ酸のみが他のアミノ酸に置換され、かつ、アミノ酸番号241のアミノ酸のみが他のアミノ酸に置換されていることを特徴とする、請求項6に記載の製造方法。
  8. 工程(a)及び(b)の直後にそれぞれ、各工程において共存させた転移酵素及び供与体の少なくともいずれか一方を除去する工程をさらに含むことを特徴とする、請求項1〜7のいずれか1項に記載の製造方法。
  9. 転移酵素のみを除去することを特徴とする、請求項8に記載の製造方法。
  10. N−アセチルガラクトサミン供与体がUDP−N−アセチルガラクトサミンであり、かつ、グルクロン酸供与体がUDP−グルクロン酸であることを特徴とする、請求項1〜9のいずれか1項に記載の製造方法。
  11. 「共存」が、10℃〜50℃の条件下で10分間〜24時間行われることを特徴とする、請求項1〜10のいずれか1項に記載の製造方法。
  12. 「共存」が、20℃〜40℃の条件下で30分間〜5時間行われることを特徴とする、請求項1〜11のいずれか1項に記載の製造方法。
  13. 「共存」が、25℃〜37℃の条件下で1時間〜4時間行われることを特徴とする、請求項1〜12のいずれか1項に記載の製造方法。
  14. 工程(a)及び(b)の各工程において反応系中に共存させる転移酵素が、担体に固定化されているものであることを特徴とする、請求項1〜13のいずれか1項に記載の製造方法。
  15. 受容体基質が、コンドロイチン又はその誘導体である、請求項1〜14のいずれか1項に記載の製造方法。
  16. コンドロイチンの誘導体が、アミノピリジンが共有結合したコンドロイチンである、請求項15に記載の製造方法。
JP2007545287A 2005-11-17 2006-11-16 コンドロイチンの製造方法 Pending JPWO2007058252A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005332598 2005-11-17
JP2005332598 2005-11-17
PCT/JP2006/322847 WO2007058252A1 (ja) 2005-11-17 2006-11-16 コンドロイチンの製造方法

Publications (1)

Publication Number Publication Date
JPWO2007058252A1 true JPWO2007058252A1 (ja) 2009-05-07

Family

ID=38048635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007545287A Pending JPWO2007058252A1 (ja) 2005-11-17 2006-11-16 コンドロイチンの製造方法

Country Status (4)

Country Link
US (1) US20090233336A1 (ja)
EP (1) EP1950308A4 (ja)
JP (1) JPWO2007058252A1 (ja)
WO (1) WO2007058252A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1964924B1 (en) * 2005-12-15 2015-09-30 Seikagaku Corporation Long-chain chondroitin sugar chain and method for producing the same and method for promoting synthesis of chondroitin
US8664196B2 (en) 2011-05-20 2014-03-04 Gnosis S.P.A. Shark-like chondroitin sulphate and process for the preparation thereof
WO2012159655A1 (en) 2011-05-20 2012-11-29 Gnosis S.P.A. Shark-like chondroitin sulphate and process for the preparation thereof
ITMI20120896A1 (it) 2012-05-23 2013-11-24 Bongulielmi Reto Condroitina per uso in medicina
ITMI20121316A1 (it) 2012-07-27 2014-01-28 Altergon Sa Complessi di condroitina ad assorbimento transcutaneo

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003164291A (ja) * 2001-11-30 2003-06-10 New Industry Research Organization 新規コンドロイチン合成酵素
JP2003199583A (ja) * 2001-08-10 2003-07-15 Seikagaku Kogyo Co Ltd コンドロイチン合成酵素及びそれをコードするdna
WO2003102194A1 (fr) * 2002-05-31 2003-12-11 Seikagaku Corporation Chondroitine synthetase et codage de l'adn pour l'enzyme
JP2005065565A (ja) * 2003-08-22 2005-03-17 Seikagaku Kogyo Co Ltd 改変酵素

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003199583A (ja) * 2001-08-10 2003-07-15 Seikagaku Kogyo Co Ltd コンドロイチン合成酵素及びそれをコードするdna
JP2003164291A (ja) * 2001-11-30 2003-06-10 New Industry Research Organization 新規コンドロイチン合成酵素
WO2003102194A1 (fr) * 2002-05-31 2003-12-11 Seikagaku Corporation Chondroitine synthetase et codage de l'adn pour l'enzyme
JP2005065565A (ja) * 2003-08-22 2005-03-17 Seikagaku Kogyo Co Ltd 改変酵素

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012027971; J. Biol. Chem. vol.278, 2003, p.35199-203 *
JPN6012027973; Biochem. Biophys. Res. Commun. vol.258, 1999, p.741-4 *

Also Published As

Publication number Publication date
US20090233336A1 (en) 2009-09-17
EP1950308A1 (en) 2008-07-30
WO2007058252A1 (ja) 2007-05-24
EP1950308A4 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
Xu et al. Chemoenzymatic synthesis of heparan sulfate and heparin
Li et al. Enzymatic synthesis of homogeneous chondroitin sulfate oligosaccharides
Allard et al. Epimerases: structure, function and mechanism
Gottschalk et al. Current state on the enzymatic synthesis of glycosaminoglycans
JPWO2007058252A1 (ja) コンドロイチンの製造方法
JP4932722B2 (ja) 新規コンドロイチン画分製造方法
JP5081629B2 (ja) 長鎖コンドロイチン糖鎖及びその製造方法並びにコンドロイチン合成の促進方法
ITPD940042A1 (it) Processo per la preparazione di acido ialuronico mediante sintesi enzimatica e relative composizioni farmaceutiche
Zhang et al. “Coding” and “Decoding”: hypothesis for the regulatory mechanism involved in heparan sulfate biosynthesis
Chen et al. Functionalized Anodic Aluminum Oxide Membrane–Electrode System for Enzyme Immobilization
JPWO2010128601A1 (ja) グルクロン酸含有グルカン、その製造法および利用
Xue et al. Impact of donor binding on polymerization catalyzed by KfoC by regulating the affinity of enzyme for acceptor
Adamiak et al. Chemo-enzymatic synthesis of functionalized oligomers of N-acetyllactosamine glycan derivatives and their immobilization on biomaterial surfaces
Zheng et al. Enzyme-mediated green synthesis of glycosaminoglycans and catalytic process intensification
CN103597088A (zh) 多糖的制造方法
Sletmoen et al. Structure–function relationships in glycopolymers: Effects of residue sequences, duplex, and triplex organization
Weïwer et al. Synthesis of uridine 5′-diphosphoiduronic acid: A potential substrate for the chemoenzymatic synthesis of heparin
JP5885136B2 (ja) 高硫酸化コンドロイチン硫酸類の合成方法、高硫酸化コンドロイチン硫酸類、および解析用試薬
JPS623795A (ja) 分枝状シクロデキストリンの製造方法
JP4550202B2 (ja) 構成糖に1,5−d−アンヒドロフルクトースを含有する糖鎖
Watts et al. Glycosynthase-catalysed formation of modified polysaccharide microstructures
JP2003026725A (ja) 新規なマルトース結合蛋白質リガンドとその利用
dos Santos Queda Chitin and chitosan as reliable templates towards the carbohydrate backbone of bacterial peptidoglycan
JP2955590B2 (ja) ラミナリオリゴ糖の製造方法
Chandarajoti et al. CHEMOENZYMATIC SYNTHESIS OF CARBOHYDRATES

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121009