JPWO2006126357A1 - 光ピックアップ装置及び光ディスク装置 - Google Patents

光ピックアップ装置及び光ディスク装置 Download PDF

Info

Publication number
JPWO2006126357A1
JPWO2006126357A1 JP2006521747A JP2006521747A JPWO2006126357A1 JP WO2006126357 A1 JPWO2006126357 A1 JP WO2006126357A1 JP 2006521747 A JP2006521747 A JP 2006521747A JP 2006521747 A JP2006521747 A JP 2006521747A JP WO2006126357 A1 JPWO2006126357 A1 JP WO2006126357A1
Authority
JP
Japan
Prior art keywords
light
wavelength
optical
light emitting
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006521747A
Other languages
English (en)
Inventor
大介 松原
大介 松原
篠田 昌久
昌久 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2006126357A1 publication Critical patent/JPWO2006126357A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/127Lasers; Multiple laser arrays
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/127Lasers; Multiple laser arrays
    • G11B7/1275Two or more lasers having different wavelengths
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/13Optical detectors therefor

Abstract

レーザ出力器(9)は、波長λ1(約405nm)の光を出射する発光部(4)と、波長λ2(約650nm)の光を出射する発光部(5)と、波長λ3(約780nm)の光を出射する発光部(6)とを有する。発光部(4)における光の出射位置と、発光部(6)における光の出射位置とは、レーザ出力器(9)の出射光の光軸方向から見て略同一位置に形成されている。レーザ出力器(9)の発光部(4,5,6)から出射されて光記録媒体(16)で反射された各戻り光が、共通の光検出器(20)で受光されるように、波長(λ1,λ2,λ3)の戻り光のうち少なくとも1つの波長の戻り光の光軸を調整する光軸調整素子(18)が備えられている。

Description

本発明は、複数種類の光記録媒体に対する情報の記録再生等が可能な光ピックアップ装置及びこの光ピックアップ装置を備えた光ディスク装置に関し、より詳細には、3波長一体型のレーザ出力器から出射した波長の異なる光を共通の光検出器で受光するようにした光ピックアップ装置及び光ディスク装置に関する。
従来より、DVD(Digital Versatile Disk)及びCD(Compact Disk)に対する情報の記録再生等(記録、再生又はその両方)を行うため、出力波長が約650nmのDVD用レーザ出力器と出力波長が約780nmのCD用レーザ出力器とを備えた2光源型の光ピックアップ装置が用いられている。さらに、各光源の小型化を図るために、単一パッケージで2種類の波長を出力可能な2波長一体型レーザ出力器も実用化されている。2波長一体型レーザ出力器としては、モノリシック型の半導体基板に2つのレーザダイオードを形成したモノリシック型レーザ出力器や、それぞれにレーザダイオードが形成された2つの半導体基板を貼り合わせたハイブリッド型レーザ出力器等が知られている。
2波長一体型レーザ出力器の場合には、2つのレーザダイオード(DVD用、CD用)の各出射位置は僅かではあるが離れており、その距離は一般に110μm程度である。そのため、一方のレーザダイオードの光軸を光ピックアップ装置の対物レンズやコリメートレンズの中心を通るシステム光軸と一致させると、他方のレーザダイオードから出射されたレーザ光の光軸がシステム光軸からずれてしまう。このままの状態では、DVD用、CD用のレーザダイオードから出射されて光記録媒体で反射されたそれぞれの戻り光を共通の光検出器で受光することができない。そこで、DVD用、CD用のレーザダイオードの出射光の戻り光の一方又は両方を回折格子等で回折させることにより、両方の戻り光を共通の光検出器に導くことが提案されている(例えば、特許文献1,2参照)。
また、近年、光記録媒体の大容量化が求められており、DVDやCDの数倍の容量を有する青紫色レーザ用の光ディスク等の光記録媒体が実用化されている。これに伴い、装置の小型化及び低コスト化の観点から、1つの光ピックアップ装置でDVD、CD及び青紫色レーザ用等の光記録媒体に対する情報の記録再生等を行うことが求められている。そこで、DVD用、CD用のレーザダイオードに加えて、青紫色レーザダイオードを備えた3光源型の光ピックアップ装置の開発が進められている。
3光源型光ピックアップ装置の例としては、以下の第1及び第2の構成が提案されている。第1の構成では、出力波長の異なる3つのレーザ出力器を設け、各レーザ出力器から出射された3種類の波長の光の光軸を、各波長に対応したプリズムを用いて光ピックアップ装置のシステム光軸に一致させ、各波長の光を光記録媒体に導いている。光記録媒体で反射された3種類の波長の戻り光は、各プリズムを透過して共通の光検出器に導かれ、この光検出器で検出される(例えば、非特許文献1参照)。
また、第2の構成では、異なる波長λ1,λ2,λ3の光をそれぞれ出射する3つの半導体基板を1つのパッケージに収容した3波長一体型のレーザ出力器を用いている。波長λ1(405nm)の光の出射位置と波長λ2(660nm)の光の出射位置は、レーザ出力器の出射光の光軸方向から見てほぼ同じ位置に配置され、波長λ3(785nm)の光の出射位置は波長λ1,λ2の光の各出射位置から約110μm離れて配置されている。3波長一体型レーザ出力器から出射されて光記録媒体で反射された戻り光のうち、波長λ2,λ3の戻り光は共通の光検出器で検出され、波長λ1の戻り光はプリズムにより分離されて別の光検出器で検出される(例えば、非特許文献2参照)。
特開2001−143312公報 特開2001−256670公報 "オランダPhilips社、CDとDVD, Blu-ray Discに記録再生可能な光ヘッドを開発"、[online]、2004年7月16日、日経BP社、[2005年2月20日アクセス]、インターネット<http://techon.nikkeibp.co.jp/members/NEWS/20040716/104521/> "ブルーレイディスク・DVD・CDに対応する3波長記録再生用光学ヘッドを開発"、[online]、2004年5月17日、ソニー株式会社、[2005年2月20日アクセス]、インターネット<http://www.sony.co.jp/SonyInfo/News/Press/200405/04-026/>
しかしながら、上述した第1の構成(非特許文献1)では、光記録媒体で反射された戻り光を共通の光検出器で受光することはできるが、それぞれのレーザ出力器の光軸を光ピックアップ装置のシステム光軸に一致させるための光学部品(プリズム等)が多く必要になり、その結果、光ピックアップ装置の構成部品が多くなり、装置の小型化及び低コスト化が難しいという問題がある。
また、上述した第2の構成(非特許文献2)では、光記録媒体の信号記録面で反射した各戻り光から、波長λ1の戻り光を分離するためのプリズムと、この波長λ1の戻り光を検出するための専用の光検出器とが必要になる上、波長λ2,λ3の戻り光を共通の光検出器で受光するために何らかの光軸調整手段が必要になり、そのため装置の小型化及び低コスト化が難しいという問題がある。
ここで、2光源型光ピックアップ装置では、位相差型の回折格子等を利用することで小型化及び低コスト化が実現されていることから(特許文献1,2)、3光源型光ピックアップ装置でも同様に位相差型の回折格子を利用することが考えられる。しかしながら、位相差型の回折格子では、入射光の波長λと、入射側の入射角θと、媒質の屈折率nと、出射光の出射角θ’と、媒質の屈折率n’と、回折光の次数mと、回折格子ピッチpとの間に、nsinθ−n’sinθ’=mλ/pの関係が成立するため、並行して回折格子に入射した3波長の光の1次以上の回折光の回折角はいずれも異なり、従って、3波長の戻り光を共通の光検出器に導くことが難しいという問題がある。
また、上述した3波長一体型レーザ出力器を使用した光ピックアップ装置の構成(非特許文献1,2)に、位相差型の回折格子(特許文献1,2)を適用し、波長λ1(405nm),波長λ2(660nm)の光の0次回折光と、波長λ3(785nm)の光の1次以上の回折光とを共通の光検出器に導くことも考えられる。しかしながら、この場合、波長λ1,λ2の光の0次回折光が高効率で得られる回折格子を作成しようとすると、回折格子の溝が深くなり、作成が難しいという問題がある。
本発明は、上記の課題を解決するためになされたものであり、使用される光の波長の異なる複数種類の光記録媒体(例えば、DVD、CD,青紫色レーザ用光ディスク)に対する情報の記録再生等を行うため、光記録媒体で反射された3種類の戻り光を共通の光検出器で検出できるようにすることを目的とする。
また、本発明は、上述のような光ピックアップ装置を備えて構成された光ディスク装置を提供することを目的とする。
本発明に係る光ピックアップ装置は、第1の波長の光を出射する第1の発光部と、第2の波長の光を出射する第2の発光部と、第3の波長の光を出射する第3の発光部とを有し、前記第1の発光部における光の出射位置と前記第3の発光部における光の出射位置とが、出射光の光軸の方向から見て略同一位置にあるよう構成されたレーザ出力器と、光検出器と、前記レーザ出力器の前記第1、第2及び第3の発光部から出射され、光記録媒体で反射されたそれぞれの戻り光が前記光検出器で受光されるように、前記第1、第2及び第3の波長の戻り光のうち、少なくとも1つの波長の戻り光の光軸を調整する光軸調整素子とを備えて構成されている。
この発明に係る光ピックアップ装置では、第1及び第3の発光部から出射された第1及び第3の波長の光は、略同一の光路を経て光記録媒体まで導かれ、第2の発光部から出射された第2の波長の光は、第1及び第3の波長の光の光路から僅かな距離を隔てた光路を通って光記録媒体まで導かれる。光記録媒体で反射された第1、第2及び第3の波長の戻り光のうち、少なくとも1つの波長の戻り光の光軸が光軸調整素子により調整され、それぞれの戻り光が共通の光検出器で受光される。光記録媒体で反射された3種類の戻り光を共通の光検出器で検出できるため、光ピックアップ装置(及びそれを用いた光ディスク装置)の小型化及び低コスト化を実現することができる。
本発明の実施の形態1におけるレーザ出力器を示す斜視図である。 本発明の実施の形態1における光ピックアップ装置の光路系を示す図である。 本発明の実施の形態1における光ピックアップ装置のレーザ出力器及び光検出器部分を示す拡大図である。 本発明の実施の形態1における光軸調整素子での回折を説明するための図である。 本発明の実施の形態1におけるバイナリブレーズ型の回折格子の説明図である。 本発明の実施の形態1におけるレベル数2のバイナリブレーズ型の回折格子の回折効率を示すグラフである。 本発明の実施の形態1におけるレベル数3のバイナリブレーズ型の回折格子の回折効率を示すグラフである。 本発明の実施の形態1におけるレベル数4のバイナリブレーズ型の回折格子の回折効率を示すグラフである。 本発明の実施の形態1におけるレベル数5のバイナリブレーズ型の回折格子の回折効率を示すグラフである。 本発明の実施の形態1におけるレベル数6のバイナリブレーズ型の回折格子の回折効率を示すグラフである。 本発明の実施の形態1におけるレベル数7のバイナリブレーズ型の回折格子の回折効率を示すグラフである。 本発明の実施の形態1におけるレベル数8のバイナリブレーズ型の回折格子の回折効率を示すグラフである。 本発明の実施の形態1における各レベル数における波長λ2の1次回折効率を示すグラフである。 本発明の第2の実施の形態におけるレーザ出力器を示す斜視図である。 本発明の第2の実施の形態におけるレーザ出力器の他の例を示す斜視図である。 本発明の第5の実施の形態における光ディスク装置の基本構成を示す斜視図である。
符号の説明
1,2,3,7,8 半導体基板、 4,5,6 発光部、 9 レーザ出力器、 10 グレーティング、 11 プリズム、 12 ミラー、 13 コリメートレンズ、 14 波長板、 15 対物レンズ、 16 光ディスク、 17 センサーレンズ、 18 光軸調整素子、 19 回折格子、 19a 回折格子の格子面、 20 光検出器、 100 光ピックアップ装置、 101 制御回路。
実施の形態1.
図1は、本発明の実施の形態1に係る光ピックアップ装置の3波長一体型レーザ出力器9を拡大して示す斜視図である。この実施の形態1に係る光ピックアップ装置は、従来からの光記録媒体であるDVD,CDに加え、それらの数倍の容量を有する青紫色レーザ用の光ディスクに対する情報の記録再生等(記録、再生又はその両方)を行うものである。
光ピックアップ装置は、光源として、図1に示した3波長一体型レーザ出力器9(以下、単にレーザ出力器9とする。)を備えている。このレーザ出力器9は、3つの半導体基板1,2,3を組み合わせて一つのパッケージとしたものである。各半導体基板1,2,3には、それぞれレーザダイオードからなる発光部4,5,6が形成されている。発光部4,5,6は、それぞれ印加電圧に応じて、波長λ1(約405nm)、波長λ2(約650nm)、波長λ3(約780nm)の光を出射するようになっている。レーザ出力器9は、発光部4,5,6のいずれかに電圧を印加することで、3種類の波長λ1,λ2,λ3のうち、いずれかの波長の光を出射するようになっている。
レーザ出力器9は、具体的には、波長λ1の光を出射する半導体基板1上に、波長λ2の光を出射する半導体基板2と、波長λ3の光を出射する半導体基板3とを並列して貼り付けて構成されている。半導体基板2,3の貼り付け位置は、波長λ1の光を出射する発光部4と、波長λ3の光を出射する発光部6とが、レーザ出力器9の出射光の光軸(符号Xで示す)の方向から見てほぼ同じになるように決定されている。一方、波長λ2の光を出射する発光部5は、空間的制約のため(半導体基板3が存在するため)、波長λ1,λ3の光を出射する発光部4,6から若干離れた位置に配置されている。発光部4,6から発光部5までの距離は、例えば110μmである。
図2は、実施の形態1に係る光ピックアップ装置の光学系を示す図である。図3は、実施の形態1に係る光ピックアップ装置の光学系の一部を拡大して示す図である。図2及び図3において、レーザ出力器9から出射された各波長の光の光路を符号Lで示す。図2に示すように、光ピックアップ装置は、レーザ出力器9から出射された光が入射するグレーティングレンズ10を有している。グレーティングレンズ10は、光ピックアップ装置で一般に行われているトラッキングエラー信号検出(3ビーム法、差動プッシュプル法など)に必要なサブビームを形成するためのものである。
光ピックアップ装置は、さらに、グレーティングレンズ10を透過した光が入射するプリズム11を有している。プリズム11は、入射光の偏光方向に応じて反射及び透過を切り換える偏光ビームスプリッターの役割を担うものである。このプリズム11は、レーザ出力器9から出射されてグレーティングレンズ10を透過した光(すなわち往路の光)を透過させる。
光ピックアップ装置は、さらに、プリズム11を透過した光を反射するミラー12と、ミラー12により反射された光が入射するコリメートレンズ13と、コリメートレンズ13を透過した光が入射する波長板14とを有する。コリメートレンズ13は、入射光を平行光に変換するものである。波長板14は、直線偏光を円偏光に変換する作用を有する、いわゆる1/4λ波長板である。波長板14を通過した光は、対物レンズ15に入射し、光ディスク16(DVD,CD又は青紫色レーザ用光ディスク)の信号記録面に集光される。
各光ディスク16の信号記録面に集光された光は、その信号記録面に記録された情報信号に応じて変調されて反射して戻り光となり、対物レンズ15を透過して再び平行光となって波長板14に入射する。波長板14では、円偏光から直線偏光に変換されるが、この際の偏光方向は、往路とは90度異なる方向となっている。波長板14を通過した戻り光は、コリメートレンズ13を透過して集光光束となり、ミラー12で反射されてプリズム11に入射する。
図3に示すように、プリズム11では、その偏光依存性により、偏光方向が往路と90度異なる戻り光を反射して(90度偏向して)、センサーレンズ17に導く。センサーレンズ17は、光ピックアップ装置で一般に行われているフォーカスエラー信号検出に必要な非点収差を戻り光に与えるためのものである。センサーレンズ17を通過した戻り光は、光軸調整素子18に入射する。
光軸調整素子18は、異なる3種類の波長λ1,λ2,λ3の戻り光のうち、少なくとも1つの波長の戻り光の光軸方向を変化させる作用を有している。具体的には、光軸調整素子18に設けられた回折格子19の回折作用により、波長λ2の戻り光の光軸方向を変化させ、これにより波長λ1,λ2,λ3の戻り光が共通の光検出器20に受光されるようになっている。
波長λ1及び波長λ3の戻り光は、それぞれの光軸が、コリメートレンズ13や対物レンズ15の中心を通る光軸(光ピックアップ装置のシステム光軸:図2,3に符号Aで示す)とほぼ一致するように進行し、光軸調整素子18を通過して光検出器20に入射する。一方、波長λ2の光を出射する半導体基板2の発光部5(図1)は、波長λ1,λ3の発光部4,6(図1)から僅かに離れた位置に配置されているため、波長λ2の戻り光は、その光軸がシステム光軸Aからずれた状態で光軸調整素子18に入射し、光軸調整素子18に設けられたバイナリブレーズ型の回折格子19により回折されたのち光検出器20に入射する。すなわち、波長λ1,λ2,λ3の戻り光のいずれについても、光検出器20で受光し、信号検出を行うことができる。
次に、光軸調整素子18のバイナリブレーズ型の回折格子19の作用及び構成について説明する。図4は、実施の形態1に係る光ピックアップ装置の光軸調整素子18に設けられたバイナリブレーズ型の回折格子19の作用を説明するための図である。図5は、バイナリブレーズ型の回折格子19の構成を示す図である。図4において、光検出器20に入射する各波長の光の光路を符号Lで示す。
図5に示すように、バイナリブレーズ型の回折格子19は、その入射面又は出射面(ここでは出射面)に形成したブレーズ格子面を階段状にしたものである。階段状の格子面19aは、ここでは、格子底面(符号Bで示す)、2段目(P=2)、3段目(P=3)、4段目(P=4)及び5段目(P=5)からなる5段に形成されている。回折格子19の一段あたりの高さ(深さ)を、段差dとする。また、回折格子19の階段状の段数(格子底面も含む)を、レベル数Pとする。さらに、格子底面Bをなす格子面から最上段(ここではP=5)をなす格子面までの距離を、溝深さhとする。
図4に示すように、波長λ1,λ3の戻り光は、互いに略同一の光路を通って、バイナリブレーズ型の回折格子19(以下、単に回折格子19とする)の入射面19b(図5)
に対して垂直に入射し、0次回折光(回折角が0度)が回折格子19の格子面19a(図5)から出射される。波長λ1,λ3の戻り光の0次回折光は、光検出器20の検出面に対して垂直に、且つ互いに同位置に入射する。
一方、波長λ2の戻り光は、波長λ1,λ3の戻り光の光軸からずれた光路を通って、一定の入射角で回折格子19の入射面19b(図5)に入射し、1次回折光が回折格子19の格子面19a(図5)から出射される。波長λ2の戻り光の1次回折光は、一定の入射角(回折格子19への入射角とは異なる)で光検出器20に入射する。
このように構成されているため、光軸調整素子18及び光検出器20を、図4にそれぞれ矢印で示すように入射光の光軸方向(波長λ1,λ3の戻り光の光軸Aの方向)に移動させることで、光検出器20の検出面内(入射光の光軸に直交する面内)における波長λ2の戻り光の受光位置を調整することができる。波長λ1,λ3の戻り光については、0次回折光が利用されているので、光軸調整素子18及び光検出器20を光軸方向に移動させても、光検出器20上の受光位置が変化することがない。その結果、波長λ1,λ3の戻り光の光検出器20上の受光位置に、波長λ2の戻り光の受光位置を一致させることができる。
ここで、回折格子19を形成する素材の波長λ3に対する屈折率をn3とし、mを1以上の整数とすると、図5に示した回折格子19の段差dは、
d≒mλ3/(n3−1) ・・・ (1)
で表される。波長λ1を405nm、波長λ3を780nm、次数mを1とし、さらに回折格子19の屈折率を一般的な硝子素材であるBK7相当の屈折率データに基づいて決定すると、式(1)から段差dは約1.53μmとなる。これに基づき、本実施の形態では、回折格子19の段差dは、1.53μmに設定されている。
バイナリブレーズ型の回折格子19では、その段差dがλ/(n−1)の整数倍であれば、段差dによる光路長差が波長λの整数倍になるため、最大の0次回折効率を得ることができる。波長λ1を405nmとし、波長λ3を780nmとすると、波長の比は約1.92であり、ほぼ2に近い。そのため、光路長差が波長λ3の整数倍となるように段差dを設定すると、波長λ1でもほぼ整数倍の値となり、波長λ1,λ3のどちらにおいても高い0次回折効率を得ることができる。
また、一般的に硝子やプラスチックのような素材の屈折率は、波長が短くなるにつれて若干大きくなる。たとえば、一般的な硝子素材であるBK7の場合では、波長405nmに対してはn=1.53であるが、波長780nmに対してはn=1.51である。回折格子19の素材として、一般的な硝子素材であるBK7相当の屈折率データを使用して計算した場合には、λ3/(n3−1)とλ1/(n1−1)の比の値は、1.99になる。このため、回折格子19の段差dを、波長λ3の最大の0次回折効率が得られるよう、λ3/(n3−1)の整数倍に設定すれば、波長λ1の最大の0次回折効率が得られる段差、すなわちλ1/(n1−1)の整数倍に近づく。その結果、波長λ1,λ3のいずれについても、高い0次回折効率が得られる。
一般的な硝子素材であるBK7相当の屈折率データを使用して、レベル数Pを最も構造が簡単なP=2とした場合に、回折格子19の段差dを変数(レベル数2の場合は、d=h)として、各戻り光の回折効率を計算すると、各戻り光の回折効率は、正弦波曲線を描きながら変化し、d=1.53μmで、波長λ1,λ3ともにほぼ最大の0次回折効率が得られる。
上述したように、回折格子19のレベル数Pは、回折格子19の階段状の段数(格子底面も含む)をいうものであり、図5に示した例ではP=5である。回折格子19では、レベル数Pに応じて、得られる最大の回折効率が異なっている。
図6〜図12に、回折格子19のレベル数Pを2,3,4,5,6,7,8の7通りに変化させた場合の、溝深さhと各戻り光の回折効率の計算値との関係を示す。計算では、屈折率データとして、一般的な硝子素材であるBK7の屈折率データを使用した。
図6に示すように、レベル数P=2の場合には、溝深さhが約1.5μmのときに波長λ1,λ3の0次回折光がほぼ最大の値となっている。このとき(h=1.5μm)の波長λ2の1次回折効率ηは、η=0.15である。
図7に示すように、レベル数P=3の場合には、溝深さhが約3.1μmのときに波長λ1,λ3の0次回折光がほぼ最大の値となっている。このとき(h=3.1μm)の波長λ2の1次回折効率ηは、η=0.44である。
図8に示すように、レベル数P=4の場合には、溝深さhが約4.6μmのときに波長λ1,λ3の0次回折光がほぼ最大の値となっている。このとき(h=4.6μm)の波長λ2の1次回折効率ηは、η=0.74である。
図9に示すように、レベル数P=5の場合には、溝深さhが約6.1μmのときに波長λ1,λ3の0次回折光がほぼ最大の値となっている。このとき(h=6.1μm)の波長λ2の1次回折効率ηは、η=0.87である。
図10に示すように、レベル数P=6の場合には、溝深さhが約7.6μmのときに波長λ1,λ3の0次回折光がほぼ最大の値となっている。このとき(h=7.6μm)の波長λ2の1次回折効率ηは、η=0.75である。
図11に示すように、レベル数P=7の場合には、溝深さhが約9.2μmのときに波長λ1,λ3の0次回折光がほぼ最大の値となっている。このとき(h=9.2μm)の波長λ2の1次回折効率ηは、η=0.45である。
図12に示すように、レベル数P=8の場合には、溝深さhが約10.7のときに波長λ1,λ3の0次回折光がほぼ最大の値となっている。このとき(h=10.7)の波長λ2の1次回折効率ηは、η=0.17である。
図13は、レベル数Pと、波長λ1,λ3の0次回折光がほぼ最大のときの波長λ2の1次回折効率との関係を示すグラフである。
一般に、光検出器20で受光する光量が多いほど信号の検出が容易になる。本実施の形態では、レベル数Pを5に設定することにより、(波長λ1,λ3の0次回折効率が最大となるときの)波長λ2の高い1次回折効率を得ている。このため、波長λ1,λ3の戻り光のみならず、波長λ2の戻り光について良好な信号検出を行うことができる。
以上説明したように、本実施の形態では、光記録媒体で反射された波長λ1,λ2,λ3の戻り光のうち、少なくとも1つの波長(ここでは波長λ2)の戻り光の光軸を光軸調整素子18により調整することにより、各波長の戻り光を共通の光検出器20で検出することが可能になる。これにより、光ピックアップ装置(及びそれを用いた光ディスク装置)の小型化及び低コスト化を実現することができる。
また、本実施の形態では、波長λ1,λ3の戻り光の0次回折光を光検出器20に導くようにしたので、波長λ1,λ3の戻り光の光検出器20上での受光位置を変化させずに、回折格子19及び光検出器20を入射光の光軸方向に移動させることが可能になる。そのため、回折格子19及び光検出器20の移動調節により、波長λ1,λ3の戻り光の光検出器20上の受光位置に、波長λ2の戻り光の受光位置を一致させることができる。これにより、簡単な方法で、波長λ1,λ2,λ3の戻り光を共通の光検出器20に導くための光軸調整を行うことができる。
さらに、本実施の形態では、波長λ1(約405nm)及び波長λ3(約780nm)の0次回折光を利用しているが、図6〜図12に示したように、回折格子19の溝深さhをあまり深く形成しなくても、波長λ1,λ3の0次回折光を高効率で得ることができる。そのため、波長λ1,λ3の0次回折光が高効率で得られる回折格子19を、簡単に作成することができる。
また、バイナリブレーズ型の回折格子では、段差dがλ/(n−1)の整数倍のときに、段差dによる光路長差が波長λの整数倍となり、最大の0次回折効率が得られる。本実施の形態では、回折格子19の段差dは、d≒mλ3/(n3−1)に設定されており(n3は回折格子の波長λ3に対する屈折率、mは1以上の整数)、波長λ3において最大の0次回折効率が得られるようになっている。波長λ1を405nm、波長λ3を780nmとすると、波長の比は約1.92であり、ほぼ2に近い。そのため、光路長差が波長λ3の整数倍となるように段差dを設定すると、波長λ1に対してもほぼ整数倍の値となり、波長λ1,λ3のどちらにおいても高い0次回折効率を得ることができる。その結果、波長λ1,λ3の戻り光の良好な信号検出を行うことができる。
実施の形態2.
図14は、本発明の実施の形態2に係る3波長一体型レーザ出力器9(以下、単にレーザ出力器9とする。)の構成を示す斜視図である。本実施の形態では、レーザ出力器9の構成が、上述した実施の形態1と異なっている。本実施の形態に係る光ピックアップ装置のレーザ出力器9以外の構成要素は、上述した実施の形態1と同様に構成されている。
本実施の形態におけるレーザ出力器9は、発光部(レーザダイオード)4が形成された半導体基板1の上に、発光部(レーザダイオード)5,6が形成されたモノリシック型の半導体基板7を貼り合わせて1つのパッケージとしたものである。半導体基板1に形成された発光部4及び半導体基板7に形成された発光部5,6は、それぞれ印加電圧に応じて、波長λ1(約405nm)、波長λ2(約650nm)、波長λ3(約780nm)の光を出射するようになっている。また、半導体基板1,7は、発光部4における光の出射位置と、発光部6における光の出射位置とが、レーザ出力器9の出射光の光軸方向から見てほぼ同じになるように貼り付けられている。モノリシック型の半導体基板7の発光部5は、その光の出射位置が、発光部4,6における光の出射位置から例えば110μm離れるように形成されている。
図15は、実施の形態2に係るレーザ出力器9の他の構成例を示す斜視図である。図15に示すレーザ出力器9は、発光部(レーザダイオード)4,5が形成されたモノリシック型の半導体基板8の上に、発光部(レーザダイオード)6が形成された半導体基板3を貼り合わせて1つのパッケージとしたものである。半導体基板8に形成された発光部4,5及び半導体基板3に形成された発光部6は、それぞれ、電圧を印加されることにより、波長λ1(約405nm)、波長λ2(約650nm)、波長λ3(約780nm)の光を出射するようになっている。ここで、半導体基板8,3は、発光部4における光の出射位置と、発光部6における光の出射位置とが、レーザ出力器9の出射光の光軸の方向から見てほぼ同じになるように貼り付けられている。モノリシック型の半導体基板8の発光部5は、その光の出射位置が、発光部4,6の光の出射位置から例えば110μm離れるように形成されている。
本実施の形態(図14、図15)では、レーザ出力器9において、波長λ1の光の出射位置と波長λ3の光の出射位置とが、レーザ出力器9の出射光の光軸の方向から見て略同じ位置に形成されているため、上述した実施の形態1と同様の効果を得ることができる。
実施の形態3.
上述した実施の形態1では、光軸調整素子18の回折格子19のレベル数Pが5に設定されているが、本実施の形態では、回折格子19のレベル数Pを4〜6の範囲に設定している。本実施の形態に係る光ピックアップ装置の他の構成は、上述した実施の形態1と同様に構成されている。
上述した図5に示した回折格子19の構成は、本実施の形態においてレベル数Pを5とした場合の構成に相当する。レベル数Pが2〜8の回折格子19において溝深さhを変化させた場合、各波長における0次回折効率及び1次回折効率は、図6〜図12に示したように変化する。また、レベル数Pと、波長λ1,λ3の0次回折光がほぼ最大のときの波長λ2の1次回折効率との間には、図13に示した関係がある。なお、実施の形態1でも説明したように、回折格子19の屈折率は、一般的な硝子素材であるBK7相当の屈折率データを使用して計算している。
図13に示したように、回折格子19のレベル数Pが4〜6の範囲内であれば、(波長λ1,λ3の0次回折効率が最大となるときの)波長λ2の1次回折効率が0.7以上であり、高い1次回折効率が得られる。一般に、光検出器20に受光する光量が多いほど信号検出が容易になるため、回折格子19のレベル数Pが4〜6であれば、光検出器20において良好な信号検出を行うことが可能になる。
以上説明したように、本実施の形態では、レベル数Pが4〜6のバイナリブレーズ型の回折格子19を用いることにより、波長λ1,λ3の戻り光に加えて、波長λ2の波長の戻り光についても高い回折効率を得ることができ、これにより光検出器20において良好な信号検出を行うことが可能になる。
特に、レベル数Pを4とした場合には、レベル数Pを5,6とした場合よりも段数が少なく構造が簡単であるため、回折格子19の作成が容易になるという利点もある。
実施の形態4.
上述した実施の形態1では、光軸調整素子18の回折格子19の屈折率を、一般的な硝子素材であるBK7の屈折率相当としたが、本実施の形態3では、回折格子19の素材として、以下の条件を満足する屈折率を有するものを選択する。本実施の形態に係る光ピックアップ装置の他の構成は、上述した実施の形態1と同様に構成されている。
本実施の形態では、光軸調整素子18の回折格子19の素材を、その素材の波長λ1に対する屈折率をn1とし、波長λ3に対する屈折率をn3としたときに、
1.0≦(n1−1)/(n3−1)≦1.08 ・・・ (2)
を満足するものの中から選択している。
上述した実施の形態1では、波長λ1を約405nm、波長λ3を約780nmと説明したが、一般に、青紫色用の半導体レーザ出力器やCD用の半導体レーザ出力器の出力波長は、λ1=405±8nm、λ3=780±15nmと一定の幅をもっており、必ずしもλ1=405nm、λ3=780nmではない。
実施の形態1でも説明したように、回折格子19の段差dがλ/(n−1)の整数倍のときに最大の0次回折効率が得られるため、波長λ1についての最適な段差dはλ1/(n1−1)の整数倍であり、波長λ3についての最適な段差dはλ3/(n3−1)の整数倍である。λ3/λ1の値は約2であるが、屈折率n1,n3の違いを考慮すると、
2λ1/(n1−1)=λ3/(n3−1) ・・・ (3)
が成立するときに、波長λ1,λ3について最大の0次回折効率が得られることになる。上の式(3)を変形すると、以下の式(4)が得られる。
(n1−1)/(n3−1)=2λ1/λ3 ・・・ (4)
式(4)に、上述した出力波長の範囲(λ1=405±8nm、λ3=780±15nm)を適用すると、上述した式(2)が得られる。回折格子19を、式(2)を満足する素材により形成すれば、同じ段差dで、波長λ1,λ3ともに最大の0次回折効率を得ることができる。このように、レーザ出力器9の出力波長に応じて適切な回折格子19の素材を選択することにより、波長λ1,λ3について高い回折効率を得ることができる。
以上説明したように、本実施の形態では、バイナリブレーズ型の回折格子19が、1.0≦(n1−1)/(n3−1)≦1.08を満足する素材で形成されているため、出力波長に幅があるレーザ出力器を使用した場合でも、波長λ1,λ3の両波長で高い0次回折効率を得ることができ、光検出器20において良好な信号検出を行うことが可能になる。
実施の形態5.
図16は、本発明の実施の形態5に係る光ディスク装置の基本構成を示す図である。本実施の形態に係る光ディスク装置は、光ピックアップ装置100を備えたものであり、この光ピックアップ装置100としては、実施の形態1〜4のいずれの光ピックアップ装置を用いてもよい。
本実施の形態に係る光ディスク装置は、DVD、CD、又はこれらの数倍の容量を有する青紫色レーザ用の光ディスク(光ディスク16とする。)を保持して回転駆動する回転駆動機構102を備えている。この回転駆動機構102は、光ディスク16の中心部に設けられたチャッキング孔16aを基準として光ディスク16を位置決めし、回転駆動するものである。
光ピックアップ装置100は、回転駆動機構102により回転駆動される光ディスク16の信号記録面に対物レンズを対向させた状態で配置され、送り機構103により光ディスク16の半径方向に移動する。光ピックアップ装置100、回転駆動機構102及び送り機構103は、制御回路101により制御される。光ピックアップ装置100は、レーザ出力器9(図1)が出射可能な3種類の波長λ1,λ2,λ3のうち、光ディスク16の種類(DVD、CD又は青紫色レーザ用の光ディスク)に応じて選択された波長の光を用いて、光ディスク16に対する情報の書き込み、読み出し、又はその両方を行う。光ピックアップ装置100により光ディスク16から読み出された信号は、復調回路105により復調される。
本実施の形態によれば、実施の形態1〜4で説明した光ピックアップ装置を用いて光ディスク装置を構成することにより、光ディスク装置の小型化及び低コスト化を実現することができる。
なお、上述した各実施の形態では、波長λ1,λ2,λ3を、それぞれ約405nm、約650nm、約780nmとしたが、使用する光記録媒体の種類に応じて、他の波長の組み合わせを用いてもよい。
また、上述した各実施の形態では、バイナリブレーズ型の回折格子19を用いたが、バイナリブレーズ型の回折格子に限らず、波長λ1,λ2,λ3の戻り光を共通の光検出器20で受光できるように、少なくとも1つの波長の戻り光の光軸を調整することが可能な光軸調整素子であればよい。
本発明に係る光ピックアップ装置は、第1の波長の光を出射する第1の発光部と、第2の波長の光を出射する第2の発光部と、前記第1の波長の略整数倍である第3の波長の光を出射する第3の発光部とを有し、前記第1の発光部における光の出射位置と前記第3の発光部における光の出射位置とが、出射光の光軸の方向から見て略同一位置にあるよう構成されたレーザ出力器と、光検出器と、前記レーザ出力器の前記第1、第2及び第3の発光部から出射され、光記録媒体で反射されたそれぞれの戻り光が前記光検出器で受光されるように、前記第1、第2及び第3の波長の戻り光のうち、少なくとも1つの波長の戻り光の光軸を調整する光軸調整素子とを備えて構成されている。
本発明に係る光ピックアップ装置は、第1の波長の光を出射する第1の発光部と、第2の波長の光を出射する第2の発光部と、前記第1の波長の略整数倍である第3の波長の光を出射する第3の発光部とを有し、前記第1の発光部における光の出射位置と前記第3の発光部における光の出射位置とが、出射光の光軸の方向から見て略同一位置にあるよう構成されたレーザ出力器と、光検出器と、前記レーザ出力器の前記第1、第2及び第3の発光部から出射され、光記録媒体で反射されたそれぞれの戻り光が前記光検出器で受光されるように、前記第1、第2及び第3の波長の戻り光のうち、少なくとも1つの波長の戻り光の光軸を調整する光軸調整素子と光軸調整素子とを備えている。光軸調整素子は位相差型の回折格子であり、当該回折格子によって回折され、光検出器に受光される戻り光のうち、第1の波長及び第3の波長の戻り光の0次回折光が光検出器上に導かれ、信号の検出が行われる。
本発明に係る光ピックアップ装置は、また、第1の波長の光を出射する第1の発光部と、第2の波長の光を出射する第2の発光部と、前記第1の波長の略整数倍である第3の波長の光を出射する第3の発光部とを有し、前記第1の発光部における光の出射位置と前記第3の発光部における光の出射位置とが、出射光の光軸の方向から見て略同一位置にあるよう構成されたレーザ出力器と、光検出器と、前記レーザ出力器の前記第1、第2及び第3の発光部から出射され、光記録媒体で反射されたそれぞれの戻り光が前記光検出器で受光されるように、前記第1、第2及び第3の波長の戻り光のうち、少なくとも1つの波長の戻り光の光軸を調整する光軸調整素子とを備えている。前記第1の波長は約405nmであり、前記第2の波長は約650nmであり、前記第3の波長は約780nmである。前記光軸調整素子はバイナリブレーズ型の回折格子であり、当該回折格子の段差dは、回折格子の前記第3の波長λ3に対する屈折率をn3とし、mを1以上の整数とすると、d≒mλ3/(n3−1)と表される。

Claims (12)

  1. 第1の波長の光を出射する第1の発光部と、第2の波長の光を出射する第2の発光部と、第3の波長の光を出射する第3の発光部とを有し、前記第1の発光部における光の出射位置と前記第3の発光部における光の出射位置とが、出射光の光軸の方向から見て略同一位置にあるよう構成されたレーザ出力器と、
    光検出器と、
    前記レーザ出力器の前記第1、第2及び第3の発光部から出射され、光記録媒体で反射されたそれぞれの戻り光が前記光検出器で受光されるように、前記第1、第2及び第3の波長の戻り光のうち、少なくとも1つの波長の戻り光の光軸を調整する光軸調整素子と
    を備えた光ピックアップ装置。
  2. 前記光軸調整素子が、位相差型の回折格子を有し、前記回折格子の回折作用を利用して前記戻り光の光軸を調整することを特徴とする請求の範囲1に記載の光ピックアップ装置。
  3. 前記第1の波長が約405nmであり、前記第2の波長が約650nmであり、前記第3の波長が約780nmであることを特徴とする請求の範囲2に記載の光ピックアップ装置。
  4. 前記回折格子によって回折され、前記光検出器に受光される戻り光のうち、第1の波長及び第3の波長の戻り光の0次回折光が前記光検出器上に導かれ、信号の検出が行われることを特徴とする請求の範囲3に記載の光ピックアップ装置。
  5. 前記光軸調整素子により、前記第2の波長の戻り光の光軸を調整することを特徴とする請求の範囲4に記載の光ピックアップ装置。
  6. 前記回折格子が、バイナリブレーズ型の回折格子であることを特徴とする請求の範囲2に記載の光ピックアップ装置。
  7. 前記バイナリブレーズ型の回折格子の段差dは、回折格子の前記第3の波長λ3に対する屈折率をn3とし、mを1以上の整数とすると、
    d≒mλ3/(n3−1)
    と表されることを特徴とする請求の範囲6に記載の光ピックアップ装置。
  8. 前記バイナリブレーズ型の回折格子の段数が、4以上6以下であることを特徴とする請求の範囲5に記載の光ピックアップ装置。
  9. 前記回折格子の前記第1の波長λ1に対する屈折率をn1とし、前記回折格子の前記第3の波長λ3に対する屈折率をn3とするとき、
    1.0≦(n1−1)/(n3−1)≦1.08
    が成立することを特徴とする請求の範囲2に記載の光ピックアップ装置。
  10. 前記第1の発光部と前記第3の発光部とが、貼り合わされた2つの半導体基板に、互いに対向するように形成されていることを特徴とする請求の範囲1に記載の光ピックアップ装置。
  11. 前記第2の発光部と、前記第1の発光部又は前記第3の発光部とが、共通のモノリシック型の半導体基板に形成されていることを特徴とする請求の範囲10に記載の光ピックアップ装置。
  12. 光記録媒体としての光ディスクを回転駆動する回転駆動機構と、
    前記回転駆動機構により回転駆動される前記光ディスクに対して、情報の記録、再生又はその両方を行う請求の範囲1に記載の光ピックアップ装置と
    を備えたことを特徴とする光ディスク装置。
JP2006521747A 2005-05-26 2006-04-24 光ピックアップ装置及び光ディスク装置 Pending JPWO2006126357A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005154103 2005-05-26
JP2005154103 2005-05-26
PCT/JP2006/308519 WO2006126357A1 (ja) 2005-05-26 2006-04-24 光ピックアップ装置及び光ディスク装置

Publications (1)

Publication Number Publication Date
JPWO2006126357A1 true JPWO2006126357A1 (ja) 2008-12-25

Family

ID=37451785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006521747A Pending JPWO2006126357A1 (ja) 2005-05-26 2006-04-24 光ピックアップ装置及び光ディスク装置

Country Status (6)

Country Link
US (1) US7652246B2 (ja)
JP (1) JPWO2006126357A1 (ja)
KR (1) KR100915490B1 (ja)
CN (1) CN101185131B (ja)
DE (1) DE112006001347B4 (ja)
WO (1) WO2006126357A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8018799B2 (en) 2005-11-01 2011-09-13 Mitsubishi Electric Corporation Optical pickup device and optical disc device
JP5178339B2 (ja) * 2008-06-20 2013-04-10 三洋電機株式会社 光ピックアップ装置
JP2017188596A (ja) * 2016-04-07 2017-10-12 三菱電機株式会社 光モジュール

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113387A (en) 1989-12-12 1992-05-12 Optex Corporation Three laser optical disk drive system
US5402436A (en) * 1993-12-29 1995-03-28 Xerox Corporation Nonmonolithic array structure of multiple beam diode lasers
JPH11134702A (ja) * 1997-10-30 1999-05-21 Sanyo Electric Co Ltd 光ピックアップ装置
JP2001143312A (ja) 1999-11-16 2001-05-25 Sony Corp 光学ピックアップ装置及び光ディスク装置
JP4167370B2 (ja) * 1999-12-22 2008-10-15 パイオニア株式会社 光ピックアップ装置
JP3603002B2 (ja) * 2000-03-10 2004-12-15 株式会社三協精機製作所 光ピックアップ装置およびその受光方法
JP2001256670A (ja) 2000-03-10 2001-09-21 Sony Corp 光学ピックアップ装置及び光ディスク装置
JP3662519B2 (ja) * 2000-07-13 2005-06-22 シャープ株式会社 光ピックアップ
KR20040077719A (ko) 2002-01-17 2004-09-06 코닌클리케 필립스 일렉트로닉스 엔.브이. 광학주사장치
JP4260062B2 (ja) 2004-05-14 2009-04-30 三洋電機株式会社 光ピックアップ装置
JP2006209939A (ja) 2004-12-28 2006-08-10 Sanyo Electric Co Ltd 光ピックアップ装置
JP2006278576A (ja) 2005-03-28 2006-10-12 Sanyo Electric Co Ltd 半導体レーザ装置、半導体レーザ装置の製造方法および光ピックアップ装置

Also Published As

Publication number Publication date
DE112006001347B4 (de) 2013-07-18
CN101185131A (zh) 2008-05-21
WO2006126357A1 (ja) 2006-11-30
US20090078857A1 (en) 2009-03-26
DE112006001347T5 (de) 2008-03-27
CN101185131B (zh) 2011-03-16
KR100915490B1 (ko) 2009-09-03
US7652246B2 (en) 2010-01-26
KR20080005291A (ko) 2008-01-10

Similar Documents

Publication Publication Date Title
US8064314B2 (en) Optical head and optical disc device
JP2002025096A (ja) 半導体光源、光ピックアップヘッド装置及び情報記録再生装置
US6788636B2 (en) Optical pickup compatible with a digital versatile disk and a recordable compact disk using a holographic ring lens
JP4833797B2 (ja) 光ピックアップおよび光情報処理装置
JP2005327403A (ja) 光ピックアップ及び光学記録媒体記録再生装置
JP4042802B2 (ja) 光ピックアップ装置および光ディスク装置
WO2004097819A1 (ja) 光回折素子および光情報処理装置
JPWO2006126357A1 (ja) 光ピックアップ装置及び光ディスク装置
US6975576B1 (en) Optical head device and disk drive system having first and second light sources for emitting light beams of different wavelengths
KR100546351B1 (ko) 호환형 광픽업 및 이를 채용한 광 기록 및/또는 재생기기
TWI321320B (ja)
JP2005339762A (ja) 光ピックアップ及び光ディスク装置
JP2006236477A (ja) 光ピックアップ及び光ディスク装置
JP3970254B2 (ja) 光ピックアップ装置
JP4329611B2 (ja) 光ピックアップ及び光学記録媒体記録再生装置
JP2001028145A (ja) 光学ヘッド装置及びディスク録再装置
JP3963904B2 (ja) 光ピックアップ装置
JP4570992B2 (ja) 光ピックアップ及び光情報記録装置
JP4742159B2 (ja) 光情報再生方法
JP2002237085A (ja) 光ピックアップおよびそれを用いた光学的情報再生装置または記録装置
JP4031450B2 (ja) 光ピックアップ装置
JP2006004547A (ja) 光ピックアップ及びディスク状光学記録媒体記録再生装置
JP2006286143A (ja) 光ピックアップ及び光学記録媒体記録再生装置
JP2004103145A (ja) 光ピックアップ及び光情報記録再生装置
JP2005310298A (ja) 光ピックアップおよび光情報処理装置

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060921

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060921