JPWO2007037329A1 - Electromagnetic shield filter - Google Patents

Electromagnetic shield filter Download PDF

Info

Publication number
JPWO2007037329A1
JPWO2007037329A1 JP2007537677A JP2007537677A JPWO2007037329A1 JP WO2007037329 A1 JPWO2007037329 A1 JP WO2007037329A1 JP 2007537677 A JP2007537677 A JP 2007537677A JP 2007537677 A JP2007537677 A JP 2007537677A JP WO2007037329 A1 JPWO2007037329 A1 JP WO2007037329A1
Authority
JP
Japan
Prior art keywords
layer
mesh
blackened
electromagnetic wave
wave shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007537677A
Other languages
Japanese (ja)
Other versions
JP4849069B2 (en
Inventor
哲也 小尻
哲也 小尻
享博 京田
享博 京田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2007537677A priority Critical patent/JP4849069B2/en
Publication of JPWO2007037329A1 publication Critical patent/JPWO2007037329A1/en
Application granted granted Critical
Publication of JP4849069B2 publication Critical patent/JP4849069B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0094Shielding materials being light-transmitting, e.g. transparent, translucent
    • H05K9/0096Shielding materials being light-transmitting, e.g. transparent, translucent for television displays, e.g. plasma display panel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/212Electromagnetic interference shielding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、濡れ色を呈するような構成で用いられる場合であっても黒化度が充分で、光反射防止効果に優れた黒化処理面を有する電磁波シールドフィルタを提供することを主目的とする。本発明は、透明基材上に、導電性メッシュ層を少なくとも有する電磁波シールドフィルタにおいて、当該導電性メッシュ層の少なくとも表裏面の何れか一面以上の面が黒化処理され、当該黒化処理面のJIS Z8722に準拠して測定した全光線反射率(RSCI)が12%以下で、且つ全光線反射率(RSCI)に対する拡散光線反射率(RSCE)の比(RSCE/RSCI)が0.8以上であることを特徴とする電磁波シールドフィルタにより、上記課題を解決した。The main object of the present invention is to provide an electromagnetic wave shielding filter having a blackening treatment surface that has a sufficient degree of blackening and has an excellent antireflection effect even when used in a configuration that exhibits a wet color. To do. In the electromagnetic wave shielding filter having at least a conductive mesh layer on a transparent substrate, the present invention is such that at least one of the front and back surfaces of the conductive mesh layer is blackened, The total light reflectance (RSCI) measured in accordance with JIS Z8722 is 12% or less, and the ratio (RSCE / RSCI) of diffused light reflectance (RSCE) to total light reflectance (RSCI) is 0.8 or more. The above-described problems have been solved by an electromagnetic wave shielding filter that is characterized.

Description

本発明は、CRT、PDPなどのディスプレイから発生する電磁波を遮蔽(シールド)する、光透過性を有する電磁波シールドフィルタに関する。   The present invention relates to an electromagnetic wave shielding filter having optical transparency that shields (shields) electromagnetic waves generated from a display such as a CRT or a PDP.

近年、電気電子機器の機能高度化と増加利用に伴い、電磁気的なノイズ妨害(Electro Magnetic Interference;EMI)が増え、陰極線管(CRTという)、プラズマディスプレイパネル(PDPという)などのディスプレイでも電磁波が発生する。この電磁波をシールドするために、ディスプレイ前面に配置する電磁波シールドフィルタが知られている。このような用途に用いる電磁波シールドフィルタでは、電磁波シールド性能と共に光透過性も要求される。そこで、基材に樹脂フィルムやガラス板等の透明基材を用い、この透明基材上に、金属箔のエッチングや金属メッキにより、導電性を備えたメッシュ層を形成した電磁波遮蔽シールドフィルタが知られている。   In recent years, with the advancement of functions and increased use of electrical and electronic equipment, electromagnetic noise interference (EMI) has increased, and electromagnetic waves are also generated in displays such as cathode ray tubes (referred to as CRT) and plasma display panels (referred to as PDP). appear. In order to shield this electromagnetic wave, an electromagnetic wave shielding filter disposed on the front surface of the display is known. In the electromagnetic wave shielding filter used for such an application, light transmittance is required in addition to the electromagnetic wave shielding performance. Therefore, there is known an electromagnetic wave shielding shield filter in which a transparent substrate such as a resin film or a glass plate is used as a substrate, and a conductive mesh layer is formed on the transparent substrate by etching a metal foil or metal plating. It has been.

以上のように、メッシュ層を銅箔や銅メッキ層等を利用して形成した場合、外光等の不要光をメッシュ層が反射し、反射する金属光沢が透視画像の明室コントラストを低下させる。従って、通常、上記メッシュ層はその表面を黒化層で被覆する構成とするなど、外観が黒い黒化処理面が施されて、光反射を防止している(特許文献1、特許文献2)。その際、黒化処理面は黒化度が高く、光反射防止性能がよくなる点で、その表面粗さを規定するのが良いとされている。例えば、特許文献1には、表面粗さRaを0.10〜1.00μmが規定されている。また、特許文献2には、JIS B0601に定める算術平均粗さRaを0.02〜1.00μmの範囲が規定されている。   As described above, when the mesh layer is formed using a copper foil, a copper plating layer, etc., unnecessary light such as external light is reflected by the mesh layer, and the reflected metallic luster reduces the bright room contrast of the fluoroscopic image. . Therefore, normally, the mesh layer has a blackened surface that has a black appearance, such as a structure in which the surface is covered with a blackened layer to prevent light reflection (Patent Documents 1 and 2). . At that time, it is said that the surface roughness should be regulated in that the blackened surface has a high degree of blackening and improved light reflection prevention performance. For example, Patent Document 1 defines a surface roughness Ra of 0.10 to 1.00 μm. In Patent Document 2, the arithmetic average roughness Ra defined in JIS B0601 is specified in a range of 0.02 to 1.00 μm.

特開2000−286594号公報JP 2000-286594 A 特開2003−318596号公報JP 2003-318596 A

電磁波シールドフィルタは、メッシュ層が空気に直接露出した構造とすることは稀であり、通常、メッシュ層の保護や光学フィルタ機能の付加のために、メッシュ層を被覆するように透明樹脂層を設けることが多い。そのため、メッシュ層の透明樹脂層側の黒化処理面は、透明樹脂層が密着積層し、該透明樹脂層で言わば濡れた状態となる。このため、その黒化処理面は、空気に露出された時とは異なる概観(これを表面が液体で濡れたときの色にならって「濡れ色」と称する)を呈する。また、この濡れ色に見える現象は、透明基材上に、該透明基材側を黒化処理面とするメッシュ層を積層した構成でも同様である。
従って、通常使用される構成においては、黒化処理面の外観は、この濡れ色が直接的に影響し、従来技術のように算術表面粗さRaを規定しただけでは、黒化処理面の黒化度を充分に出せないことがあった。
The electromagnetic shielding filter rarely has a structure in which the mesh layer is directly exposed to the air. Usually, a transparent resin layer is provided so as to cover the mesh layer in order to protect the mesh layer and add an optical filter function. There are many cases. For this reason, the blackened surface on the transparent resin layer side of the mesh layer is in a state in which the transparent resin layer is closely adhered and wetted by the transparent resin layer. For this reason, the blackened surface has an appearance different from that when exposed to air (this is referred to as “wet color” after the surface is wetted with liquid). The phenomenon of appearing wet color is the same even in a configuration in which a mesh layer having the transparent substrate side as a blackened surface is laminated on the transparent substrate.
Therefore, in the configuration that is normally used, the appearance of the blackened surface is directly affected by the wet color. If the arithmetic surface roughness Ra is defined as in the prior art, the blackened surface is blackened. In some cases, the degree of conversion could not be sufficiently obtained.

本発明は上記問題点を解消するためになされたものであり、濡れ色を呈するような構成で用いられる場合であっても黒化度が充分で、光反射防止効果に優れた黒化処理面を有する電磁波シールドフィルタを提供することを目的とする。   The present invention has been made to solve the above problems, and even when used in a configuration exhibiting a wet color, the blackening treatment surface has a sufficient degree of blackening and has an excellent antireflection effect. It aims at providing the electromagnetic wave shielding filter which has this.

上記課題を解決すべく、本発明に係る電磁波シールドフィルタは、透明基材上に、導電性メッシュ層を少なくとも有する電磁波シールドフィルタにおいて、当該導電性メッシュ層の少なくとも表裏面の何れか一面以上の面が黒化処理され、当該黒化処理面のJIS Z8722に準拠して測定した全光線反射率(RSCI)が14%以下で、且つ全光線反射率(RSCI)に対する拡散光線反射率(RSCE)の比(RSCE/RSCI)が0.8以上であることを特徴とする。
本発明に係る電磁波シールドフィルタは、黒化処理された導電性メッシュ層の黒化処理面について、全反射率と、全反射率に対する拡散反射率の比を上記特定の範囲とすることにより、濡れ色を呈するような構成で用いられる場合であっても、黒化度が充分で、光反射防止効果に優れた黒化処理面を有することができ、ディスプレイの画像の視認性を良好にすることができる。
In order to solve the above problems, an electromagnetic wave shielding filter according to the present invention is an electromagnetic wave shielding filter having at least a conductive mesh layer on a transparent substrate, and at least one surface of at least front and back surfaces of the conductive mesh layer. Is blackened, the total light reflectance (R SCI ) measured according to JIS Z8722 of the blackened surface is 14% or less, and the diffused light reflectance (R SCI ) relative to the total light reflectance (R SCI ) SCE ) ratio ( RSCE / RSCI ) is 0.8 or more.
The electromagnetic wave shielding filter according to the present invention wets the blackened surface of the blackened conductive mesh layer by setting the total reflectance and the ratio of the diffuse reflectance to the total reflectance within the specific range. Even when it is used in a configuration that exhibits color, it can have a blackening treatment surface with sufficient blackening degree and excellent anti-reflection effect, and improve the visibility of the image on the display Can do.

本発明に係る電磁波シールドフィルタにおいては、前記黒化処理面が微小凹凸を有し、該微小凹凸の輪郭曲線に粗さ曲線を採用したときに、当該粗さ曲線の十点平均粗さRzJIS(JIS B0601(1994年版))が2μm以上であることが、黒化度が充分で光反射防止効果に優れた黒化処理面を有することができ、視認性を良好にすることができる点から、好ましい一態様として挙げられる。   In the electromagnetic wave shielding filter according to the present invention, when the blackened surface has minute irregularities, and a roughness curve is adopted as the contour curve of the minute irregularities, the ten-point average roughness RzJIS ( Since JIS B0601 (1994 edition) is 2 μm or more, it can have a blackening treatment surface with a sufficient blackening degree and an excellent antireflection effect, and can improve visibility. It is mentioned as a preferred embodiment.

本発明に係る電磁波シールドフィルタにおいては、前記黒化処理面を有する導電性メッシュ層の当該黒化処理面上に、透明樹脂層が積層されている構成であっても良い。このような構成を有する場合には、透明樹脂層下の黒化処理面を該透明樹脂層で腐食や傷つきなどから保護できる。更に、透明樹脂層下のメッシュ層の黒化処理面は、該透明樹脂層の接触で濡れ色となるが、本発明によれば、濡れ色となった黒化処理面においても光反射防止の点で優れたものとなるからである。   The electromagnetic wave shielding filter according to the present invention may have a configuration in which a transparent resin layer is laminated on the blackened surface of the conductive mesh layer having the blackened surface. In the case of such a configuration, the blackened surface under the transparent resin layer can be protected from corrosion and scratches by the transparent resin layer. Furthermore, the blackened surface of the mesh layer under the transparent resin layer becomes a wet color when in contact with the transparent resin layer. This is because it is excellent in terms.

本発明に係る電磁波シールドフィルタは、黒化処理された導電性メッシュ層の黒化処理面について、全反射率と、全反射率に対する拡散反射率の比を上記特定の範囲とすることにより、濡れ色を呈するような構成で用いられる場合であっても、黒化度が充分で、光反射防止効果に優れた黒化処理面を有することができる。その結果、本発明に係る電磁波シールドフィルタによれば、光の反射が低減され、コントラスト感を出すことによりディスプレイの画像の視認性を向上することができる。   The electromagnetic wave shielding filter according to the present invention wets the blackened surface of the blackened conductive mesh layer by setting the total reflectance and the ratio of the diffuse reflectance to the total reflectance within the specific range. Even when it is used in a configuration exhibiting a color, it can have a blackening treatment surface with a sufficient blackening degree and an excellent antireflection effect. As a result, according to the electromagnetic wave shielding filter according to the present invention, the reflection of light is reduced, and the visibility of the image on the display can be improved by giving a sense of contrast.

本発明に係る電磁波シールドフィルタの例を示す断面図である。It is sectional drawing which shows the example of the electromagnetic wave shield filter which concerns on this invention. 本発明に係る電磁波シールドフィルタのメッシュ層に於ける黒化処理面の組合せ例を示す断面図である。It is sectional drawing which shows the example of a combination of the blackening process surface in the mesh layer of the electromagnetic wave shield filter which concerns on this invention. (A)は輪郭曲線(粗さ曲線R)、(B)は確率密度関数ADFと負荷曲線BACで、(C)は(B)を確率密度が縦軸で上側正となる様に回転したグラフを示す図である。(A) is a contour curve (roughness curve R), (B) is a probability density function ADF and a load curve BAC, and (C) is a graph obtained by rotating (B) so that the probability density is positive on the vertical axis. FIG. 確率密度関数ADFを滑らかにした(確率密度)曲線adcを示し、本発明において好適な上に凸の曲線形状例が(A)で、下に凸の曲線形状例が(B)である。An example of an upward convex curve shape suitable for the present invention is (A) and a downward convex curve shape example is (B), which shows a (probability density) curve adc obtained by smoothing the probability density function ADF.

符号の説明Explanation of symbols

1 透明基材
2 メッシュ層
21 メッシュ状導電体層
22 黒化層
3 透明樹脂層
4 被着体
10 電磁波シールドフィルタ
ADF 確率密度関数
Adc 確率密度曲線
BAC 負荷曲線
ML 平均線
R 粗さ曲線
Rp (粗さ曲線の)最大山高さ
Rv (粗さ曲線の)最大谷深さ
DESCRIPTION OF SYMBOLS 1 Transparent base material 2 Mesh layer 21 Mesh-like conductor layer 22 Blackening layer 3 Transparent resin layer 4 Adhering body 10 Electromagnetic wave shielding filter ADF Probability density function Adc Probability density curve BAC Load curve ML Average line R Roughness curve Rp (Coarse Maximum peak height (of roughness curve) Rv Maximum valley depth (of roughness curve)

上記課題を解決すべく、本発明に係る電磁波シールドフィルタは、透明基材上に、導電性メッシュ層を少なくとも有する電磁波シールドフィルタにおいて、当該導電性メッシュ層の少なくとも表裏面の何れか一面以上の面が黒化処理され、当該黒化処理面のJIS Z8722に準拠して測定した全光線反射率(RSCI)が14%以下で、且つ全光線反射率(RSCI)に対する拡散光線反射率(RSCE)の比(RSCE/RSCI)が0.8以上であることを特徴とする。In order to solve the above problems, an electromagnetic wave shielding filter according to the present invention is an electromagnetic wave shielding filter having at least a conductive mesh layer on a transparent substrate, and at least one surface of at least front and back surfaces of the conductive mesh layer. Is blackened, the total light reflectance (R SCI ) measured according to JIS Z8722 of the blackened surface is 14% or less, and the diffused light reflectance (R SCI ) relative to the total light reflectance (R SCI ) SCE ) ratio ( RSCE / RSCI ) is 0.8 or more.

本発明における黒化処理面は、電磁波シールドフィルタがディスプレイに用いられる形態において観察者が当該電磁波シールドフィルタを見る側に、少なくとも設けられるものである。また、本発明における黒化処理面のJIS Z8722に準拠して測定した全光線反射率(RSCI)は、JIS Z8722に準拠して、分光測色計(例えば、コニカミノルタセンシング株式会社製、CM−3600d)を反射モードに設定し、光源は標準の光D65、視野2°を用いて、検出器を、反射光のうち拡散反射光と鏡面反射光の両方を総合した全反射光の(積分)強度を測定するようなSCI(Specular Compenent Include)モードに設定して、Y値(3刺激値XYZのY)を測定したものである。また、黒化処理面のJIS Z8722に準拠して測定した拡散光線反射率(RSCE)は、同様に分光測色計を用いて、光源及び視野は上記と同じにして、検出器を、反射光のうち拡散反射光のみの(積分)強度を測定するようなSCE(Specular Compenent Exclude)モードに設定して、Y値(3刺激値XYZのY)を測定したものである。The blackening treatment surface in the present invention is provided at least on the side where the observer views the electromagnetic wave shielding filter in the form in which the electromagnetic wave shielding filter is used for a display. Further, the total light reflectance was measured in accordance with JIS Z8722 blackening surface in the present invention (R SCI) is in conformity with JIS Z8722, spectrophotometer (e.g., Konica Minolta Sensing Co., Ltd., CM -3600d) is set to the reflection mode, the light source is the standard light D65, and the field of view is 2 °, and the detector uses the total reflection light (integral of both the diffuse reflection light and the specular reflection light in the reflection light). ) The Y value (Y of the tristimulus values XYZ) is measured by setting the SCI (Special Component Include) mode to measure the intensity. The diffusion light reflectance was measured in accordance with JIS Z8722 of blackening treatment surface (R SCE) is similarly using spectrophotometer, the light source and the field of view is the same as above, a detector, the reflected The Y value (Y of tristimulus values XYZ) is measured by setting the SCE (Special Component Exclude) mode in which the (integral) intensity of only diffuse reflected light in the light is measured.

本発明に係る電磁波シールドフィルタは、黒化処理面を上記のような特定の反射特性を有するように最適化することにより、濡れ色においてもより黒く見え、且つ、黒光りをすることなく、導電性メッシュ層面での外光反射による透視画像の黒レベルの低下が防止され、その黒レベルを向上させることができる。従って、本発明に係る電磁波シールドフィルタを備えると、透視画像の明室コントラスト感を出すことによりディスプレイの画像の視認性を向上することができる。   The electromagnetic wave shielding filter according to the present invention optimizes the blackened surface so as to have the specific reflection characteristics as described above, so that it looks black even in wet color and does not shine black, and is conductive. It is possible to prevent the black level of the fluoroscopic image from being reduced due to reflection of external light on the mesh layer surface, and to improve the black level. Therefore, when the electromagnetic wave shielding filter according to the present invention is provided, the visibility of the image on the display can be improved by providing a bright room contrast feeling of the fluoroscopic image.

〔層構成〕
先ず、図1は本発明による電磁波シールドフィルタ10について、基本的な形態を例示する断面図である。
図1(A)は、透明基材1上に導電性メッシュ層2(以下単に「メッシュ層」とも略称する)が積層されている構成である。また、図1(B)は、透明基材1上に導電性メッシュ層2が積層され、更に導電性メッシュ層2上に透明樹脂層3が積層された構成である。また、図1(C)のように、透明樹脂層3上に被着体層4が積層されていても良いし、図1(D)のように、透明基材1側に被着体層4が積層されていても良い。また、これら図1では、導電性メッシュ層2は、メッシュ状導電体層21と黒化層22とからなり、メッシュ層の黒化処理面はメッシュ状導電体層の面に形成した黒化層22の面として形成されている。なお、図1は、黒化処理面は導電体メッシュ層2の線条部分(ライン部)の表面(図面上方)及び両側面に形成した形態での説明図である。黒化処理面は、導電性メッシュ層の表裏面のうち少なくとも1面以上に設け、処理面の組み合わせは図2で後述するように各種ある。なお、上記被着体層4とは、例えば、シート状や板状或いは塗膜状の、反射防止フィルタ、近赤外吸収フィルタ等の各種光学フィルタ、保護フィルム、或いはディスプレイ自体の構成部品となる前面基板等の任意の機能を有する層である。
〔Layer structure〕
First, FIG. 1 is a cross-sectional view illustrating a basic form of an electromagnetic wave shielding filter 10 according to the present invention.
FIG. 1A shows a configuration in which a conductive mesh layer 2 (hereinafter also simply referred to as “mesh layer”) is laminated on a transparent substrate 1. FIG. 1B shows a configuration in which a conductive mesh layer 2 is laminated on the transparent substrate 1 and a transparent resin layer 3 is further laminated on the conductive mesh layer 2. Moreover, the adherend layer 4 may be laminated on the transparent resin layer 3 as shown in FIG. 1C, or the adherend layer may be placed on the transparent substrate 1 side as shown in FIG. 4 may be laminated. In FIG. 1, the conductive mesh layer 2 includes a mesh-like conductor layer 21 and a blackened layer 22, and the blackened surface of the mesh layer is formed on the surface of the mesh-like conductor layer. 22 faces are formed. In addition, FIG. 1 is explanatory drawing in the form which formed the blackening process surface in the surface (drawing upper part) and both sides | surfaces of the filament part (line part) of the conductor mesh layer 2. FIG. The blackening treatment surface is provided on at least one of the front and back surfaces of the conductive mesh layer, and there are various combinations of treatment surfaces as will be described later with reference to FIG. The adherend layer 4 is, for example, a sheet-like, plate-like, or coating-like, various optical filters such as an antireflection filter and a near-infrared absorption filter, a protective film, or a component of the display itself. It is a layer having an arbitrary function such as a front substrate.

なお、電磁波シールドフィルタとして、その他の層を必要に応じて適宜、設けても良い。例えば、導電性メッシュ層の錆が懸念される場合に防錆層で被覆するなど、従来公知の電磁波シールドフィルタにおける各種の層や処理は、本発明の目的及び効果を逸脱しない範囲で追加しても良い。   In addition, as an electromagnetic wave shielding filter, you may provide another layer suitably as needed. For example, when there is a concern about the rust of the conductive mesh layer, various layers and treatments in a conventionally known electromagnetic wave shielding filter, such as coating with a rust prevention layer, are added within a range not departing from the purpose and effect of the present invention. Also good.

ここで、本発明において「表側」「表面」とは、透明基材に対して導電性メッシュ層が形成された側を「表側」(図面上方を向く側でもある)、導電性メッシュ層が形成された側と同じ向きとなる面(図面の上方の面でもある)を「表面」という。「裏側」「裏面」は、各々上記「表側」「表面」とは逆となる側(図面下方を向く側でもある)乃至面(図面の下方の面でもある)をいう。   Here, in the present invention, the “front side” and “surface” are the side on which the conductive mesh layer is formed with respect to the transparent substrate as “front side” (also the side facing upward in the drawing), and the conductive mesh layer is formed. A surface (also an upper surface in the drawing) that has the same orientation as the formed side is referred to as a “surface”. The “back side” and “back side” refer to the side (also the side facing the lower side of the drawing) or the side (also the lower side of the drawing) opposite to the “front side” and “front side”.

また、ディスプレイ用途等に適用した場合において、観察者側の面は、本発明で定義する表面ではなく、裏面であっても良い。
以上の例示は、本発明の電磁波シールドフィルタの態様を限定するものではない。本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
Further, when applied to a display application or the like, the surface on the observer side may be the back surface instead of the surface defined in the present invention.
The above illustration does not limit the aspect of the electromagnetic wave shielding filter of the present invention. Any device that has substantially the same structure as the technical idea described in the claims of the present invention and that exhibits the same effect can be included in the technical scope of the present invention. .

以下、本発明の電磁波シールドフィルタについて、透明基材から、各層毎に順に説明する。
[透明基材]
透明基材1は、機械的強度が弱い銅メッシュ層を補強するための層である。従って、機械的強度と共に光透過性を有すれば、その他、耐熱性、絶縁性等も適宜勘案した上で、用途に応じたものを選択使用すれば良い。透明基材の具体例としては、例えば、透明樹脂等の有機材料からなる板及びシート(乃至フィルム。以下同様。)等、並びに、ガラス等の無機材料からなる板等である。
Hereinafter, the electromagnetic wave shielding filter of the present invention will be described in order from the transparent substrate for each layer.
[Transparent substrate]
The transparent substrate 1 is a layer for reinforcing a copper mesh layer having a low mechanical strength. Therefore, as long as it has light transmittance as well as mechanical strength, it may be selected and used depending on the application, taking into account heat resistance, insulation, etc. as appropriate. Specific examples of the transparent substrate include, for example, a plate and sheet (or film, the same applies hereinafter) made of an organic material such as a transparent resin, and a plate made of an inorganic material such as glass.

上記透明樹脂としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、テレフタル酸−イソフタル酸−エチレングリコール共重合体、テレフタル酸−シクロヘキサンジメタノール−エチレングリコール共重合体などのポリエステル系樹脂、ナイロン6などのポリアミド系樹脂、ポリプロピレン、ポリメチルペンテンなどのポリオレフィン系樹脂、ポリメチルメタクリレートなどのアクリル系樹脂、ポリスチレン、スチレン−アクリロニトリル共重合体などのスチレン系樹脂、トリアセチルセルロースなどのセルロース系樹脂、イミド系樹脂、ポリカーボネート樹脂等が挙げられる。   Examples of the transparent resin include polyethylene resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, terephthalic acid-isophthalic acid-ethylene glycol copolymer, terephthalic acid-cyclohexanedimethanol-ethylene glycol copolymer, and nylon. 6, polyamide resins such as polypropylene and polymethylpentene, acrylic resins such as polymethyl methacrylate, styrene resins such as polystyrene and styrene-acrylonitrile copolymer, cellulose resins such as triacetyl cellulose, Examples thereof include imide resins and polycarbonate resins.

なお、これら樹脂は、樹脂材料的には、単独、又は複数種類の混合樹脂(ポリマーアロイを含む)として用いられ、また層的には、単層、又は2層以上の積層体として用いられる。また、樹脂シートの場合、1軸延伸や2軸延伸した延伸シートが機械的強度の点でより好ましい。
また、これら樹脂中には、必要に応じて適宜、紫外線吸収剤、充填剤、可塑剤、帯電防止剤などの添加剤を加えても良い。
In addition, these resins are used as a single or a plurality of types of mixed resins (including polymer alloys) as a resin material, and as a layer, they are used as a single layer or a laminate of two or more layers. In the case of a resin sheet, a uniaxially stretched or biaxially stretched sheet is more preferable in terms of mechanical strength.
Moreover, you may add additives, such as a ultraviolet absorber, a filler, a plasticizer, an antistatic agent, in these resins suitably as needed.

また、ガラスとしては、石英ガラス、ホウケイ酸ガラス、ソーダライムガラスなどがあり、より好ましくは熱膨脹率が小さく寸法安定性および高温加熱処理における作業性に優れ、また、ガラス中にアルカリ成分を含まない無アルカリガラス等が挙げられ、ディスプレイの前面基板等とする電極基板と兼用することもできる。   Examples of the glass include quartz glass, borosilicate glass, and soda lime glass. More preferably, the glass has a low coefficient of thermal expansion, excellent dimensional stability and workability in high-temperature heat treatment, and does not contain an alkali component in the glass. Examples include alkali-free glass and the like, which can also be used as an electrode substrate used as a front substrate of a display.

なお、透明基材の厚さは、用途に応じたものとすれば良く特に制限は無く、透明樹脂から成る場合は、通常12〜1000μm程度であるが、好ましくは50〜500μmである。一方、透明基材がガラス板である場合には、通常1〜5mm程度が好適である。いずれの材料においても、上記未満の厚さとなると機械的強度が不足して反りや弛み、破断などが起こり、上記を超える厚さとなると過剰性能でコスト高となる上、薄型化が難しくなる。   The thickness of the transparent substrate is not particularly limited as long as it depends on the application. When the transparent substrate is made of a transparent resin, it is usually about 12 to 1000 μm, preferably 50 to 500 μm. On the other hand, when a transparent base material is a glass plate, about 1-5 mm is usually suitable. In any material, when the thickness is less than the above, the mechanical strength is insufficient and warping, loosening, breakage, and the like occur. When the thickness exceeds the above, the cost is increased due to excessive performance and it is difficult to reduce the thickness.

また、透明基材は、ディスプレイ本体の一構成要素である前面基板と兼用しても良いが、前面基板の前に配置する前面フィルタとして電磁波シールドフィルタを用いる形態では、薄さ、軽さの点で、板よりもシートが優れており、また割れない等の点でも、ガラス板よりも樹脂シートが優れている。   The transparent substrate may also be used as a front substrate, which is a component of the display body. However, in the form of using an electromagnetic wave shielding filter as a front filter disposed in front of the front substrate, the thin and light points are used. Thus, the sheet is superior to the plate, and the resin sheet is superior to the glass plate in that it is not broken.

この様な点で、透明基材としては樹脂シートが好ましい材料であるが、樹脂シートのなかでも、特に、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂シートが、透明性、耐熱性、コスト等の点で好ましく、より好ましくは2軸延伸ポリエチレンテレフタレートシートが最適である。なお、透明基材の透明性は高いほどよいが、好ましくは可視光線透過率で80%以上となる光透過性が良い。   In this respect, a resin sheet is a preferable material for the transparent substrate, but among the resin sheets, in particular, polyester resin sheets such as polyethylene terephthalate and polyethylene naphthalate have transparency, heat resistance, cost, and the like. In view of this, a biaxially stretched polyethylene terephthalate sheet is more preferable. In addition, although the transparency of a transparent base material is so good that it is high, Preferably the light transmittance which becomes 80% or more by visible light transmittance | permeability is good.

なお、樹脂シート等の透明基材は、適宜その表面に、コロナ放電処理、プラズマ処理、オゾン処理、フレーム処理、プライマー処理、予熱処理、除塵埃処理、蒸着処理、アルカリ処理、などの公知の易接着処理を行ってもよい。
また、透明基材は色素等で着色しても良い。着色により、近赤外線吸収、ネオン光吸収、色調整、外光反射防止等が図れる。例えば、樹脂の透明基材に対しては、近赤外線吸収剤、ネオン光吸収剤、色調整用色素、外光反射防止用色素等の従来公知の各種色素を添加すればよい。
In addition, a transparent substrate such as a resin sheet is appropriately coated on the surface thereof with known easy processes such as corona discharge treatment, plasma treatment, ozone treatment, flame treatment, primer treatment, pre-heat treatment, dust removal treatment, vapor deposition treatment, and alkali treatment. An adhesion treatment may be performed.
The transparent substrate may be colored with a pigment or the like. By coloring, near infrared absorption, neon light absorption, color adjustment, prevention of external light reflection, and the like can be achieved. For example, various conventionally known dyes such as a near-infrared absorber, a neon light absorber, a color adjusting dye, and an external light reflection preventing dye may be added to the transparent substrate of the resin.

[導電性メッシュ層]
導電性メッシュ層2は、電磁波遮蔽機能を担う層であり、またそれ自体は不透明性であるが、メッシュ状の形状で開口部を設けることで、電磁波遮蔽性能と光透過性を両立させている層である。本発明における導電性メッシュ層は、表面及び裏面のうち少なくとも1面以上を黒化処理による黒化処理面とし、且つ当該黒化処理面のJIS Z8722に準拠して測定した全光線反射率(RSCI)が14%以下、より好ましくは12%以下で、且つ全光線反射率(RSCI)に対する拡散光線反射率(RSCE)の比(RSCE/RSCI)が0.8以上のものである。本発明においては、黒化処理面に上記特定の反射特性を付与するために、通常、導電性メッシュ層の本体とする金属箔等から形成した導電性のメッシュ状導電体層21の必要な面に、黒化処理によって黒化層22を形成し、該黒化層の露出面を黒化処理面とする。なお、黒化層以外にメッシュ層の形状的特徴であるメッシュ形状が維持される点で、適宜、後述する防錆層等のその他の層を導電性メッシュ層の構成層として設けても良い。電磁波シールドフィルタがディスプレイに用いられる形態において観察者が当該電磁波シールドフィルタを見る側の最表面に当該防錆層等のその他の層が形成される場合には、当該最表面の層が黒化処理面となり、上記特定の反射特性を有する必要がある。
[Conductive mesh layer]
The conductive mesh layer 2 is a layer responsible for the electromagnetic wave shielding function and is itself opaque, but by providing an opening with a mesh shape, both electromagnetic wave shielding performance and light transmittance are achieved. Is a layer. In the conductive mesh layer of the present invention, at least one of the front and back surfaces is a blackened surface by blackening treatment, and the total light reflectance (R) measured in accordance with JIS Z8722 of the blackened surface. SCI) 14% or less, more preferably 12% or less, and those specific (R SCE / R SCI) is 0.8 or more diffuse light reflectance to the total light reflectance (R SCI) (R SCE) is there. In the present invention, in order to give the specific reflection characteristics to the blackened surface, a necessary surface of the conductive mesh-like conductor layer 21 usually formed from a metal foil or the like as the main body of the conductive mesh layer. In addition, the blackening layer 22 is formed by blackening treatment, and the exposed surface of the blackening layer is used as the blackening treatment surface. In addition to the blackening layer, other layers such as a rust preventive layer, which will be described later, may be appropriately provided as a constituent layer of the conductive mesh layer in that the mesh shape, which is a shape characteristic of the mesh layer, is maintained. When other layers such as the rust preventive layer are formed on the outermost surface on the side where the observer views the electromagnetic shielding filter in the form in which the electromagnetic shielding filter is used for the display, the outermost layer is blackened. It becomes a surface and needs to have the specific reflection characteristic.

(メッシュ状導電体層)
メッシュ状導電体層21は、一般的には金属箔のエッチングで形成した物が代表的であるが、これ以外のものでも、電磁波シールド性能に於いては意義を有する。従って、本発明では、メッシュ状導電体層の材料及び形成方法は特に限定されるものでは無く、従来公知の光透過性の電磁波シールドフィルタに於ける各種メッシュ状導電体層を適宜採用できるものである。例えば、印刷法やめっき法等を利用して透明基材上に最初からメッシュ状の形状でメッシュ状導電体層を形成したもの、或いは、最初は透明基材上に全面に、めっき法で導電体層を形成後、エッチング等でメッシュ状の形状にしてメッシュ状導電体層としたもの等でも構わない。
(Mesh conductor layer)
The mesh-like conductor layer 21 is typically formed by etching a metal foil, but other mesh layers are also significant in electromagnetic shielding performance. Therefore, in the present invention, the material and forming method of the mesh-like conductor layer are not particularly limited, and various mesh-like conductor layers in a conventionally known light-transmitting electromagnetic wave shielding filter can be appropriately employed. is there. For example, a mesh-like conductor layer is formed from the beginning on a transparent substrate using a printing method, a plating method, or the like, or initially, the entire surface is formed on a transparent substrate by a plating method. After forming the body layer, it may be a mesh-like conductor layer formed into a mesh shape by etching or the like.

例えば、メッシュ状導電体層のメッシュ形状をエッチングで形成する場合は、透明基材に積層した金属層をエッチングでパターンニングして開口部を空けてメッシュ状にすることで形成できる。透明基材に金属層を積層するには、金属箔として用意した金属層を接着剤で透明基材にラミネートしたり、或いはラミネート用接着剤は用いずに、金属層を蒸着、スパッタ、めっき等の1或いは2以上の物理的或いは化学的形成手法を用いて透明基材上に積層したりすることもできる。なお、エッチングによるメッシュ状導電体層は、透明基材に積層前の金属箔単体をエッチングでパターニングしてメッシュ状のメッシュ状導電体層とすることも可能である。この層単体のメッシュ状導電体層は、接着剤等で透明基材に積層する。これらのなかでも、機械的強度が弱いメッシュ状導電体層の取扱が容易で且つ生産性にも優れ、また、市販の金属箔を利用できる等の点で、金属箔を接着剤で透明基材に積層した後、エッチングでメッシュ状に加工して、透明基材上に接着剤を介して積層された形態となる、メッシュ状導電体層は代表的である。この場合の接着剤としては、粘着性の無い接着剤、或いは粘着剤(粘着剤層)等の公知の接着剤を採用すれば良い。   For example, when the mesh shape of the mesh-like conductor layer is formed by etching, it can be formed by patterning the metal layer laminated on the transparent base material by etching and opening the openings to form a mesh. To laminate a metal layer on a transparent substrate, the metal layer prepared as a metal foil is laminated to the transparent substrate with an adhesive, or the metal layer is deposited, sputtered, plated, etc. without using a laminating adhesive It can also be laminated on a transparent substrate using one or two or more physical or chemical forming methods. In addition, the mesh-like conductor layer by etching can also be formed into a mesh-like mesh-like conductor layer by patterning a single metal foil before lamination on a transparent substrate by etching. This single-layer mesh conductor layer is laminated on a transparent substrate with an adhesive or the like. Among these, the metal foil is made of a transparent base material with an adhesive so that the mesh-like conductor layer having a low mechanical strength can be easily handled and is excellent in productivity, and a commercially available metal foil can be used. A mesh-like conductor layer that is formed into a mesh-like shape by etching and then laminated on a transparent substrate via an adhesive is representative. As the adhesive in this case, a known adhesive such as a non-sticky adhesive or a pressure-sensitive adhesive (pressure-sensitive adhesive layer) may be employed.

メッシュ状導電体層は、電磁波シールド性能を発現するに足る導電性を有する物質であれば、特に制限は無いが、通常は、導電性が良い点で金属層が好ましく、金属層は上記のように、蒸着、めっき、金属箔ラミネート等により形成することができる。金属層乃至は金属箔の金属材料としては、例えば、金、銀、銅、鉄、ニッケル、クロム等が挙げられる。また金属層の金属は合金でも良く、金属層は単層でも多層でも良い。例えば、鉄の場合には、低炭素リムド鋼や低炭素アルミキルド鋼などの低炭素鋼、Ni−Fe合金、インバー合金、等が好ましい。一方、金属が銅の場合は、金属材料は銅や銅合金となり、銅箔としては圧延銅箔や電解銅箔があるが、薄さ及びその均一性、黒化層との密着性等の点からは、電解銅箔が好ましい。   The mesh-like conductor layer is not particularly limited as long as it is a substance having sufficient conductivity to exhibit electromagnetic wave shielding performance, but usually a metal layer is preferable in terms of good conductivity, and the metal layer is as described above. Further, it can be formed by vapor deposition, plating, metal foil lamination or the like. Examples of the metal material of the metal layer or the metal foil include gold, silver, copper, iron, nickel, and chromium. The metal of the metal layer may be an alloy, and the metal layer may be a single layer or multiple layers. For example, in the case of iron, low carbon steel such as low carbon rimmed steel and low carbon aluminum killed steel, Ni-Fe alloy, Invar alloy, and the like are preferable. On the other hand, when the metal is copper, the metal material is copper or a copper alloy. There are rolled copper foil and electrolytic copper foil as the copper foil, but the thinness and uniformity thereof, the adhesion with the blackened layer, etc. Is preferably an electrolytic copper foil.

なお、金属層によるメッシュ状導電体層の厚さは、1〜100μm程度、好ましくは2〜20μmである。厚さがこれより薄くなり過ぎると電気抵抗上昇により十分な電磁波シールド性能を得難くなり、厚さがこれより厚くなり過ぎると高精細なメッシュ形状が得難くなり、メッシュ形状の均一性が低下する。   In addition, the thickness of the mesh-shaped conductor layer by a metal layer is about 1-100 micrometers, Preferably it is 2-20 micrometers. If the thickness is too thin, it will be difficult to obtain sufficient electromagnetic shielding performance due to an increase in electrical resistance, and if the thickness is too thick, it will be difficult to obtain a high-definition mesh shape, which will reduce the uniformity of the mesh shape. .

また、メッシュ状導電体層となる金属層の表裏面は、透明基材と接着積層させる為の透明接着剤層等の隣接層との密着性向上が必要な場合は当該面を粗面とすると良い。
また、メッシュ状導電体層となる金属層の表面は、当該面に黒化層を追加的に形成する場合、黒化層がより薄くても所望の微小凹凸や低反射特性を有することが容易となりやすい点から、表面粗さは、メッシュ状導電体層となる金属層の表面の輪郭曲線として粗さ曲線を採用した時に、当該輪郭曲線の十点平均粗さRzJIS(JIS B0601(1994年版))が1μm以上であることが好ましい。
In addition, the front and back surfaces of the metal layer to be the mesh-like conductor layer are rough when the adhesion with the adjacent layer such as a transparent adhesive layer for adhesion and lamination with the transparent base material is required. good.
In addition, when the surface of the metal layer that becomes the mesh-like conductor layer is additionally formed with a blackened layer on the surface, it is easy to have the desired micro unevenness and low reflection characteristics even if the blackened layer is thinner. In terms of surface roughness, when a roughness curve is adopted as the contour curve of the surface of the metal layer that becomes the mesh-like conductor layer, the ten-point average roughness RzJIS (JIS B0601 (1994 version) of the contour curve. ) Is preferably 1 μm or more.

(黒化処理)
黒化処理は上記導電性メッシュ層の面の光反射を防ぐためのものであり、黒化処理で形成された黒化処理面により、導電性メッシュ層面での外光反射による透視画像の黒レベルの低下を防いで、その黒レベルを向上させ、また、透視画像の明室コントラスト感を出すことによりディスプレイの画像の視認性を向上するものである。黒化処理面は、導電性メッシュ層のライン部(線条部分)の全ての面に設けることが好ましいが、本発明では表裏両面のうち少なくとも何れか1面以上は黒化処理面とする。本発明に係る電磁波シールドフィルタは、当該黒化処理面を有する側を、観察者が見る側としてのディスプレイの前面に設置される。
(Blackening treatment)
The blackening treatment is for preventing light reflection on the surface of the conductive mesh layer, and the black level of the fluoroscopic image due to reflection of external light on the surface of the conductive mesh layer by the blackening treatment surface formed by the blackening treatment. Is reduced, the black level is improved, and the bright room contrast of the fluoroscopic image is produced, thereby improving the visibility of the image on the display. The blackened surface is preferably provided on all surfaces of the line portion (striated portion) of the conductive mesh layer, but in the present invention, at least one of the front and back surfaces is a blackened surface. The electromagnetic wave shielding filter according to the present invention is installed on the front surface of the display as the side on which the observer sees the side having the blackened surface.

なお、黒化処理面は、単層の導電性メッシュ層の面自体であっても良い。つまり、導電性メッシュ層が単層で、該単層の表面が上記特定の反射特性を有するものであれば、その表面は付加的な黒化処理は不要である。本発明においては、このような付加的な黒化処理なしでも、表面が上記特定の反射特性を有するものであれば、結果として同じ表面物性を有するから、その面も「黒化処理面」として本発明に含めることにする。   The blackened surface may be the single conductive mesh layer surface itself. That is, if the conductive mesh layer is a single layer and the surface of the single layer has the specific reflection characteristics, the surface does not need additional blackening treatment. In the present invention, even if there is no such additional blackening treatment, as long as the surface has the above-mentioned specific reflection characteristics, the resulting surface has the same physical properties. It will be included in the present invention.

但し、通常は、電磁波シールド機能に必要な導電性の点で、導電性メッシュ層には金属層等の導電体層が採用され、またこのような導電体層は、通常その表面色は金属色等であって黒色ではなく、上記本発明における黒化処理面にならないことが多い。従って、このような場合には、その表面に後述する黒化層を形成するなどの黒化処理を施して、該形成された黒化層の表面で黒化処理面を実現した構成とする。また、表面に黒化層を設けるとは、該表面を構成する層(メッシュ状導電体層等)にメッキ等で付加的に設ける他、エッチング等で表面から内部に向かって該表面を構成する層自体を黒化層に変化させても良い。従って、通常、導電体メッシュ層2は、導電性により電磁波シールド機能を担うメッシュ状導電体層21とその少なくとも表裏面のうち1面以上の面には黒化層22を設けた層とする(図2参照)。   However, normally, a conductive layer such as a metal layer is employed for the conductive mesh layer in terms of conductivity necessary for the electromagnetic wave shielding function, and the surface color of such a conductive layer is usually a metallic color. In many cases, it is not black and does not become the blackened surface in the present invention. Therefore, in such a case, a blackening treatment such as forming a blackening layer to be described later is performed on the surface, and a blackening treatment surface is realized on the surface of the formed blackening layer. Further, providing a blackened layer on the surface means that the surface is formed from the surface to the inside by etching or the like in addition to providing the layer (mesh-like conductor layer or the like) constituting the surface by plating or the like. The layer itself may be changed to a blackened layer. Therefore, normally, the conductor mesh layer 2 is a layer in which a blackened layer 22 is provided on at least one of the mesh-like conductor layer 21 that bears an electromagnetic wave shielding function due to conductivity and at least the front and back surfaces thereof ( (See FIG. 2).

従って、前記本発明に係る特定の反射特性を有する黒化処理面の対象面を黒化層22の形成面で例示すると、導電性メッシュ層2のライン部の表裏両面(図2(A))、表面だけ(図2(B))、裏面だけ(図2(C))、表面と側面(両側或いは片側)だけ、裏面と側面(両側或いは片側)だけ、全面(表裏両面と両側面)(図2(D))等である。但し、これは前記特定の反射特性を有する黒化処理面について示したのであって、上記示した黒化処理面以外に、通常では黒化処理された面の範疇に入るが前記所望の反射特性を有しない黒化処理された面を有していても良い。例えば、全面が通常では黒化処理された面の範疇に入るが、表面だけが本発明で規定する所望の反射特性を有する黒化処理面である等である。   Therefore, when the target surface of the blackening treatment surface having specific reflection characteristics according to the present invention is exemplified by the formation surface of the blackening layer 22, both the front and back surfaces of the line portion of the conductive mesh layer 2 (FIG. 2A) , Only the front surface (Fig. 2 (B)), only the back surface (Fig. 2 (C)), only the front and side surfaces (both sides or one side), only the back surface and side surfaces (both sides or one side), the entire surface (both sides and both sides) FIG. 2D) and the like. However, this is shown for the blackened surface having the specific reflection characteristics, and in addition to the blackened surface shown above, it normally falls within the category of the blackened surface, but the desired reflective characteristics. You may have the blackened surface which does not have. For example, the entire surface normally falls within the category of a blackened surface, but only the surface is a blackened surface having desired reflection characteristics defined in the present invention.

(黒化処理面)
本発明における導電性メッシュ層の黒化処理面は、黒乃至は黒に近い色(褐色、紺色、深緑色等。これも含めて黒ということにする。)を呈し、JIS Z8722に準拠して測定した全光線反射率(RSCI)が14%以下、好ましくは12%以下で、且つ全光線反射率(RSCI)に対する拡散光線反射率(RSCE)の比(RSCE/RSCI)が0.8以上であるという光学特性を有する。
(Blackening surface)
The blackened surface of the conductive mesh layer in the present invention exhibits black or a color close to black (brown, amber, deep green, etc., including black) and conforms to JIS Z8722. measured total light reflectance (R SCI) 14% or less, preferably 12% or less, and the total light reflectance diffuse light reflectance for (R SCI) ratio (R SCE) (R SCE / R SCI) is The optical property is 0.8 or more.

黒化処理面を上記のような特定の反射特性を有するように最適化することにより、濡れ色においてもより黒く見え、且つ、黒光りをすることなく、導電性メッシュ層面での外光反射による透視画像の黒レベルの低下が防止され、その黒レベルを向上させることができる。これらは黒化処理面に透明樹脂層が更に積層された濡れ色においても達成でき、本発明に係る電磁波シールドフィルタを備えると、透視画像の明室コントラスト感を出すことによりディスプレイの画像の視認性を向上することができる。   By optimizing the blackened surface so as to have the specific reflection characteristics as described above, it looks black even in wet color, and it is transparent through external light reflection on the conductive mesh layer surface without blackening A reduction in the black level of the image is prevented, and the black level can be improved. These can be achieved even in a wet color in which a transparent resin layer is further laminated on the blackened surface. When the electromagnetic wave shielding filter according to the present invention is provided, the visibility of the display image is improved by providing a bright room contrast feeling of the fluoroscopic image. Can be improved.

本発明における黒化処理面の上記全光線反射率は、14%以下であるが、好ましくは12%以下、更に好ましくは8%以下である。上記全反射率は低いほど、濡れ色においてもより黒くみえることが可能な点から好ましい。技術的に達成が困難な点から黒化処理面の上記全反射率は通常0.1%以上である。
また、本発明における黒化処理面の全光線反射率(RSCI)に対する拡散光線反射率(RSCE)の比(RSCE/RSCI)は、0.8以上であるが、好ましくは、0.9以上、更に好ましくは0.95以上である。全光線反射率(RSCI)に対する拡散光線反射率(RSCE)の比(RSCE/RSCI)は、1に近いほど全反射における拡散反射の成分が多くなり、鏡面反射の成分が少なくなる点から、所謂黒光りをすることなく、黒レベルを向上させることができる。
The total light reflectance of the blackened surface in the present invention is 14% or less, preferably 12% or less, more preferably 8% or less. The lower the total reflectance, the more preferable because it can appear black in wet color. The total reflectance of the blackened surface is usually 0.1% or more because it is difficult to achieve technically.
The ratio of total light reflectance of the black oxide treatment surfaces according to the present invention diffuse light reflectance for (R SCI) (R SCE) (R SCE / R SCI) is less than 0.8, preferably, 0 .9 or more, more preferably 0.95 or more. The ratio of the total light reflectance diffuse light reflectance for (R SCI) (R SCE) (R SCE / R SCI) , the more components of diffuse reflection at the total reflection is increased closer to 1, the components of the specular reflection is reduced In this respect, the black level can be improved without so-called black light.

本発明に係る黒化処理面の反射特性を上記特定の反射特性とするためには、黒化処理の条件を適宜調整して黒化の色及び微小凹凸の形状を調整することが好ましい。
本発明に係る黒化処理面の反射特性を上記特定の反射特性とするための一態様として、黒化処理面の形状は、微小凹凸を有することが、拡散反射成分を増やす点から好ましい。上記特定の反射特性は、黒化処理面の微小凹凸の様々な特性に依存するものである。
In order to make the reflection characteristic of the blackened surface according to the present invention the above-mentioned specific reflective characteristic, it is preferable to adjust the blackening color and the shape of the micro unevenness by appropriately adjusting the conditions of the blackening process.
As an aspect for setting the reflection characteristics of the blackened surface according to the present invention to the above-mentioned specific reflective characteristics, it is preferable that the blackened surface has fine irregularities from the viewpoint of increasing the diffuse reflection component. The specific reflection characteristic depends on various characteristics of the minute unevenness on the blackened surface.

当該微小凹凸のうち、上記特定の反射特性を得るための好ましい形状の一形態としては、黒化処理面の表面の輪郭曲線として粗さ曲線を採用した時に、当該輪郭曲線の十点平均粗さRzJIS(JIS B0601(1994年版))が1μm以上、更に2μm以上であることが好ましい。ここで黒化処理面の輪郭曲線としては、断面曲線、粗さ曲線、うねり曲線があるが、本発明においては、うねり曲線を断面曲線から差し引いた粗さ曲線Rを採用する。黒化処理面が上記のように輪郭曲線の十点平均粗さRzJIS(JIS B0601(1994年版))が特に2μm以上である場合には、上記特定の反射特性を有しやすい。当該輪郭曲線の十点平均粗さRzJIS(JIS B0601(1994年版))は、更に好ましくは2〜5μmである。なお、導電性メッシュ層の強度、及び電磁波遮蔽性の確保の点から、RzJISの値は導電性メッシュ層の厚みの半分程度以下の値とすることが好ましい。   Among the minute irregularities, as one form of a preferable shape for obtaining the specific reflection characteristic, when a roughness curve is adopted as the contour curve of the surface of the blackened surface, the ten-point average roughness of the contour curve RzJIS (JIS B0601 (1994 edition)) is preferably 1 μm or more, more preferably 2 μm or more. Here, the contour curve of the blackened surface includes a cross-section curve, a roughness curve, and a waviness curve. In the present invention, a roughness curve R obtained by subtracting the waviness curve from the cross-section curve is employed. As described above, when the blackened surface has a ten-point average roughness RzJIS (JIS B0601 (1994 edition)) of the contour curve of 2 μm or more, the specific reflection characteristics are likely to be obtained. The ten-point average roughness RzJIS (JIS B0601 (1994 version)) of the contour curve is more preferably 2 to 5 μm. In addition, from the viewpoint of ensuring the strength of the conductive mesh layer and the electromagnetic wave shielding property, the value of RzJIS is preferably set to a value of about half or less of the thickness of the conductive mesh layer.

また、当該微小凹凸のうち、上記特定の反射特性を得るための好ましい形状の一形態としては、微小凹凸の輪郭曲線に粗さ曲線を採用したときの該輪郭曲線の確率密度関数〔JIS B0601(2001年版)規定〕において、確率密度のピーク付近の形状が、該確率密度関数を滑らかにした曲線にて、確率密度を縦軸にとり且つ上方向にとったときに(横軸は粗さ曲線の凹凸の振幅値)、上に凸の曲線形状となる場合が挙げられる。なお、上に凸の「上」とは、前記確率密度を縦軸にとり且つ上方向を確率密度の正の値にとった時の上である。
図3で説明すれば、図3(A)が輪郭曲線としての粗さ曲線Rを示し、図中、符号MLは平均線である。なお、輪郭曲線としては、断面曲線、粗さ曲線、うねり曲線があるが、うねり曲線を断面曲線から差し引いた粗さ曲線Rを本発明では採用する。そして、図3(B)が図3(A)の粗さ曲線Rの輪郭曲線から算出された、粗さ曲線の確率密度関数ADFと、粗さ曲線の負荷曲線BAC(累積曲線)である。図中、Rpは粗さ曲線の最大山高さ、Rvは粗さ曲線の最大谷深さを示す。そして、図3(C)が、図3(B)を確率密度が図面上側正方向の縦軸となる様に時計回り逆方向に90度回転させたグラフである。なお、図3(C)中、水平軸のRpとRv間、確率密度の縦軸は、真数目盛りであり対数目盛りではない。確率密度関数ADFが示す形状は、図3(C)の様に細かく凸凹する形状なので、図4(A)の様に、これを滑らかな曲線化したのが確率密度曲線Adcである。表面を測定して得られる確率密度関数ADFは、図3(B)及び(C)の如く、棒グラフの様なギザギサなグラフとなるので、これを最小二乗法等によって滑らか確率密度曲線として、測定表面の微小凹凸の特徴を捉える。なお、確率密度関数を滑らかな曲線化するとは、表面の測定を無限回数繰り返せば、ギザギザしたグラフは平均化し、最終的には確率密度関数は滑らかな曲線に近づき、この最終的な曲線を1回乃至は少ない測定回数の結果から近似的に求めることに該当する。そして、図4(A)で示す確率密度曲線Adcの様に、その確率密度曲線のピーク付近の形状が、上に凸の曲線形状からなる黒化処理面が、図4(B)の様なピーク付近の形状が尖った形状で尖点を有し、ピークの頂点を通り縦軸に平行な直線に対して左右に位置する曲線がいずれも下に凸の曲線形状からなっている黒化処理面よりも、より優れた反射防止性能を与える。
上記のような確率密度関数の曲線形状は、多くは、例えば、当該微小凹凸が粗い凹凸に細かい凹凸が重畳した場合に得られる。
In addition, as a form of a preferable shape for obtaining the specific reflection characteristic among the minute unevenness, a probability density function [JIS B0601 (JIS B0601) of the contour curve when a roughness curve is adopted as the contour curve of the minute unevenness. 2001))), the shape near the peak of the probability density is a curve obtained by smoothing the probability density function, and the probability density is taken on the vertical axis and taken upward (the horizontal axis is the roughness curve). (Amplitude value of unevenness), and a case of an upwardly convex curve shape. Note that “upwardly convex” means that the probability density is on the vertical axis and the upward direction is a positive value of the probability density.
If FIG. 3 demonstrates, FIG. 3 (A) will show the roughness curve R as a contour curve, and code | symbol ML is an average line in the figure. In addition, although there exist a cross-sectional curve, a roughness curve, and a waviness curve as a contour curve, the roughness curve R which subtracted the waviness curve from the cross-sectional curve is employ | adopted by this invention. FIG. 3B shows a probability density function ADF of the roughness curve and a load curve BAC (cumulative curve) of the roughness curve calculated from the contour curve of the roughness curve R of FIG. In the figure, Rp represents the maximum peak height of the roughness curve, and Rv represents the maximum valley depth of the roughness curve. FIG. 3C is a graph obtained by rotating FIG. 3B by 90 degrees in the counterclockwise direction so that the probability density becomes the vertical axis in the positive direction on the upper side of the drawing. In FIG. 3C, the horizontal axis between Rp and Rv and the vertical axis of the probability density are true scales and not logarithmic scales. Since the shape indicated by the probability density function ADF is finely uneven as shown in FIG. 3C, the probability density curve Adc is a smooth curve as shown in FIG. 4A. Since the probability density function ADF obtained by measuring the surface becomes a jagged graph such as a bar graph as shown in FIGS. 3B and 3C, it is measured as a smooth probability density curve by the least square method or the like. Capturing the features of minute irregularities on the surface. Note that smoothing the probability density function means that if the surface measurement is repeated an infinite number of times, the jagged graph will be averaged, and the probability density function will eventually approach a smooth curve. This corresponds to approximately obtaining from the result of the number of times or a small number of measurements. Then, like the probability density curve Adc shown in FIG. 4 (A), the blackening treatment surface in which the shape in the vicinity of the peak of the probability density curve is a convex curve shape is as shown in FIG. 4 (B). A blackening process in which the shape of the shape near the peak is pointed and has a cusp, and the curve located on the left and right of the straight line passing through the peak vertex and parallel to the vertical axis has a convex downward curve shape. Gives better anti-reflection performance than surface.
The curve shape of the probability density function as described above is often obtained, for example, when fine irregularities are superimposed on rough irregularities.

黒化処理面の微小凹凸を上述のような特定の微小凹凸とするためには、後述するような黒化層を形成する際の黒化処理の条件を適宜調整するか、或いは黒化処理する対象面、すなわち黒化処理面の下地面の表面の微小凹凸具合を調整する。なお、下地面は鏡面よりも微小凹凸面を有する場合の方が、黒化層を追加的に形成する場合では、より薄くても所望の微小凹凸や反射特性を有することが容易となりやすい。下地面の微小凹凸として好ましい形状は、上記記載したとおりである。黒化層を形成する際の黒化処理の好ましい条件としては後述する。   In order to make the micro unevenness of the blackening treatment surface into the specific micro unevenness as described above, the conditions of the blackening process when forming the blackening layer as described later are appropriately adjusted, or the blackening process is performed. The fine unevenness of the surface of the lower surface of the target surface, that is, the blackened surface is adjusted. In addition, when the base surface has a fine uneven surface rather than a mirror surface, when a blackened layer is additionally formed, it is easy to have desired fine unevenness and reflection characteristics even if it is thinner. A preferable shape as the minute unevenness of the lower ground is as described above. Preferred conditions for the blackening treatment when forming the blackened layer will be described later.

また、該黒化処理面の好ましい黒濃度は0.6以上である。なお、黒濃度の測定方法は、COLOR CONTROL SYSTEMのGRETAG SPM100−11(キモト社製、商品名)を用いて、観察視野角10度、観察光源D50、照明タイプとして濃度標準ANSITに設定し、白色キャリブレイション後に、試験片を測定する。   Moreover, the preferable black density of the blackened surface is 0.6 or more. In addition, the measurement method of black density was set to the density standard ANSIT as an observation viewing angle of 10 degrees, an observation light source D50, and an illumination type using GRETAG SPM100-11 (trade name, manufactured by Kimoto Co., Ltd.) of COLOR CONTROL SYSTEM. The specimen is measured after calibration.

(黒化層)
黒化層22は前述した黒化処理面を付与する為に設ける層であり、黒等の暗色を呈し、密着性等の基本的物性を満足するものであれば良く、公知の黒化層を適宜採用し得る。
従って、黒化層としては、金属等の無機材料、黒着色樹脂等の有機材料等を用いることができ、例えば無機材料としては、金属、合金、金属酸化物、金属硫化物の金属化合物等の金属系の層として形成する。金属系の層の形成法としては、従来公知の各種黒化処理法を適宜採用できる。なかでも、めっき法による黒化処理は密着性、均一性、容易性等で好ましい。めっき法の材料は、例えば、銅、コバルト、ニッケル、亜鉛、モリブデン、スズ、クロム等の金属や金属化合物等を用いる。これらは、密着性、黒さ等の点でカドミウム等による場合よりも優れている。
(Blackening layer)
The blackening layer 22 is a layer provided for imparting the above-described blackening treatment surface. The blackening layer 22 may be any layer as long as it exhibits a dark color such as black and satisfies basic physical properties such as adhesion. It can be adopted as appropriate.
Therefore, as the blackening layer, an inorganic material such as a metal, an organic material such as a black colored resin, or the like can be used. For example, as the inorganic material, a metal, an alloy, a metal oxide, a metal compound of metal sulfide, It is formed as a metal-based layer. As a method for forming the metal layer, various conventionally known blackening methods can be appropriately employed. Especially, the blackening process by a plating method is preferable at adhesiveness, uniformity, ease, etc. As a material for the plating method, for example, a metal such as copper, cobalt, nickel, zinc, molybdenum, tin, or chromium, a metal compound, or the like is used. These are superior to the case of cadmium or the like in terms of adhesion and blackness.

なお、メッシュ状導電体層が銅箔等、銅による場合、黒化層形成の為の黒化処理として好ましいめっき法には、銅からなるメッシュ状導電体層(メッシュ状とする前に行うのであればその前の導電体層)を、硫酸、硫酸銅及び硫酸コバルト等からなる電解液中で、陰極電解処理を行いカチオン性粒子を付着させるカソーディック電着めっき法がある。この方法によれば、カチオン性粒子の付着で黒色と同時に粗面も得られる。カチオン性粒子としては、銅粒子、銅合金粒子を採用できる。銅合金粒子としては、銅−コバルト合金粒子が好ましく、更にその平均粒子径は0.001〜1μmが好ましい。銅−コバルト合金粒子により、銅−コバルト合金粒子層からなる黒化層が得られる。カソーディック電着法では、付着させるカチオン性粒子の平均粒子径0.001〜1μmに揃えられる点でも好ましい。平均粒子径が上記範囲超過では、付着粒子の緻密さが低下し黒さの低下やムラが起こり、粒子脱落(粉落ち)が発生し易くなる。一方、平均粒子径が上記範囲未満でも、黒さが低下する。なお、カソーディック電着法は処理を高電流密度で行うことで、処理面がカソーディックとなり、還元性水素発生で活性化し、銅面とカチオン性粒子との密着性が著しく向上する。   When the mesh-like conductor layer is made of copper, such as copper foil, a preferable plating method for the blackening treatment for forming the blackened layer is a mesh-like conductor layer made of copper (because it is performed before forming the mesh shape). There is a cathodic electrodeposition plating method in which, if present, the previous conductor layer) is subjected to cathodic electrolysis in an electrolytic solution made of sulfuric acid, copper sulfate, cobalt sulfate or the like, and cationic particles are deposited. According to this method, the rough surface can be obtained simultaneously with the black color by the adhesion of the cationic particles. Copper particles and copper alloy particles can be adopted as the cationic particles. The copper alloy particles are preferably copper-cobalt alloy particles, and the average particle size is preferably 0.001 to 1 μm. A blackened layer composed of a copper-cobalt alloy particle layer is obtained by the copper-cobalt alloy particles. The cathodic electrodeposition method is also preferable in that the average particle diameter of the cationic particles to be adhered is adjusted to 0.001 to 1 μm. When the average particle diameter exceeds the above range, the density of the adhered particles is reduced, blackness is reduced and unevenness occurs, and particle falling off (powder falling) is likely to occur. On the other hand, even if the average particle diameter is less than the above range, the blackness is lowered. In the cathodic electrodeposition method, when the treatment is performed at a high current density, the treated surface becomes cathodic, and activated by reducing hydrogen generation, the adhesion between the copper surface and the cationic particles is remarkably improved.

また、黒化層として、黒色クロム、黒色ニッケル、ニッケル合金等も好ましく、該ニッケル合金としては、ニッケル−亜鉛合金、ニッケル−スズ合金、ニッケル−スズ−銅合金である。特に、ニッケル合金は黒色度合いと導電性が良い上、黒化層に防錆機能も付与でき(黒化層兼防錆層となる)、防錆層を省略することもできる。しかも、通常、黒化層の粒子は針状のために、外力で変形して外観が変化しやすいが、ニッケル合金による黒化層では粒子が変形し難く、後加工工程で外観が変化し難くい利点も得られる。なお、黒化層として、ニッケル合金の形成方法は、公知の電解または無電解メッキ法でよく、ニッケルメッキを行った後に、ニッケル合金を形成してもよい。   Moreover, as a blackening layer, black chrome, black nickel, a nickel alloy, etc. are preferable, and as this nickel alloy, they are a nickel-zinc alloy, a nickel-tin alloy, and a nickel-tin-copper alloy. In particular, the nickel alloy has a good degree of blackness and conductivity, can also impart a rust prevention function to the blackened layer (becomes a blackened layer and a rustproof layer), and can omit the rustproof layer. In addition, since the particles of the blackened layer are usually needle-like, the appearance is likely to change due to external force, but the blackened layer made of nickel alloy is difficult to deform and the appearance is difficult to change in the post-processing step. Benefits. In addition, the formation method of a nickel alloy as a blackening layer may be a known electrolytic or electroless plating method, and the nickel alloy may be formed after nickel plating.

或いは、メッシュ状導電体層が銅の場合、これをアルカリ性溶液と反応させて酸化させ、酸化銅微粒子を表面易析出させる方法も有る。例えば、特開2002−9484号公報記載のように、銅のメッシュ層を、ピロリン酸銅水溶液、ピロリン酸カリウム水溶液、及びアンモニア水溶液との混合液に浸漬する方法等が挙げられる。   Alternatively, in the case where the mesh-like conductor layer is copper, there is a method in which this is oxidized by reacting with an alkaline solution to easily precipitate copper oxide fine particles on the surface. For example, as described in JP-A-2002-9484, a method of immersing a copper mesh layer in a mixed solution of a copper pyrophosphate aqueous solution, a potassium pyrophosphate aqueous solution, and an ammonia aqueous solution, and the like can be mentioned.

本発明において、黒化処理面が特に上記反射特性を有するようにするためには、メッシュ状導電体層の表面の状態により黒化層の形成方法を適宜選択して行なう。
例えば、銅からなるメッシュ状導電体層の表面の粗さが比較的大きくRzJISが1μm以上であるときは、黒色ニッケルめっきにより黒化層を形成することが好ましい。また、メッシュ状導電体層の表面の粗さが比較的小さくRzJISが1μm未満であるときは、平均粒子径1nm〜1μm程度の銅粒子や銅−コバルト合金粒子を用いたカソーディック電着法、或いは、アルカリ性溶液による平均粒子径1nm程度の酸化銅微粒子形成により黒化層を形成することが好ましい。
In the present invention, in order to make the blackened surface particularly have the above-mentioned reflection characteristics, a method for forming the blackened layer is appropriately selected according to the surface state of the mesh-like conductor layer.
For example, when the surface roughness of the mesh-like conductor layer made of copper is relatively large and RzJIS is 1 μm or more, it is preferable to form the blackened layer by black nickel plating. Further, when the surface roughness of the mesh-like conductor layer is relatively small and RzJIS is less than 1 μm, a cathodic electrodeposition method using copper particles or copper-cobalt alloy particles having an average particle diameter of about 1 nm to 1 μm, Alternatively, the blackened layer is preferably formed by forming copper oxide fine particles having an average particle diameter of about 1 nm with an alkaline solution.

(メッシュ形状)
なお、メッシュ層2のメッシュ状としての形状は、任意で特に限定されないが、そのメッシュの開口部の形状として、正方形が代表的である。開口部の平面視形状は、例えば、正三角形等の三角形、正方形、長方形、菱形、台形等の四角形、六角形、等の多角形、或いは、円形、楕円形などである。メッシュはこれら形状からなる複数の開口部を有し、開口部間は通常幅均一のライン状のライン部となり、通常は、開口部及びライン部は全面で同一形状同一サイズである。具体的サイズを例示すれば、開口率及びメッシュの非視認性の点で、開口部間のライン部の幅は5〜25μmが良い。また、開口部サイズは〔ライン間隔或いはラインピッチ〕−〔ライン幅〕であるが、この〔ライン間隔或いはラインピッチ〕で言うと150μm〜500μm、且つ開口率(開口部の面積の合計/メッシュ部の全面積)を80〜95%とするのが、光透過性と電磁波遮蔽性との両立性の点で好ましい。
なお、バイアス角度(メッシュのライン部と電磁波シールドフィルタの外周辺との成す角度)は、ディスプレイの画素ピッチや発光特性を考慮して、モアレが出難い角度に適宜設定すれば良い。
(Mesh shape)
In addition, the shape of the mesh layer 2 as a mesh shape is not particularly limited, but a square is typical as the shape of the opening of the mesh. The plan view shape of the opening is, for example, a triangle such as a regular triangle, a square such as a square, a rectangle, a rhombus, or a trapezoid, a polygon such as a hexagon, a circle, an ellipse, or the like. The mesh has a plurality of openings having these shapes, and the openings are usually line-shaped line portions having a uniform width. Usually, the openings and the line portions have the same shape and the same size on the entire surface. As an example of a specific size, the width of the line portion between the openings is preferably 5 to 25 μm in terms of the aperture ratio and the invisibility of the mesh. The size of the opening is [line interval or line pitch] − [line width]. In terms of this [line interval or line pitch], the aperture size is 150 μm to 500 μm, and the aperture ratio (total area of openings / mesh portion) The total area) is preferably 80 to 95% from the viewpoint of compatibility between light transmittance and electromagnetic wave shielding properties.
Note that the bias angle (the angle formed between the mesh line portion and the outer periphery of the electromagnetic wave shielding filter) may be appropriately set to an angle at which moire is difficult to occur in consideration of the pixel pitch of the display and the light emission characteristics.

なお、メッシュ層2は電磁波シールドフィルタの全面に亘ってメッシュ状としても良いが、光透過性が必要な部分をメッシュ状のメッシュ部として、その他の部分(例えば4辺全周囲を額縁状に囲う様な)非メッシュ部としても良い。非メッシュ部は、前記メッシュ部以外の部分であり、光透過性が面として必要でない領域となる。通常、メッシュ部の外周部に非メッシュ部を設ける。また、非メッシュ部は通常アースを取るのに利用される。アースに利用する非メッシュ部は通常、四辺全周囲に額縁状とする。また、額縁状の非メッシュ部は、ディスプレイ画像等のメッシュ部を透して見る画像に対して、その周囲を(例えば黒枠等として)額縁状に囲って該画像を引き立たせ見栄えを良くする外枠としても利用できる。なお、非メッシュ部は、アースを取る場合は少なくともその一部において導体層を露出させるのが好ましい。
なお、非メッシュ部の具体的大きさは使われ方によるが、額縁状でアース部や外枠とする場合、額縁の幅は15〜100mm程度で、なかでも30〜40mmとするのが一般的である。
The mesh layer 2 may have a mesh shape over the entire surface of the electromagnetic wave shielding filter. However, a portion requiring light transmission is used as a mesh-shaped mesh portion, and other portions (for example, all four sides are surrounded in a frame shape). It is good also as a non-mesh part. The non-mesh portion is a portion other than the mesh portion, and is a region where light transmittance is not required as a surface. Usually, a non-mesh part is provided on the outer periphery of the mesh part. The non-mesh part is usually used for grounding. The non-mesh part used for grounding is usually framed around all four sides. In addition, the frame-like non-mesh portion is an external image that enhances the appearance of the image seen through the mesh portion such as a display image by surrounding the image with a frame shape (for example, a black frame) to enhance the image. It can also be used as a frame. The non-mesh portion preferably exposes the conductor layer in at least a portion of the ground when it is grounded.
Although the specific size of the non-mesh part depends on how it is used, when the frame is in the shape of a ground part or outer frame, the width of the frame is about 15 to 100 mm, and in particular, it is generally 30 to 40 mm. It is.

(防錆層)
メッシュ層2としては、必要に応じ適宜その他の層の形成、乃至は処理を施しても良い。例えば、錆びに対する耐久性が不十分な場合は、防錆層を設けると良い。防錆層は、また前述した黒化層もそうであったが、それがメッシュ層の形状的特徴であるメッシュ形状を維持する限り、メッシュ層に含まれるメッシュ層の構成層として本発明では捉える。
防錆層はメッシュ層の表面の錆び易い面に施せば良いが、黒化処理面上に更に施す場合は、施された後の黒化処理面(実際は防錆層面であるが)でも、本発明では表裏両面のうち少なくとも1面以上は、所望の反射特性を有する面とする。防錆層によるメッシュ層の被覆面は、表面だけ、裏面だけ、表裏両面、側面(両側或いは片側)だけ、表面と両側面、裏面と両側面、表裏両面と両側面等である。
(Rust prevention layer)
As the mesh layer 2, other layers may be appropriately formed or processed as necessary. For example, when the durability against rust is insufficient, a rust prevention layer may be provided. The rust preventive layer is also the blackened layer described above, but as long as it maintains the mesh shape that is the geometric feature of the mesh layer, the present invention regards it as a constituent layer of the mesh layer included in the mesh layer. .
The rust-proof layer may be applied to the surface of the mesh layer that is easily rusted, but if it is further applied to the blackened surface, the blackened surface after being applied (actually the rust-proof layer surface) In the present invention, at least one of the front and back surfaces is a surface having desired reflection characteristics. The coating surface of the mesh layer by the rust preventive layer includes only the front surface, only the back surface, both front and back surfaces, only the side surfaces (both sides or one side), the front surface and both side surfaces, the back surface and both side surfaces, the front and back both surfaces and both side surfaces, and the like.

防錆層は、それで被覆するメッシュ状導電体層よりも錆び難いものであれば、金属等の無機材料、樹脂等の有機材料、或いはこれらの組合せ等、特に限定されるものではない。また場合によっては、黒化層をも防錆層で被覆することで、黒化層の粒子の脱落や変形を防止し、黒化層の黒さを高めることもできる。この点では、メッシュ状導電体層を金属箔で形成する場合、透明基材上の金属箔に黒化処理で黒化層を設けておく場合には、該黒化層の脱落や変質防止の意味で、透明基材と金属箔との積層前に設けておくのが好ましい。   The rust preventive layer is not particularly limited as long as it does not rust more easily than the mesh-like conductor layer coated with the rust preventive layer, such as an inorganic material such as metal, an organic material such as resin, or a combination thereof. In some cases, the blackened layer is also covered with a rust-preventing layer, so that the particles of the blackened layer can be prevented from dropping or deformed, and the blackened layer can be increased in blackness. In this respect, when the mesh-like conductor layer is formed of a metal foil, when the blackened layer is provided on the metal foil on the transparent substrate by the blackening treatment, the blackened layer is prevented from falling off or being altered. In terms of meaning, it is preferably provided before lamination of the transparent substrate and the metal foil.

防錆層は、従来公知のものを適宜採用すれば良く、例えば、クロム、亜鉛、ニッケル、スズ、銅等の金属乃至は合金、或いは金属酸化物の金属化合物の層等である。これらは、公知のめっき法等で形成できる。ここで、防錆効果及び密着性等の点で好ましい防錆層の一例を示せば、亜鉛めっきした後、クロメート処理して得られるクロム化合物層が、挙げられる。   A conventionally well-known thing should just be employ | adopted for a rust prevention layer suitably, for example, is a metal thru | or alloys, such as chromium, zinc, nickel, tin, copper, or the layer of a metal compound of a metal oxide. These can be formed by a known plating method or the like. Here, if it shows an example of a rust prevention layer preferable at points, such as a rust prevention effect and adhesiveness, the chromium compound layer obtained by carrying out a chromate process after galvanization will be mentioned.

なお、クロムの場合はクロメート(クロム酸塩)処理等でもよい。なお、クロメート処理は、処理面にクロメート処理液を接触させて行う。
また、クロメート処理は、該処理前に亜鉛めっきするのが、密着性、防錆効果の点で好ましい。また、防錆層中には、エッチングや酸洗浄時の耐酸性向上の為に、シランカップリング剤等のケイ素化合物を含有させることもできる。
なお、防錆層の厚さは通常0.001〜2μm程度、好ましくは0.01〜1μmである。
In the case of chromium, chromate (chromate) treatment or the like may be used. Note that the chromate treatment is performed by bringing a chromate treatment solution into contact with the treatment surface.
In the chromate treatment, galvanization before the treatment is preferable in terms of adhesion and rust prevention effect. In addition, the rust preventive layer may contain a silicon compound such as a silane coupling agent in order to improve acid resistance during etching or acid cleaning.
In addition, the thickness of a rust prevention layer is about 0.001-2 micrometers normally, Preferably it is 0.01-1 micrometer.

〔透明樹脂層〕
透明樹脂層3は、図1(B)の断面図で例示のように、導電性メッシュ層2による表面凹凸を埋めてメッシュ層側の表面を平坦化することにより、メッシュ層側で被着体と接着剤等で積層する場合に気泡抱き込み等を防いだり、メッシュ層を外力から保護したりする為に、必要に応じて設ける層である。なお、該保護の点では、この透明樹脂層は表面保護層でもある。また、図1(C)のように、透明樹脂層3は、被着体4と導電性メッシュ層2との間に介在し、両者を接着させる接着剤層として用いることもできる。この様な透明樹脂層3は、透明基材1上に積層した導電性メッシュ層2による凹凸表面に対して、樹脂を含む液状組成物を塗布等で施すことで形成できる。該液状組成物としては、透明な樹脂を含むものであれば特に限定は無く、公知の樹脂を適宜採用すれば良い。例えば、熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂等である。例えば、熱可塑性樹脂としては、アクリル系樹脂、ポリエステル樹脂、熱可塑性ウレタン樹脂、酢酸ビニル系樹脂等であり、熱硬化性樹脂としては、熱硬化性ウレタン樹脂、エポキシ樹脂、熱硬化性アクリル樹脂等であり、電離放射線硬化性樹脂としては紫外線や電子線で硬化するアクリレート系樹脂等である。なかでも、メッシュ層による凹凸を埋め易い点では、無溶剤或いは無溶剤に近い状態で塗工形成したりできる、電離放射線硬化性樹脂は好ましい樹脂である。
[Transparent resin layer]
As illustrated in the cross-sectional view of FIG. 1 (B), the transparent resin layer 3 fills the surface irregularities of the conductive mesh layer 2 and flattens the surface on the mesh layer side, thereby adhering the adherend on the mesh layer side. This is a layer provided as necessary in order to prevent air entrapment or the like and to protect the mesh layer from external force when laminating with an adhesive or the like. In terms of protection, this transparent resin layer is also a surface protective layer. As shown in FIG. 1C, the transparent resin layer 3 can also be used as an adhesive layer that is interposed between the adherend 4 and the conductive mesh layer 2 and adheres both. Such a transparent resin layer 3 can be formed by applying a liquid composition containing a resin to the concavo-convex surface of the conductive mesh layer 2 laminated on the transparent substrate 1 by coating or the like. The liquid composition is not particularly limited as long as it contains a transparent resin, and a known resin may be appropriately employed. For example, a thermoplastic resin, a thermosetting resin, an ionizing radiation curable resin, or the like. For example, as the thermoplastic resin, acrylic resin, polyester resin, thermoplastic urethane resin, vinyl acetate resin, etc., and as the thermosetting resin, thermosetting urethane resin, epoxy resin, thermosetting acrylic resin, etc. The ionizing radiation curable resin is an acrylate resin that is cured by ultraviolet rays or an electron beam. Among these, an ionizing radiation curable resin that can be coated and formed in a solvent-free or solvent-free state is a preferred resin in that it easily fills irregularities due to the mesh layer.

なお、透明樹脂層は平坦化目的の点では、導電性メッシュ層の開口部のみを埋めれば足りるが、図1(B)のようにメッシュ層のライン部直上も含めて形成しても良い。ライン部直上も含めて透明樹脂層を設けた場合、透明樹脂層に接するメッシュ層の面が黒化処理面の場合、透明樹脂層によって濡れ色となる。特に、本発明ではこの濡れ色の場合でも、光反射防止効果が高いので、ライン部直上も含めて透明樹脂層を形成した構成は、好適な構成の一つである。   Note that the transparent resin layer only needs to fill the opening of the conductive mesh layer for the purpose of planarization, but may be formed including the line portion of the mesh layer as shown in FIG. When the transparent resin layer is provided including just above the line part, when the surface of the mesh layer in contact with the transparent resin layer is a blackened surface, the transparent resin layer gives a wet color. In particular, in the present invention, even in the case of this wet color, since the light reflection preventing effect is high, the configuration in which the transparent resin layer is formed including the portion directly above the line portion is one suitable configuration.

〔その他の層:被着体、光学フィルタ層、表面保護層、透明接着剤層等〕
なお、上記被着体とは、例えば光学フィルタ層(フィルム、シート、板)、表面保護層(フィルム、シート、板)等である。光学フィルタ層の光学フィルタ機能としては、近赤外線吸収、反射防止(含む防眩)、色調調整(ネオン光吸収、色再現性向上)、外光反射防止等である。また、表面保護層の機能としては、防汚染、耐擦傷性等である。これらは、従来公知のものを適宜採用すれば良い。また、光学フィルタ層、表面保護層は透明樹脂層の被着体としてではなく、塗布等によってメッシュ層上、透明樹脂層上、光学フィルタ層の場合は別の光学フィルタ層上に形成することもできる。
[Other layers: adherend, optical filter layer, surface protective layer, transparent adhesive layer, etc.]
The adherend is, for example, an optical filter layer (film, sheet, plate), a surface protective layer (film, sheet, plate) or the like. The optical filter function of the optical filter layer includes near-infrared absorption, antireflection (including antiglare), color tone adjustment (neon light absorption, improved color reproducibility), and external light antireflection. Further, the functions of the surface protective layer are contamination prevention, scratch resistance, and the like. These may be appropriately selected from conventionally known ones. In addition, the optical filter layer and the surface protective layer may be formed on the mesh layer, the transparent resin layer, or in the case of the optical filter layer on another optical filter layer by coating or the like, not as an adherend of the transparent resin layer. it can.

また、被着体4は、図1(C)とは逆に、図1(D)のように透明基材1側に積層されていても良い。透明基材と被着体間は、これら同士に接着性がない場合には適宜透明な透明接着剤層を間に介して積層する。透明接着剤層としては、粘着性の無い接着剤、或いは粘着剤(粘着剤層)等の公知の接着剤を採用すれば良い。該透明接着剤層は、透明樹脂層の1形態といえる。また、被着体はディスプレイ用電磁波シールドフィルタの表裏両面に積層しても良い。その場合、表裏で被着体の種類(機能)を使い分けることができる。   Moreover, the adherend 4 may be laminated | stacked on the transparent base material 1 side like FIG.1 (D) contrary to FIG.1 (C). When the transparent substrate and the adherend are not adhesive to each other, they are appropriately laminated with a transparent adhesive layer interposed therebetween. As the transparent adhesive layer, a known adhesive such as a non-sticky adhesive or a pressure-sensitive adhesive (pressure-sensitive adhesive layer) may be employed. The transparent adhesive layer can be said to be one form of a transparent resin layer. Further, the adherend may be laminated on both the front and back surfaces of the electromagnetic wave shielding filter for display. In that case, the type (function) of the adherend can be properly used on the front and back sides.

〔その他〕
なお、透明基材、透明樹脂層、透明接着剤層、被着体等の電磁波シールドフィルタを構成する樹脂中には、外光反射防止用色素、ネオン光吸収剤、色調整用色素、等の電磁波シールドフィルタに於いて公知の色素を適宜添加しても良い。
[Others]
In addition, in the resin constituting the electromagnetic shielding filter such as a transparent substrate, transparent resin layer, transparent adhesive layer, and adherend, an external light reflection preventing dye, a neon light absorber, a color adjusting dye, etc. You may add a well-known pigment | dye suitably in an electromagnetic wave shield filter.

また、メッシュ層の詳細を説明する図1、黒化処理面を説明する図2は、例示であり、本発明の電磁波シールドフィルタの形態を限定するものではない。本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   Further, FIG. 1 for explaining the details of the mesh layer and FIG. 2 for explaining the blackening treatment surface are examples and do not limit the form of the electromagnetic wave shielding filter of the present invention. Any device that has substantially the same structure as the technical idea described in the claims of the present invention and that exhibits the same effect can be included in the technical scope of the present invention. .

以下、本発明について実施例を示して具体的に説明する。これらの記載により本発明を制限するものではない。尚、実施例中、部は特に特定しない限り重量部を表す。
<実施例1>
まず、透明基材1として、連続帯状で無着色透明な2軸延伸ポリエチレンテレフタレートフィルム(厚さ100μm)の表側とする面に、厚さ10μmの電解銅箔を、2液硬化型ウレタン樹脂系接着剤を用いてドライラミネートして、連続帯状の銅貼積層シートを作製した。
次いで、上記銅貼積層シートの銅箔に対して、フォトリソグラフィー法を利用したエッチングで、メッシュ状に加工し、透明基材1上にメッシュ状導電体層21が形成されたメッシュ積層シートを作成した。
次いで、このメッシュ積層シートのメッシュ状導電体層側の面に対して、黒色ニッケルめっきによる黒化層22を形成する黒化処理を施して、導電性メッシュ層2の表面(及び両側面)に表1に示す反射特性の黒化処理面を有する、図1(A)の様な電磁波シールドフィルタ10を作製した。なお、形成したメッシュの形状は、その開口部が正方形でライン部のライン幅25μm、ラインピッチ150μmである。また、メッシュ部の四辺全周は額縁状の非メッシュ部とした。
Hereinafter, the present invention will be specifically described with reference to examples. These descriptions do not limit the present invention. In the examples, parts represent parts by weight unless otherwise specified.
<Example 1>
First, as a transparent base material 1, an electrolytic copper foil having a thickness of 10 μm is bonded to a surface of a continuous belt-like uncolored transparent biaxially stretched polyethylene terephthalate film (thickness: 100 μm) with a two-component curable urethane resin. A continuous strip-shaped copper-clad laminate sheet was prepared by dry lamination using an agent.
Next, the copper foil of the copper-clad laminate sheet is processed into a mesh shape by etching using a photolithography method, thereby creating a mesh laminate sheet in which the mesh-like conductor layer 21 is formed on the transparent substrate 1. did.
Next, the surface of the mesh laminated sheet is subjected to a blackening treatment for forming a blackened layer 22 by black nickel plating on the surface on the mesh-like conductor layer side, and the surface (and both side surfaces) of the conductive mesh layer 2 is applied. An electromagnetic wave shielding filter 10 as shown in FIG. 1A having a blackened surface having the reflection characteristics shown in Table 1 was produced. Note that the formed mesh has a square opening, a line width of 25 μm, and a line pitch of 150 μm. Further, the entire circumference of the four sides of the mesh portion was a frame-shaped non-mesh portion.

更に、上記電磁波シールドフィルタ10のメッシュ層側の面に対して、接着剤層を兼用する透明樹脂層3として、アクリル樹脂系塗液を非メッシュ部は部分的に露出させる様にその内周一部も含めて間欠ダイコート法でメッシュ層上に間欠塗工した。次いで、塗液の溶剤乾燥後の塗膜に、被着体として厚さ80μmのトリアセチルセルロースフィルムを基材とし其の表面に弗素樹脂系の低屈折率層を反射防止層として形成してなる反射防止フィルムを、其の基材側がメッシュ層側を向く(反射防止層が最表面に露出する)様にしてラミネートし、反射防止機能付きの所望の電磁波シールドフィルタを作製した。   Further, as a transparent resin layer 3 that also serves as an adhesive layer with respect to the mesh layer side surface of the electromagnetic wave shielding filter 10, a part of the inner periphery of the acrylic resin coating liquid is exposed so that the non-mesh portion is partially exposed. Including intermittent coating on the mesh layer by the intermittent die coating method. Next, an 80 μm-thick triacetyl cellulose film is used as a substrate and a fluororesin-based low refractive index layer is formed as an antireflection layer on the surface of the coating film after the solvent of the coating liquid is dried. The antireflection film was laminated with the base material side facing the mesh layer side (the antireflection layer was exposed on the outermost surface), and a desired electromagnetic wave shielding filter with an antireflection function was produced.

<実施例2〜5>
実施例1において電解銅箔を各々変更した他は、実施例1と同様にして、表1に示す反射特性の黒化処理面を有する図1(A)の様な電磁波シールドフィルタ10を作製した。次いで、実施例1と同様にして、反射防止機能付きの電磁波シールドフィルタを作製した。
<Examples 2 to 5>
An electromagnetic wave shielding filter 10 as shown in FIG. 1 (A) having a blackened surface having the reflection characteristics shown in Table 1 was produced in the same manner as in Example 1 except that the electrolytic copper foils were changed in Example 1. . Next, in the same manner as in Example 1, an electromagnetic wave shielding filter with an antireflection function was produced.

<実施例6>
実施例1において電解銅箔を変更し、更に、黒色ニッケルめっきによる黒化層22を形成する代わりに、カソーディック電着めっき法により平均粒子径1nmの銅粒子を付着して黒化層22を形成した他は、実施例1と同様にして、表1に示す反射特性の黒化処理面を有する図1(A)の様な電磁波シールドフィルタ10を作製した。次いで、実施例1と同様にして、反射防止機能付きの電磁波シールドフィルタを作製した。
<Example 6>
Instead of changing the electrolytic copper foil in Example 1 and forming the blackened layer 22 by black nickel plating, copper particles having an average particle diameter of 1 nm are attached by the cathodic electrodeposition plating method to form the blackened layer 22. Other than the formation, an electromagnetic wave shielding filter 10 as shown in FIG. 1A having a blackened surface having the reflection characteristics shown in Table 1 was produced in the same manner as in Example 1. Next, in the same manner as in Example 1, an electromagnetic wave shielding filter with an antireflection function was produced.

<実施例7>
実施例1において電解銅箔を変更し、更に、黒色ニッケルめっきによる黒化層22を形成する代わりに、カソーディック電着めっき法により平均粒子径0.1μmの銅−コバルト合金粒子を付着して黒化層22を形成した他は、実施例1と同様にして、表1に示す反射特性の黒化処理面を有する図1(A)の様な電磁波シールドフィルタ10を作製した。次いで、実施例1と同様にして、反射防止機能付きの電磁波シールドフィルタを作製した。
<Example 7>
In Example 1, the electrolytic copper foil was changed and, instead of forming the blackened layer 22 by black nickel plating, copper-cobalt alloy particles having an average particle diameter of 0.1 μm were adhered by cathodic electrodeposition plating. Except that the blackening layer 22 was formed, an electromagnetic wave shielding filter 10 as shown in FIG. 1A having a blackening treatment surface having the reflection characteristics shown in Table 1 was produced in the same manner as in Example 1. Next, in the same manner as in Example 1, an electromagnetic wave shielding filter with an antireflection function was produced.

<実施例8>
実施例1において電解銅箔を変更し、更に、黒色ニッケルめっきによる黒化層22を形成する代わりに、カソーディック電着めっき法により平均粒子径0.2μmの銅−コバルト合金粒子を付着して黒化層22を形成した他は、実施例1と同様にして、表1に示す反射特性の黒化処理面を有する図1(A)の様な電磁波シールドフィルタ10を作製した。次いで、実施例1と同様にして、反射防止機能付きの電磁波シールドフィルタを作製した。
<Example 8>
Instead of changing the electrolytic copper foil in Example 1 and forming the blackened layer 22 by black nickel plating, copper-cobalt alloy particles having an average particle diameter of 0.2 μm were adhered by cathodic electrodeposition plating. Except that the blackening layer 22 was formed, an electromagnetic wave shielding filter 10 as shown in FIG. 1A having a blackening treatment surface having the reflection characteristics shown in Table 1 was produced in the same manner as in Example 1. Next, in the same manner as in Example 1, an electromagnetic wave shielding filter with an antireflection function was produced.

<実施例9>
実施例1において電解銅箔を変更し、更に、黒色ニッケルめっきによる黒化層22を形成する代わりに、カソーディック電着めっき法により平均粒子径1μmの銅粒子を付着し、その後更にコバルトめっきを行なって黒化層22を形成した他は、実施例1と同様にして、表1に示す反射特性の黒化処理面を有する図1(A)の様な電磁波シールドフィルタ10を作製した。次いで、実施例1と同様にして、反射防止機能付きの電磁波シールドフィルタを作製した。
<Example 9>
In Example 1, the electrolytic copper foil was changed, and instead of forming the blackened layer 22 by black nickel plating, copper particles having an average particle diameter of 1 μm were attached by cathodic electrodeposition plating, and then further cobalt plating was performed. An electromagnetic wave shielding filter 10 as shown in FIG. 1A having a blackening treatment surface having the reflection characteristics shown in Table 1 was produced in the same manner as in Example 1 except that the blackening layer 22 was formed in the same manner. Next, in the same manner as in Example 1, an electromagnetic wave shielding filter with an antireflection function was produced.

<実施例10>
まず、透明基材1として、厚さ100μmで片面にポリエステル樹脂系プライマー層を形成した、連続帯状の無着色透明な2軸延伸ポリエチレンテレフタレートフィルムを用意した。この透明基材のプライマー層上に、スパッタ法で、順次、厚さが0.1μmのニッケル−クロム合金層及び厚さが0.2μmの銅層を設けて導電処理層とした。該導電処理層面に、硫酸銅浴を用いた電解メッキ法で厚さが2.0μmの銅メッキ層を設け、導電処理層及び銅メッキ層からなる導電体層が透明基材上に接着剤層を間に介さずに直接形成された、銅貼積層シートを作製した。次いで、上記銅貼積層シートの銅箔に対して、フォトリソグラフィー法を利用したエッチングで、メッシュ状に加工し、透明基材1上にメッシュ状導電体層21が形成されたメッシュ積層シートを作成した。次いで、このメッシュ積層シートのメッシュ状導電体層側の面に対して、ピロ燐酸銅水溶液、ピロ燐酸カリウム水溶液、及びアンモニア水の混合溶液を用いた酸化により平均粒子径0.1μmの酸化銅微粒子を析出させる黒化処理を施して、導電性メッシュ層2の表面(及び両側面)に表1に示す反射特性の黒化処理面を有する、図1(A)の様な電磁波シールドフィルタ10を作製した。その他は、実施例1と同様にして、反射防止機能付きの電磁波シールドフィルタを作製した。
<Example 10>
First, as the transparent substrate 1, a continuous belt-shaped uncolored transparent biaxially stretched polyethylene terephthalate film having a thickness of 100 μm and a polyester resin primer layer formed on one side was prepared. On the primer layer of this transparent base material, a nickel-chromium alloy layer having a thickness of 0.1 μm and a copper layer having a thickness of 0.2 μm were sequentially provided by sputtering to form a conductive treatment layer. On the surface of the conductive treatment layer, a copper plating layer having a thickness of 2.0 μm is provided by an electrolytic plating method using a copper sulfate bath, and the conductive layer composed of the conductive treatment layer and the copper plating layer is an adhesive layer on the transparent substrate. A copper-clad laminate sheet was directly formed without any interposition. Next, the copper foil of the copper-clad laminate sheet is processed into a mesh shape by etching using a photolithography method, thereby creating a mesh laminate sheet in which the mesh-like conductor layer 21 is formed on the transparent substrate 1. did. Next, copper oxide fine particles having an average particle diameter of 0.1 μm are formed on the surface of the mesh laminated sheet on the mesh-like conductor layer side by oxidation using a mixed solution of copper pyrophosphate aqueous solution, potassium pyrophosphate aqueous solution, and aqueous ammonia. An electromagnetic wave shielding filter 10 as shown in FIG. 1A having a blackening treatment surface having the reflection characteristics shown in Table 1 on the surface (and both side surfaces) of the conductive mesh layer 2 is applied. Produced. Otherwise, an electromagnetic wave shielding filter with an antireflection function was produced in the same manner as in Example 1.

<比較例1、比較例2>
実施例1において電解銅箔を各々変更した他は、実施例1と同様にして、電磁波シールドフィルタを作製した。
<Comparative Example 1 and Comparative Example 2>
An electromagnetic wave shielding filter was produced in the same manner as in Example 1 except that the electrolytic copper foil was changed in Example 1.

〔性能評価〕
先ず、実施例及び比較例の電磁波シールドフィルタについて、黒化処理面の特性と、性能評価結果を、表1に示す。
なお、黒化処理面の反射特性及び微小凹凸は、メッシュ層のメッシュ部の外周に在る非メッシュ部のメッシュ層表面の黒化処理面で評価した。また、光反射防止性能もメッシュ部の開口部の影響を削除できる点で、非メッシュ部の部分(但し、透明樹脂層を介して反射防止フィルムが積層され濡れ色となる内周部分)で行った。
[Performance evaluation]
First, Table 1 shows the characteristics of the blackened surface and the performance evaluation results for the electromagnetic wave shielding filters of Examples and Comparative Examples.
The reflection characteristics and minute irregularities of the blackened surface were evaluated on the blackened surface of the mesh layer surface of the non-mesh part located on the outer periphery of the mesh part of the mesh layer. In addition, the anti-reflection performance can be eliminated at the non-mesh part (however, the inner part where the anti-reflective film is laminated through the transparent resin layer and has a wet color) because the influence of the opening of the mesh part can be eliminated. It was.

(1)黒化処理面の反射特性
黒化処理面のJIS Z8722に準拠して測定した全光線反射率(%)は、分光測色計(例えば、コニカミノルタセンシング株式会社製、CM−3600d)を反射モードに設定し、光源は標準の光D65、視野2°を用いて、検出器を、反射光のうち、拡散反射光と鏡面反射光の両方を総合した全反射光の(積分)強度を測定するようなSCIモードに設定して、Y値(3刺激値XYZのY)を測定した。また、黒化処理面のJIS Z8722による拡散光線反射率(%)は、同様に分光測色計を用いて、光源及び視野は同じくして、鏡面反射光を光トラップで吸収遮断することによって、検出器が反射光のうち拡散反射光のみの(積分)強度を測定するようなSCEモードに設定して、Y値(3刺激値XYZのY)を測定した。
(1) Reflection characteristics of the blackened surface The total light reflectance (%) measured in accordance with JIS Z8722 on the blackened surface is a spectrocolorimeter (for example, CM-3600d manufactured by Konica Minolta Sensing Co., Ltd.). Is set to the reflection mode, the light source is the standard light D65, and the field of view is 2 °, and the (integral) intensity of the total reflection light combining both the diffuse reflection light and the specular reflection light of the reflected light is used as the detector. Was set to the SCI mode to measure the Y value (Y of tristimulus values XYZ). Further, the diffused light reflectance (%) according to JIS Z8722 of the blackened surface is similarly obtained by using a spectrocolorimeter, and using the same light source and field of view, and absorbing and blocking specular reflection light with an optical trap. The detector was set to the SCE mode in which the (integral) intensity of only the diffuse reflected light out of the reflected light was set, and the Y value (Y of tristimulus values XYZ) was measured.

(2)光反射防止性能
電磁波シールドフィルタの光反射防止性能の評価は、透明樹脂層及び光反射防止フィルムを積層した後の濡れ色となった状態で、黒化処理面側の全光線反射率(%)を、反射防止フィル側から測定した(表中「AR」)。全光線反射率の測定方法は、(1)における全光線反射率の測定方法と同様に行なった。濡れ色となった状態での全光線反射率(AR)は小さい方が好ましく、全光線反射率が5%未満である場合が、光反射防止性能として許容範囲である。
(2) Light reflection prevention performance The light reflection prevention performance of the electromagnetic wave shielding filter was evaluated by measuring the total light reflectance on the blackened surface side in a state of a wet color after laminating the transparent resin layer and the light reflection prevention film. (%) Was measured from the antireflection film side (“AR” in the table). The measuring method of the total light reflectance was the same as the measuring method of the total light reflectance in (1). The total light reflectivity (AR) in the wet color state is preferably small, and the case where the total light reflectivity is less than 5% is an allowable range for the light reflection preventing performance.

(3)黒化処理面の十点平均粗さRzJIS、Ra
黒化処理面の微小凹凸は、微小凹凸の輪郭曲線に粗さ曲線を採用したときの、当該輪郭曲線の十点平均粗さRzJIS(JIS B0601(1994年版)、単位はμm)により評価した。また、参考値として、該微細凹凸の中心線平均粗さRa(JIS B0601、単位はμm)も合わせて測定した。
(3) Ten point average roughness of the blackened surface RzJIS, Ra
The micro unevenness of the blackened surface was evaluated by the ten-point average roughness RzJIS (JIS B0601 (1994 edition), unit: μm) of the contour curve when a roughness curve was adopted as the contour curve of the micro unevenness. As a reference value, the center line average roughness Ra (JIS B0601, unit is μm) of the fine irregularities was also measured.

(4)確率密度曲線
黒化処理面の微小凹凸に関し、微小凹凸の輪郭曲線に粗さ曲線を採用したときの、当該輪郭曲線の確率密度関数〔JIS B0601(2001年版)規定〕において、確率密度のピーク(頂上部)付近の形状が、該確率密度関数を滑らかにした曲線にて、確率密度を縦軸にとり且つ上方向にとったときに(横軸は粗さ曲線の凹凸の振幅値)、上に凸の曲線から成る形状となるか否かをみた。そして、図4(A)のように、ピーク付近の形状が上に凸の曲線からなる場合を「上に凸」、また図4(B)のように、ピーク付近の形状が尖った形状で尖点を有し、ピークの頂点を通り縦軸に平行な直線に対して左右に位置する曲線がいずれも下に凸の曲線形状からなっている場合を「下に凸」と略記した。
(4) Probability density curve Regarding the minute unevenness on the blackened surface, the probability density function [JIS B0601 (2001 version) rule] of the contour curve when the roughness curve is adopted as the contour curve of the minute unevenness is the probability density. When the shape near the peak (top) of the curve is a curve obtained by smoothing the probability density function, the probability density is plotted on the vertical axis and taken upward (the horizontal axis is the amplitude value of the unevenness of the roughness curve) Whether or not the shape is composed of an upwardly convex curve was examined. And when the shape near the peak is an upward convex curve as shown in FIG. 4 (A), the shape near the peak is a sharp shape as shown in FIG. 4 (B). A case where a curve having a cusp and a left-right curve with respect to a straight line passing through the peak vertex and parallel to the vertical axis is abbreviated as “convex downward”.

Figure 2007037329
Figure 2007037329

<結果のまとめ>
表1に示すように、黒化処理面のJIS Z8722に準拠して測定した全光線反射率(RSCI)が14%以下で、且つ全光線反射率(RSCI)に対する拡散光線反射率(RSCE)の比(RSCE/RSCI)が0.8以上である各実施例はいずれも、これらの反射特性を満たさない各比較例に比べて、濡れ色となった状態での全光線反射率(AR)が小さく、より優れた光反射防止性能が得られた。実施例8〜10以外の実施例及び比較例は、表面の算術平均粗さRaでは、0.2〜1.0μmの範囲内で、従来ならばいずれも良好とされて来た範囲であるが、反射特性によって、性能差がある事が判明した。また、実施例8〜10により、従来ならば良好とされてきた表面の算術平均粗さRaの範囲外であっても、良好な光反射防止性能が得られることが明らかになった。
<Summary of results>
As shown in Table 1, the total light reflectance (R SCI ) measured according to JIS Z8722 on the blackened surface is 14% or less, and the diffused light reflectance (R SCI ) relative to the total light reflectance (R SCI ) In each of the examples in which the ratio (S SCE / R SCI ) of SCE ) is 0.8 or more, the total light reflection in a wet color state as compared with the comparative examples that do not satisfy these reflection characteristics. The rate (AR) was small, and more excellent antireflection performance was obtained. In Examples and Comparative Examples other than Examples 8 to 10, the arithmetic average roughness Ra of the surface is in the range of 0.2 to 1.0 μm, and all of them have been conventionally good. It was found that there was a difference in performance depending on the reflection characteristics. Further, Examples 8 to 10 reveal that good antireflection performance can be obtained even if the surface is outside the range of the arithmetic average roughness Ra, which has been considered good in the past.

Claims (3)

透明基材上に、導電性メッシュ層を少なくとも有する電磁波シールドフィルタにおいて、当該導電性メッシュ層の少なくとも表裏面の何れか一面以上の面が黒化処理され、当該黒化処理面のJIS Z8722に準拠して測定した全光線反射率(RSCI)が14%以下で、且つ全光線反射率(RSCI)に対する拡散光線反射率(RSCE)の比(RSCE/RSCI)が0.8以上であることを特徴とする電磁波シールドフィルタ。In an electromagnetic wave shielding filter having at least a conductive mesh layer on a transparent substrate, at least one of the front and back surfaces of the conductive mesh layer is blackened, and the blackened surface conforms to JIS Z8722 and the total light reflectance was measured (R SCI) is not more than 14%, and the total light reflectance diffuse light reflectance for (R SCI) ratio (R SCE) (R SCE / R SCI) is 0.8 or more An electromagnetic wave shielding filter characterized by being. 前記黒化処理面が微小凹凸を有し、該微小凹凸の輪郭曲線に粗さ曲線を採用したときに、当該粗さ曲線の十点平均粗さRzJIS(JIS B0601(1994年版))が2μm以上であることを特徴とする、請求の範囲第1項に記載の電磁波シールドフィルタ。   When the blackened surface has minute irregularities and a roughness curve is adopted as the contour curve of the minute irregularities, the ten-point average roughness RzJIS (JIS B0601 (1994 version)) of the roughness curve is 2 μm or more. The electromagnetic wave shielding filter according to claim 1, wherein 前記黒化処理面を有する導電性メッシュ層の当該黒化処理面上に、透明樹脂層が積層されていることを特徴とする、請求の範囲第1項又は第2項に記載の電磁波シールドフィルタ。
The electromagnetic wave shielding filter according to claim 1 or 2, wherein a transparent resin layer is laminated on the blackened surface of the conductive mesh layer having the blackened surface. .
JP2007537677A 2005-09-28 2006-09-28 Electromagnetic shield filter Active JP4849069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007537677A JP4849069B2 (en) 2005-09-28 2006-09-28 Electromagnetic shield filter

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005282754 2005-09-28
JP2005282754 2005-09-28
PCT/JP2006/319306 WO2007037329A1 (en) 2005-09-28 2006-09-28 Electromagnetic wave shield filter
JP2007537677A JP4849069B2 (en) 2005-09-28 2006-09-28 Electromagnetic shield filter

Publications (2)

Publication Number Publication Date
JPWO2007037329A1 true JPWO2007037329A1 (en) 2009-04-09
JP4849069B2 JP4849069B2 (en) 2011-12-28

Family

ID=37899753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007537677A Active JP4849069B2 (en) 2005-09-28 2006-09-28 Electromagnetic shield filter

Country Status (3)

Country Link
JP (1) JP4849069B2 (en)
KR (1) KR101263054B1 (en)
WO (1) WO2007037329A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133949A (en) * 2007-11-29 2009-06-18 Dainippon Printing Co Ltd Front filter for plasma display and plasma display using the same
JP5151425B2 (en) * 2007-12-03 2013-02-27 東レ株式会社 Display filter and manufacturing method thereof
JP2010021480A (en) * 2008-07-14 2010-01-28 Bridgestone Corp Optical filter for display, and display using the filter
JP5549165B2 (en) * 2009-09-17 2014-07-16 大日本印刷株式会社 Transparent antenna and method for manufacturing the transparent antenna
KR20140041138A (en) * 2012-09-27 2014-04-04 엘지이노텍 주식회사 Electrode member and method for manufacturing electrode member
JP2015125628A (en) * 2013-12-26 2015-07-06 大日本印刷株式会社 Film sensor, display device with touch position detection function, and laminate for manufacturing film sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002311843A (en) * 2001-04-17 2002-10-25 Dainippon Printing Co Ltd Member for shielding electromagnetic wave, and display
JP2003294917A (en) * 2002-04-08 2003-10-15 Teijin Dupont Films Japan Ltd Semi-transmitting reflection film laminate

Also Published As

Publication number Publication date
WO2007037329A1 (en) 2007-04-05
KR101263054B1 (en) 2013-05-09
JP4849069B2 (en) 2011-12-28
KR20080054408A (en) 2008-06-17

Similar Documents

Publication Publication Date Title
US7859179B2 (en) Electromagnetic wave shielding material and display using the same
JP4783721B2 (en) Metal blackening method, electromagnetic wave shielding filter, composite filter, and display
JP4346607B2 (en) Electromagnetic wave shielding sheet, display front plate and method for producing electromagnetic wave shielding sheet
US7495182B2 (en) Electromagnetic wave shielding sheet and process for producing the same
JP4849069B2 (en) Electromagnetic shield filter
JP2007101639A (en) Filter for image display device and its manufacturing method
JP2007095971A (en) Electromagnetic wave shielding sheet
KR20060118553A (en) Electromagnetic shielding material and method for producing same
JP2007096111A (en) Composite filter for display and its manufacturing method
JP2008311565A (en) Composite filter for display
JP4560084B2 (en) Electromagnetic shield filter
JP2012116940A (en) Adhesive composition, and composite filter for plasma display
JP2007266239A (en) Method of manufacturing sheet-like composite filter for plasma display and sheet-like composite filter for plasma display
JP2006210763A (en) Electromagnetic wave shield filter for display
JP2004241761A (en) Sheet for electromagnetic wave shielding and manufacturing method therefor
JP2006128421A (en) Electromagnetic wave shielding filter with adhesive agent layer
JP2008209486A (en) Composite filter for display
JP2000077888A (en) Filter for plasma display and panel
JP2007227532A (en) Electromagnetic wave shielding sheet
JP2012064846A (en) Electromagnetic wave shield sheet, method of producing the same, and image display unit
JP2010123878A (en) Electromagnetic wave shielding material
JP2008292745A (en) Front glass filter for plasma display and method for manufacturing the filter
JP2002050892A (en) Mesh structure, electromagnetic wave shield filter and its producing method
JP2006210762A (en) Magnetic wave shield filter
JP2009283704A (en) Method for manufacturing of electromagnetic wave shielding sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111003

R150 Certificate of patent or registration of utility model

Ref document number: 4849069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3