JPWO2006057218A1 - 硬化性組成物およびその硬化性組成物により封止、被覆された半導体装置 - Google Patents

硬化性組成物およびその硬化性組成物により封止、被覆された半導体装置 Download PDF

Info

Publication number
JPWO2006057218A1
JPWO2006057218A1 JP2006547770A JP2006547770A JPWO2006057218A1 JP WO2006057218 A1 JPWO2006057218 A1 JP WO2006057218A1 JP 2006547770 A JP2006547770 A JP 2006547770A JP 2006547770 A JP2006547770 A JP 2006547770A JP WO2006057218 A1 JPWO2006057218 A1 JP WO2006057218A1
Authority
JP
Japan
Prior art keywords
group
component
preferable
curable composition
rubber particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006547770A
Other languages
English (en)
Inventor
智史 杉山
智史 杉山
福井 祥文
祥文 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Publication of JPWO2006057218A1 publication Critical patent/JPWO2006057218A1/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/14Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

本発明の課題は、優れた実装信頼性、冷熱衝撃性を有する硬化性組成物、およびその硬化性組成物により封止、被覆された半導体装置を提供することにある。(A)SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する有機化合物、(B)1分子中に少なくとも2個のSiH基を含有する化合物、(C)ヒドロシリル化触媒、(D)アクリル系樹脂で被覆されたゴム粒子を必須成分として含有する硬化性組成物とする。

Description

優れた実装信頼性、冷熱衝撃性を有する硬化性組成物、およびその硬化性組成物により封止およびあるいは被覆された半導体装置に関する技術である。
近年、IC等半導体素子の信頼性確保のためのモールディング部材としてはフェノール、エポキシ樹脂等の熱硬化性樹脂が汎用的に用いられている。これらを用いたモールド分野における問題点として、基材・パッケージとの熱膨張係数差が大きいことによる樹脂クラック、ワイア断線、基材の反り、剥離等がしばしば指摘される。このような問題点を解決する方法として、液状・固形低弾性成分を熱硬化性樹脂中に分散させる手法が広く知られている(特許文献1,2参照)。
特開平11−97578号公報 特開2001−40185号公報
特許文献1、2に記載の方法では、基材とパッケージとの熱膨張係数差を十分小さくすることができず、樹脂クラック、ワイア断線、基材の反り、剥離等を防ぐことができない。本発明の目的は、基材とパッケージとの熱膨張係数差を十分小さくすることが可能な硬化性組成物、およびそれを用いた高い実装信頼性を有する半導体装置を提供することにある。本発明が解決しようとする課題は、実装信頼性に劣っている硬化性組成物の実装信頼性を高めること、およびその硬化性組成物により封止あるいは被覆された半導体装置の実装信頼性を高めることである。
このような課題を解決するために本発明者らが鋭意研究を行った結果、(A)SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する有機化合物、(B)1分子中に少なくとも2個のSiH基を含有する化合物、(C)ヒドロシリル化触媒、(D)アクリル系樹脂で被覆されたゴム粒子を必須成分として含有することを特徴とする硬化性組成物、とすることにより上記課題を解決できることを見出し、本発明に至った。
すなわち、本発明は、
(A)SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する有機化合物、(B)1分子中に少なくとも2個のSiH基を含有する化合物、(C)ヒドロシリル化触媒、(D)アクリル系樹脂で被覆されたゴム粒子を必須成分として含有することを特徴とする硬化性組成物である。
好ましい実施形態としては、前記ゴム粒子が、シリコーン系ゴム粒子、アクリル系ゴム粒子、ブタジエン系ゴム粒子、フッ素系ゴム粒子のいずれか、又はこれらを二以上組み合わせたものであることを特徴とする硬化性組成物が挙げられる。
好ましい実施形態としては、前記ゴム粒子がシリコーンゴム粒子であることを特徴とする硬化性組成物が挙げられる。
アクリル系樹脂が架橋成分を有することを特徴とする硬化性組成物であり、好ましい実施形態としては、前記のゴム粒子とアクリル系樹脂の比が、重量比で、(ゴム粒子)/(アクリル系樹脂)=75/25〜40/60であることを特徴とする硬化性組成物が挙げられる。
好ましい実施形態としては、前記(A)成分が、下記一般式(I)
(式中R1は炭素数1〜50の一価の有機基を表し、それぞれのR1は異なっていても同一であってもよい。)で表される有機化合物を含むことを特徴とする硬化性組成物が挙げられる。
また、別の実施形態として、上記硬化性組成物を用いて封止、被覆された半導体装置が挙げられる。
本発明の硬化性組成物を用いて半導体装置を被覆した場合、従来に比べて、モールド樹脂部に生じる応力を小さくすることが可能である。このため、この硬化性組成物を用いて被覆された半導体装置は、高い実装信頼性および冷熱衝撃性を有し工業的に有用である。
((A)成分)
まず、本発明の(A)成分について説明する。
(A)成分は、SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する有機化合物であれば特に限定されない。有機化合物としては、ポリシロキサン−有機ブロックコポリマーや、ポリシロキサン−有機グラフトコポリマーのようなシロキサン単位(Si−O−Si)を含むものではなく、構成元素としてC、H、N、O、S、ハロゲンのみを含むものであることが好ましい。シロキサン単位を含むものは、耐ガス透過性が不十分となることがあり、また、組成物が半導体装置に十分密着しない場合があるためである。
SiH基と反応性を有する炭素−炭素二重結合の結合位置は特に限定されず、分子内のいずれに存在してもよい。
(A)成分の有機化合物は、有機重合体系の化合物と有機単量体系化合物に分類できる。
有機重合体系化合物としては、例えば、ポリエーテル系、ポリエステル系、ポリアリレート系、ポリカーボネート系、飽和炭化水素系、不飽和炭化水素系、ポリアクリル酸エステル系、ポリアミド系、フェノール−ホルムアルデヒド系(フェノール樹脂系)、ポリイミド系の化合物を用いることができる。
また有機単量体系化合物としては、例えば、フェノール系、ビスフェノール系、ベンゼン、ナフタレン等の芳香族炭化水素系:直鎖系、脂環系等の脂肪族炭化水素系:複素環系の化合物およびこれらの混合物等が挙げられる。
(A)成分のSiH基と反応性を有する炭素−炭素二重結合としては特に限定されないが、下記一般式(II)
(式中R2は水素原子あるいはメチル基を表す。)で示される基が、反応性の点から好適である。また、原料の入手の容易さからは、
示される基が特に好ましい。
(A)成分のSiH基と反応性を有する炭素−炭素二重結合としては、下記一般式(III)で表される部分構造を環内に有する脂環式の基が、硬化物の耐熱性を高くすることが可能であるという点から好適である。
(式中R3は水素原子あるいはメチル基を表す。)また、原料の入手の容易さからは、下記式で表される部分構造を環内に有する脂環式の基が好適である。
SiH基と反応性を有する炭素−炭素二重結合は(A)成分の骨格部分に直接結合していてもよく、2価以上の置換基を介して共有結合していても良い。2価以上の置換基としては炭素数0〜10の置換基であれば特に限定されないが、構成元素としてC、H、N、O、S、およびハロゲンのみを含むものが好ましい。これらの置換基の例としては、
が挙げられる。また、これらの2価以上の置換基の2つ以上が共有結合によりつながって1つの2価以上の置換基を構成していてもよい。
以上のような骨格部分に共有結合する基の例としては、ビニル基、アリル基、メタリル基、アクリル基、メタクリル基、2−ヒドロキシ−3−(アリルオキシ)プロピル基、2−アリルフェニル基、3−アリルフェニル基、4−アリルフェニル基、2−(アリルオキシ)フェニル基、3−(アリルオキシ)フェニル基、4−(アリルオキシ)フェニル基、2−(アリルオキシ)エチル基、2、2−ビス(アリルオキシメチル)ブチル基、3−アリルオキシ−2、2−ビス(アリルオキシメチル)プロピル基、
が挙げられる。
(A)成分の具体的な例としては、ジアリルフタレート、トリアリルトリメリテート、ジエチレングリコールビスアリルカーボネート、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールトリアリルエーテル、1,1,2,2−テトラアリロキシエタン、ジアリリデンペンタエリスリット、トリアリルシアヌレート、トリアリルイソシアヌレート、1,2,4−トリビニルシクロヘキサン、ジビニルベンゼン類(純度50〜100%のもの、好ましくは純度80〜100%のもの)、ジビニルビフェニル、1,3−ジイソプロペニルベンゼン、1,4−ジイソプロペニルベンゼン、およびそれらのオリゴマー、1,2−ポリブタジエン(1、2比率10〜100%のもの、好ましくは1、2比率50〜100%のもの)、ノボラックフェノールのアリルエーテル、アリル化ポリフェニレンオキサイド、
の他、従来公知のエポキシ樹脂のグルシジル基の一部あるいは全部をアリル基に置き換えたもの等が挙げられる。
(A)成分としては、上記のように骨格部分とアルケニル基とに分けて表現しがたい、低分子量化合物も用いることができる。これらの低分子量化合物の具体例としては、ブタジエン、イソプレン、オクタジエン、デカジエン等の脂肪族鎖状ポリエン化合物系、シクロペンタジエン、シクロヘキサジエン、シクロオクタジエン、ジシクロペンタジエン、トリシクロペンタジエン、ノルボルナジエン等の脂肪族環状ポリエン化合物系、ビニルシクロペンテン、ビニルシクロヘキセン等の置換脂肪族環状オレフィン化合物系等が挙げられる。
(A)成分としては、耐熱性をより向上し得るという観点からは、SiH基と反応性を有する炭素−炭素二重結合を(A)成分1gあたり0.001mol以上含有するものが好ましく、1gあたり0.005mol以上含有するものがより好ましく、0.008mol以上含有するものがさらに好ましい。
(A)成分のSiH基と反応性を有する炭素−炭素二重結合の数は、平均して1分子当たり少なくとも2個あればよいが、力学強度をより向上したい場合には2を越えることが好ましく、3個以上であることがより好ましい。(A)成分のSiH基と反応性を有する炭素−炭素二重結合の数が1分子内当たり1個以下の場合は、(B)成分と反応してもグラフト構造となるのみで架橋構造とならない。
(A)成分としては反応性が良好であるという観点からは、1分子中にビニル基を1個以上含有していることが好ましく、1分子中にビニル基を2個以上含有していることがより好ましい。また貯蔵安定性が良好となりやすいという観点からは、1分子中にビニル基を6個以下含有していることが好ましく、1分子中にビニル基を4個以下含有していることがより好ましい。
(A)成分としては、力学的耐熱性が高いという観点および原料液の糸引き性が少なく成形性、取扱い性、塗布性が良好であるという観点からは、分子量が900未満のものが好ましく、700未満のものがより好ましく、500未満のものがさらに好ましい。
(A)成分としては、他の成分との均一な混合、および良好な作業性を得るためには、粘度としては23℃において1000ポイズ未満のものが好ましく、300ポイズ未満のものがより好ましく、30ポイズ未満のものがさらに好ましい。粘度はE型粘度計によって測定することができる。
(A)成分としては、着色特に黄変の抑制の観点からはフェノール性水酸基および/あるいはフェノール性水酸基の誘導体を有する化合物の含有量が少ないものが好ましく、フェノール性水酸基および/あるいはフェノール性水酸基の誘導体を有する化合物を含まないものが好ましい。本発明におけるフェノール性水酸基とはベンゼン環、ナフタレン環、アントラセン環等に例示される芳香族炭化水素核に直接結合した水酸基を示し、フェノール性水酸基の誘導体とは上述のフェノール性水酸基の水素原子をメチル基、エチル基等のアルキル基、ビニル基、アリル基等のアルケニル基、アセトキシ基等のアシル基等により置換された基を示す。
得られる硬化物の着色が少なく、耐光性が高いという観点からは、(A)成分としてはビニルシクロヘキセン、ジシクロペンタジエン、トリアリルイソシアヌレート、2,2−ビス(4−ヒドロキシシクロヘキシル)プロパンのジアリルエーテル、1,2,4−トリビニルシクロヘキサンが好ましく、トリアリルイソシアヌレート、2,2−ビス(4−ヒドロキシシクロヘキシル)プロパンのジアリルエーテル、1,2,4−トリビニルシクロヘキサンが特に好ましい。
(A)成分としては、その他の反応性基を有していてもよい。この場合の反応性基としては、エポキシ基、アミノ基、ラジカル重合性不飽和基、カルボキシル基、イソシアネート基、ヒドロキシル基、アルコキシシリル基等が挙げられる。これらの官能基を有している場合には得られる硬化性組成物の接着性が高くなりやすく、得られる硬化物の強度が高くなりやすい。接着性がより高くなりうるという点からは、これらの官能基のうちエポキシ基が好ましい。また、得られる硬化物の耐熱性が高くなりやすいという点においては、反応性基を平均して1分子中に1個以上有していることが好ましい。
特に(A)成分としては耐熱性・耐光性が高いという観点から下記一般式(I)で表されるトリアリルイソシアヌレート及びその誘導体が特に好ましい。
(式中R1は炭素数1〜50の一価の有機基を表し、それぞれのR1は異なっていても同一であってもよい。)で表される化合物が好ましい。
上記一般式(I)のR1としては、得られる硬化物の耐熱性がより高くなりうるという観点からは、炭素数1〜20の一価の有機基であることが好ましく、炭素数1〜10の一価の有機基であることがより好ましく、炭素数1〜4の一価の有機基であることがさらに好ましい。これらの好ましいR1の例としては、メチル基、エチル基、プロピル基、ブチル基、フェニル基、ベンジル基、フェネチル基、ビニル基、アリル基、グリシジル基、
等が挙げられる。
上記一般式(I)のR1としては、得られる硬化物の各種材料との接着性が良好になりうるという観点からは、3つのR1のうち少なくとも1つがエポキシ基を一つ以上含む炭素数1〜50の一価の有機基であることが好ましく、
で表されるエポキシ基を1個以上含む炭素数1〜50の一価の有機基であることがより好ましい。これらの好ましいR1の例としては、グリシジル基、
等が挙げられる。
上記一般式(I)のR1としては、得られる硬化物の化学的な熱安定性が良好になりうるという観点からは、2個以下の酸素原子を含みかつ構成元素としてC、H、Oのみを含む炭素数1〜50の一価の有機基であることが好ましく、炭素数1〜50の一価の炭化水素基であることがより好ましい。これらの好ましいR1の例としては、メチル基、エチル基、プロピル基、ブチル基、フェニル基、ベンジル基、フェネチル基、ビニル基、アリル基、グリシジル基、
等が挙げられる。
上記一般式(I)のR1としては、反応性が良好になるという観点からは、3つのR1のうち少なくとも1つが
で表される基を1個以上含む炭素数1〜50の一価の有機基であることが好ましく、下記一般式(IV)
(式中R4は水素原子あるいはメチル基を表す。)で表される基を1個以上含む炭素数1〜50の一価の有機基であることがより好ましく、3つのR1のうち少なくとも2つが下記一般式(V)
(式中R5は直接結合あるいは炭素数1〜48の二価の有機基を表し、R6は水素原子あるいはメチル基を表す。)で表される有機化合物(複数のR5およびR6はそれぞれ異なっていても同一であってもよい。)であることがさらに好ましい。
上記一般式(V)のR5は、直接結合あるいは炭素数1〜48の二価の有機基であるが、得られる硬化物の耐熱性がより高くなりうるという観点からは、直接結合あるいは炭素数1〜20の二価の有機基であることが好ましく、直接結合あるいは炭素数1〜10の二価の有機基であることがより好ましく、直接結合あるいは炭素数1〜4の二価の有機基であることがさらに好ましい。これらの好ましいR5の例としては、
等が挙げられる。
上記一般式(V)のR5としては、得られる硬化物の化学的な熱安定性が良好になりうるという観点からは、直接結合あるいは2つ以下の酸素原子を含みかつ構成元素としてC、H、Oのみを含む炭素数1〜48の二価の有機基であることが好ましく、直接結合あるいは炭素数1〜48の二価の炭化水素基であることがより好ましい。これらの好ましいR5の例としては、
が挙げられる。
上記一般式(V)のR6は、水素原子あるいはメチル基であるが、反応性が良好であるという観点からは、水素原子が好ましい。
ただし、上記のような一般式(I)で表される有機化合物の好ましい例においても、SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有することは必要である。耐熱性がより向上し得るという観点からは、SiH基と反応性を有する炭素−炭素二重結合を1分子中に3個以上含有する有機化合物であることがより好ましい。
以上のような一般式(I)で表される有機化合物の好ましい具体例としては、トリアリルイソシアヌレート、
等が挙げられる。
硬化物の接着性向上のためには、(A)成分としてはジアリルモノグリシジルイソシアヌレートが好ましい。
硬化物の接着性向上と耐光性を両立させるためには、トリアリルイソシアヌレートとジアリルモノグリシジルイソシアヌレートの混合物であることが好ましい。該混合物はイソシアヌル環骨格を有するため、耐熱性の点からも有効である。混合比は任意に設定出来るが、上記目的達成のためにはトリアリルイソシアヌレート/アリルモノグリシジルイソシアヌレート(モル比)=9/1〜1/9が好ましく、8/2〜2/8がさらに好ましく、7/3〜3/7が特に好ましい。
(A)成分は、単独又は2種以上のものを混合して用いることが可能である。
((B)成分)
次に、(B)成分について説明する。
本発明の(B)成分は、1分子中に少なくとも2個のSiH基を含有する化合物である。
(B)成分については、1分子中に少なくとも2個のSiH基を含有する化合物であれば特に制限がなく、例えば、国際公開第96/15194号パンフレットに記載される化合物で、1分子中に少なくとも2個のSiH基を有するもの等が使用できる。
これらのうち、入手性の面からは、1分子中に少なくとも2個のSiH基を有する鎖状及び/又は環状オルガノポリシロキサンが好ましく、(A)成分との相溶性が良いという観点からは、さらに、下記一般式(VI)
(式中、R7は炭素数1〜6の有機基を表し、nは3〜10の数を表す。)で表される、1分子中に少なくとも2個のSiH基を有する環状オルガノポリシロキサンが好ましい。
一般式(VI)で表される化合物中の置換基R7は、C、H、Oから構成されるものであることが好ましく、炭化水素基であることがより好ましく、メチル基であることがさらに好ましい。
一般式(VI)で表される化合物としては、入手容易性の観点からは、1,3,5,7−テトラメチルシクロテトラシロキサンであることが好ましい。
(B)成分の分子量は特に制約はなく、任意のものが使用できるが、硬化性組成物の流動性をより制御しやすいという観点からは低分子量のものが好ましく用いられる。この場合、好ましい分子量の下限は50であり、好ましい分子量の上限は100,000、より好ましくは10,000、さらに好ましくは1,000である。
(B)成分は、単独又は2種以上のものを混合して用いることが可能である。
(A)成分と良好な相溶性を有するという観点、および(B)成分の揮発性が低くなり、得られる組成物からのアウトガスの問題が生じ難いという観点からは、(B)成分は、SiH基と反応性を有する炭素−炭素二重結合を1分子中に1個以上含有する有機化合物(α)と、1分子中に少なくとも2個のSiH基を有する鎖状及び/又は環状のポリオルガノシロキサン(β)を、ヒドロシリル化反応して得ることができる化合物であることが好ましい。
((α)成分)
(α)成分としては、上記の(A)成分である、SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する有機化合物と同じもの(α1)も用いることができる。(α1)成分を用いると、得られる硬化物の架橋密度が高くなり、力学強度が高い硬化物となりやすい。
その他、SiH基と反応性を有する、炭素−炭素二重結合を1分子中に1個含有する有機化合物(α2)も用いることができる。(α2)成分を用いると、得られる硬化物が低弾性となりやすい。
((α2)成分)
(α2)成分としては、SiH基と反応性を有する炭素−炭素二重結合を1分子中に1個含有する有機化合物であれば特に限定されないが、(B)成分と(A)成分との相溶性がよくなるという点においては、化合物としてはポリシロキサン−有機ブロックコポリマーやポリシロキサン−有機グラフトコポリマーのようなシロキサン単位(Si−O−Si)を含むものではなく、構成元素としてC、H、N、O、S、およびハロゲンのみを含むものであることが好ましい。
(α2)成分のSiH基と反応性を有する炭素−炭素二重結合の結合位置は特に限定されず、分子内のいずれに存在してもよい。
(α2)成分の化合物は、重合体系の化合物と単量体系化合物に分類できる。
重合体系化合物としては例えば、ポリシロキサン系、ポリエーテル系、ポリエステル系、ポリアリレート系、ポリカーボネート系、飽和炭化水素系、不飽和炭化水素系、ポリアクリル酸エステル系、ポリアミド系、フェノール−ホルムアルデヒド系(フェノール樹脂系)、ポリイミド系の化合物を用いることができる。
また単量体系化合物としては、例えば、フェノール系、ビスフェノール系、ベンゼン、ナフタレン等の芳香族炭化水素系:直鎖系、脂環系等の脂肪族炭化水素系:複素環系の化合物、シリコン系の化合物およびこれらの混合物等が挙げられる。
(α2)成分のSiH基と反応性を有する炭素−炭素二重結合としては、特に限定されないが、下記一般式(II)
(式中R2は水素原子あるいはメチル基を表す。)で示される基が、反応性の点から好適である。また、原料の入手の容易さからは、
示される基が特に好ましい。
(α2)成分のSiH基と反応性を有する炭素−炭素二重結合としては、下記一般式(III)で表される部分構造を環内に有する脂環式の基が、耐熱性が高い硬化物を得やすいという点から好適である。
(式中R3は水素原子あるいはメチル基を表す。)また、原料の入手の容易さからは、下記式で表される部分構造を環内に有する脂環式の基が好適である。
SiH基と反応性を有する炭素−炭素二重結合は、(α2)成分の骨格部分に直接結合していてもよく、2価以上の置換基を介して共有結合していても良い。2価以上の置換基としては炭素数0〜10の置換基であれば特に限定されないが、(B)成分と(A)成分の相溶性が良好になりやすいという点においては、構成元素としてC、H、N、O、S、およびハロゲンのみを含むものが好ましい。これらの置換基の例としては、
が挙げられる。また、これらの2価以上の置換基の2つ以上が共有結合によりつながって、1つの2価以上の置換基を構成していてもよい。
以上のような骨格部分に共有結合する基の例としては、ビニル基、アリル基、メタリル基、アクリル基、メタクリル基、2−ヒドロキシ−3−(アリルオキシ)プロピル基、2−アリルフェニル基、3−アリルフェニル基、4−アリルフェニル基、2−(アリルオキシ)フェニル基、3−(アリルオキシ)フェニル基、4−(アリルオキシ)フェニル基、2−(アリルオキシ)エチル基、2、2−ビス(アリルオキシメチル)ブチル基、3−アリルオキシ−2、2−ビス(アリルオキシメチル)プロピル基、
が挙げられる。
(α2)成分の具体的な例としては、プロペン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、1−ドデセン、1−ウンデセン、リニアレン(出光石油化学(株)製)、4,4−ジメチル−1−ペンテン、2−メチル−1−ヘキセン、2,3,3−トリメチル−1−ブテン、2,4,4−トリメチル−1−ペンテン等のような鎖状脂肪族炭化水素系化合物類、シクロヘキセン、メチルシクロヘキセン、メチレンシクロヘキサン、ノルボルニレン、エチリデンシクロヘキサン、ビニルシクロヘキサン、カンフェン、カレン、αピネン、βピネン等のような環状脂肪族炭化水素系化合物類、スチレン、αメチルスチレン、インデン、フェニルアセチレン、4−エチニルトルエン、アリルベンゼン、4−フェニル−1−ブテン等のような芳香族炭化水素系化合物、アルキルアリルエーテル、アリルフェニルエーテル等のアリルエーテル類、グリセリンモノアリルエーテル、エチレングリコールモノアリルエーテル、4−ビニル−1,3−ジオキソラン−2−オン等の脂肪族系化合物類、1,2−ジメトキシ−4−アリ
ルベンゼン、o−アリルフェノール等の芳香族系化合物類、モノアリルジベンジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート等の置換イソシアヌレート類、ビニルトリメチルシラン、ビニルトリメトキシシラン、ビニルトリフェニルシラン等のシリコン化合物等が挙げられる。さらに、片末端アリル化ポリエチレンオキサイド、片末端アリル化ポリプロピレンオキサイド等のポリエーテル系樹脂、片末端アリル化ポリイソブチレン等の炭化水素系樹脂、片末端アリル化ポリブチルアクリレート、片末端アリル化ポリメチルメタクリレート等のアクリル系樹脂、等の片末端にビニル基を有するポリマーあるいはオリゴマー類等も挙げることができる。
構造は線状でも枝分かれ状でもよく、分子量は特に制約はなく種々のものを用いることができる。分子量分布も特に制限ないが、混合物の粘度が低くなり成形性が良好となりやすいという点においては、分子量分布が3以下であることが好ましく、2以下であることがより好ましく、1.5以下であることがさらに好ましい。
(α2)成分にガラス転移温度が存在する場合、これについても特に限定はなく、種々のものが用いられる。得られる硬化物が強靭となりやすいという点においては、ガラス点移転温度は100℃以下であることが好ましく、50℃以下であることがより好ましく、0℃以下であることがさらに好ましい。好ましい樹脂の例としてはポリブチルアクリレート樹脂等が挙げられる。逆に、得られる硬化物の耐熱性が高くなるという点においては、ガラス転移温度は100℃以上であることが好ましく、120℃以上であることがより好ましく、150℃以上であることがさらに好ましく、170℃以上であることが最も好ましい。(α2)成分は、所望の特性や、硬化物の強靭性や耐熱性のバランス等を考慮して、適宜決定される。なお、ガラス転移温度は、動的粘弾性測定においてtanδが極大を示す温度として求めることができる。
(α2)成分としては、得られる硬化物の耐熱性が高くなるという点においては、炭化
水素化合物であることが好ましい。この場合、好ましい炭素数の下限は7であり、好ましい炭素数の上限は10である。
(α2)成分としては、その他の反応性基を有していてもよい。この場合の反応性基としては、エポキシ基、アミノ基、ラジカル重合性不飽和基、カルボキシル基、イソシアネート基、ヒドロキシル基、アルコキシシリル基等が挙げられる。これらの官能基を有している場合には得られる硬化性組成物の接着性が高くなりやすく、得られる硬化物の強度が高くなりやすい。接着性がより高くなりうるという点からは、これらの官能基のうちエポキシ基が好ましい。また、得られる硬化物の耐熱性が高くなりやすいという点においては、反応性基を平均して1分子中に1個以上有していることが好ましい。具体的には、モノアリルジグリシジルイソシアヌレート、アリルグリシジルエーテル、アリロキシエチルメタクリレート、アリロキシエチルアクリレート、ビニルトリメトキシシラン等が挙げられる。
上記の(α2)成分は、それぞれ単独で用いてもよいし、複数のものを組み合わせて用いてもよい。
((β)成分)
(β)成分は、1分子中に少なくとも2個のSiH基を有する鎖状及び/又は環状のポリオルガノシロキサンである。
具体的には、例えば
が挙げられる。
ここで、(α)成分との相溶性が良くなりやすいという観点から、下記一般式(VI)
(式中、R7は炭素数1〜6の有機基を表し、nは3〜10の数を表す。)で表される、1分子中に少なくとも3個のSiH基を有する環状ポリオルガノシロキサンが好ましい。
一般式(VI)で表される化合物中の置換基R7は、C、H、Oから構成されるものであることが好ましく、炭化水素基であることがより好ましく、メチル基であることがさらに好ましい。
入手容易性等から、1,3,5,7−テトラメチルシクロテトラシロキサンであることが好ましい。
上記したような各種(β)成分は、単独もしくは2種以上のものを混合して用いることが可能である。
((α)成分と(β)成分の反応)
次に、本発明の(B)成分として、(α)成分と(β)成分をヒドロシリル化反応して得ることができる化合物を用いる場合の、(α)成分と(β)成分とのヒドロシリル化反応に関して説明する。 尚、(α)成分と(β)成分をヒドロシリル化反応すると、本発明の(B)成分を含む複数の化合物の混合物が得られることがあるが、そこから(B)成分を分離することなく混合物のまま、本発明の硬化性組成物に用いてもよい。
(α)成分と(β)成分をヒドロシリル化反応させる場合の(α)成分と(β)成分の混合比率は、特に限定されないが、得られる(B)成分と(A)成分とのヒドロシリル化による硬化物の強度を考えた場合、(B)成分のSiH基が多い方が好ましい。このため、混合する(α)成分中のSiH基との反応性を有する炭素−炭素二重結合の総数(X)と、混合する(β)成分中のSiH基の総数(Y)との比が、Y/X≧2であることが好ましく、Y/X≧3であることがより好ましい。また(B)成分の(A)成分との相溶性がよくなりやすいという点からは、5≧Y/Xであることが好ましく、10≧Y/Xであることがより好ましい。
(α)成分と(β)成分をヒドロシリル化反応させる場合には、適当な触媒を用いてもよい。触媒としては、例えば次のようなものを用いることができる。白金の単体、アルミナ、シリカ、カーボンブラック等の担体に固体白金を担持させたもの、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、白金−オレフィン錯体(例えば、Pt(CH2=CH22(PPh32、Pt(CH2=CH22Cl2)、白金−ビニルシロキサン錯体(例えば、Pt(ViMe2SiOSiMe2Vi)n、Pt[(MeViSiO)4m)、白金−ホスフィン錯体(例えば、Pt(PPh34、Pt(PBu34)、白金−ホスファイト錯体(例えば、Pt[P(OPh)34、Pt[P(OBu)34)(式中、Meはメチル基、Buはブチル基、Viはビニル基、Phはフェニル基を表し、n、mは、整数を示す。)、ジカルボニルジクロロ白金、カールシュテト(Karstedt)触媒、また、アシュビー(Ashby)の米国特許第3159601号及び3159662号明細書中に記載された白金−炭化水素複合体、ならびにラモロー(Lamoreaux)の米国特許第3220972号明細書中に記載された白金アルコラート触媒が挙げられる。更に、モディック(Modic)の米国特許第3516946号明細書中に記載された塩化白金−オレフィン複合体も本発明において有用である。
また、白金化合物以外の触媒の例としては、RhCl(PPh)3、RhCl3、RhAl23、RuCl3、IrCl3、FeCl3、AlCl3、PdCl2・2H2O、NiCl2、TiCl4、等が挙げられる。
これらの中では、触媒活性の点から、塩化白金酸、白金−オレフィン錯体、白金−ビニルシロキサン錯体等が好ましい。また、これらの触媒は単独で使用してもよく、2種以上併用してもよい。
触媒の添加量は特に限定されないが、十分な硬化性を有し、かつ硬化性組成物のコストを比較的低く抑えるため、(β)成分のSiH基1モルに対して10-8〜10-1モル添加するのが好ましく、10-6〜10-2モル添加するのがより好ましい。
また、上記触媒には助触媒を併用することが可能であり、例としてトリフェニルホスフィン等のリン系化合物、ジメチルマレエート等の1、2−ジエステル系化合物、2−ヒドロキシ−2−メチル−1−ブチン、1−エチニル−1−シクロヘキサノール等のアセチレンアルコール系化合物、単体の硫黄等の硫黄系化合物、トリエチルアミン等のアミン系化合物等が挙げられる。助触媒の添加量は特に限定されないが、ヒドロシリル化触媒1モルに対して、10-2〜102モル添加するのが好ましく、10-1〜10モル添加するのがより好ましい。
反応させる場合の(α)成分、(β)成分、触媒の混合の方法としては、各種方法をとることができるが、(α)成分に触媒を混合したものを、(β)成分に混合する方法が好ましい。(α)成分、(β)成分の混合物に触媒を混合する方法だと、反応の制御が困難である。(β)成分と触媒を混合したものに(α)成分を混合する方法をとる場合は、触媒の存在下、(β)成分が混入している水分と反応性を有するため、変質することがある。
反応温度は特に制限はないが、この場合、30〜200℃が好ましく、50〜150℃がより好ましい。反応温度が低いと十分に反応させるための反応時間が長くなり、反応温度が高いと実用的でない。反応は一定の温度で行ってもよいが、必要に応じて多段階あるいは連続的に温度を変化させてもよい。
反応時間、反応時の圧力も、特に制限はなく、必要に応じ適宜設定できる。
ヒドロシリル化反応の際には、溶媒を使用してもよい。使用できる溶剤はヒドロシリル化反応を阻害しない限り特に限定されるものではなく、例えば、ベンゼン、トルエン、ヘキサン、ヘプタン等の炭化水素系溶媒、テトラヒドロフラン、1, 4−ジオキサン、1,3−ジオキソラン、ジエチルエーテル等のエーテル系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、クロロホルム、塩化メチレン、1, 2−ジクロロエタン等のハロゲン系溶媒を好適に用いることができる。溶媒は、2種類以上の混合溶媒として用いることもできる。溶媒としては、トルエン、テトラヒドロフラン、1,3−ジオキソラン、クロロホルムが好ましい。使用する溶媒量も適宜設定できる。
その他、反応性を制御する目的等のために種々の添加剤を用いてもよい。
(α)成分と(β)成分を反応させた後に、溶媒あるいは/および未反応の(α)成分あるいは/および(β)成分を除去することもできる。これらの成分を除去することにより、(A)成分との硬化の際に、上記成分の揮発によるボイド、クラックの問題が生じにくくなる。除去する方法としては、例えば、減圧脱揮の他、活性炭、ケイ酸アルミニウム、シリカゲル等による処理等が挙げられる。減圧脱揮する場合には、低温で処理することが好ましい。この場合の好ましい温度の上限は100℃であり、より好ましくは60℃である。これは、高温で処理すると増粘等の変質を伴いやすいためである。
以上のような、(α)成分と(β)成分の反応物である(B)成分の例としては、ジビニルベンゼンと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、ビスフェノールAジアリルエーテルと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、ビニルシクロヘキセンと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、ジシクロペンタジエンと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、トリアリルイソシアヌレートと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、ジアリルモノグリシジルイソシアヌレートと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、アリルグリシジルエーテルと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、αメチルスチレンと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、モノアリルジグリシジルイソシアヌレートと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、等を挙げることができる。
硬化物の耐熱性・耐光性の点から、ジビニルベンゼンと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、及びトリアリルイソシアヌレートと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物が好ましい。また、耐熱性・耐光性・接着性の点からは、ジアリルモノグリシジルイソシアヌレートと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物、モノアリルジグリシジルイソシアヌレートと1,3,5,7−テトラメチルシクロテトラシロキサンの反応物が好ましい。
これらの(B)成分は、単独もしくは2種以上のものを混合して用いることが可能である。
((A)成分と(B)成分の混合比)
(A)成分と(B)成分の混合比率は、硬化物に必要な強度が失われない限り、特に限定されないが、(B)成分中のSiH基の数(Y')の、(A)成分中の炭素−炭素二重結合の数(X')に対する比(Y'/X')において、0.3〜3であるのが好ましく、0.5〜2であるのがより好ましく、0.7から1.5であるのが更に好ましい。このような比率とすることにより、硬化物の強度を十分強くし、また、熱劣化を防ぐことが可能になる。
((C)成分)
次に(C)成分であるヒドロシリル化触媒について説明する。
ヒドロシリル化触媒としては、ヒドロシリル化反応の触媒活性があれば特に限定されず、例えば、白金の単体、アルミナ、シリカ、カーボンブラック等の担体に固体白金を担持させたもの、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、白金−オレフィン錯体(例えば、Pt(CH2=CH22(PPh32、Pt(CH2=CH22Cl2)、白金−ビニルシロキサン錯体(例えば、Pt(ViMe2SiOSiMe2Vi)n、Pt[(MeViSiO)4m)、白金−ホスフィン錯体(例えば、Pt(PPh34、Pt(PBu34)、白金−ホスファイト錯体(例えば、Pt[P(OPh)34、Pt[P(OBu)34)(式中、Meはメチル基、Buはブチル基、Viはビニル基、Phはフェニル基を表し、n、mは、整数を示す。)、ジカルボニルジクロロ白金、カールシュテト(Karstedt)触媒、また、アシュビー(Ashby)の米国特許第3159601号および3159662号明細書中に記載された白金−炭化水素複合体、ならびにラモロー(Lamoreaux)の米国特許第3220972号明細書中に記載された白金アルコラート触媒が挙げられる。さらに、モディック(Modic)の米国特許第3516946号明細書中に記載された塩化白金−オレフィン複合体も本発明において有用である。
また、白金化合物以外の触媒の例としては、RhCl(PPh)3、RhCl3、RhAl23、RuCl3、IrCl3、FeCl3、AlCl3、PdCl2・2H2O、NiCl2、TiCl4、等が挙げられる。
これらの中では、触媒活性の点から、塩化白金酸、白金−オレフィン錯体、白金−ビニルシロキサン錯体等が好ましい。また、これらの触媒は単独で使用してもよく、2種以上併用してもよい。
触媒の添加量は特に限定されないが、十分な硬化性を有し、かつ硬化性組成物のコストを比較的低く抑えるため好ましい添加量の下限は、(B)成分のSiH基1モルに対して10-8モル、より好ましくは10-6モルであり、好ましい添加量の上限は(β)成分のSiH基1モルに対して10-1モル、より好ましくは10-2モルである。
また、上記触媒には、助触媒を併用することが可能であり、例として、トリフェニルホスフィン等のリン系化合物、ジメチルマレエート等の1、2−ジエステル系化合物、2−ヒドロキシ−2−メチル−1−ブチン等のアセチレンアルコール系化合物、単体の硫黄等の硫黄系化合物、トリエチルアミン等のアミン系化合物等が挙げられる。助触媒の添加量は特に限定されないが、ヒドロシリル化触媒1モルに対して、10-2〜102モル添加するのが好ましく、10-1〜10モル添加するのがより好ましい。
本発明の組成物の保存安定性を改良する目的、あるいは硬化過程でのヒドロシリル化反応の反応性を調整する目的で、硬化遅延剤を使用することができる。硬化遅延剤としては、脂肪族不飽和結合を含有する化合物、有機リン化合物、有機イオウ化合物、窒素含有化合物、スズ系化合物、有機過酸化物等が挙げられ、これらを併用してもかまわない。
脂肪族不飽和結合を含有する化合物としては、3−ヒドロキシ−3−メチル−1−ブチン、3−ヒドロキシ−3−フェニル−1−ブチン、1−エチニル−1−シクロヘキサノール等のプロパギルアルコール類、エン−イン化合物類、ジメチルマレート等のマレイン酸エステル類等が例示される。有機リン化合物としては、トリオルガノフォスフィン類、ジオルガノフォスフィン類、オルガノフォスフォン類、トリオルガノフォスファイト類等が例示される。有機イオウ化合物としては、オルガノメルカプタン類、ジオルガノスルフィド類、硫化水素、ベンゾチアゾール、チアゾール、ベンゾチアゾールジサルファイド等が例示される。スズ系化合物としては、ハロゲン化第一スズ2水和物、カルボン酸第一スズ等が例示される。有機過酸化物としては、ジ−t−ブチルペルオキシド、ジクミルペルオキシド、ベンゾイルペルオキシド、過安息香酸t−ブチル等が例示される。
これらの硬化遅延剤のうち、遅延活性が良好で原料入手性がよいという観点からは、ベンゾチアゾール、チアゾール、ジメチルマレート、3−ヒドロキシ−3−メチル−1−ブチン、1−エチニル−1−シクロヘキサノールが好ましい。
硬化遅延剤の添加量は、特に限定するものではないが、使用するヒドロシリル化触媒1molに対して10-1〜103モル用いるのが好ましく、1〜50モル用いるのがより好ましい。また、これらの硬化遅延剤は単独で使用してもよく、2種以上組み合わせて使用してもよい。
((D)成分)
本発明の(D)成分でいうアクリル系樹脂で被覆されたゴム粒子とは、冷熱衝撃試験を行う際の温度領域(−40℃〜150℃)において貯蔵弾性率の低いゴムを主成分とする粒子を意味する。これらを樹脂中に分散することで海島構造を形成させることにより、樹脂の応力緩和効果を得ることが可能である。ゴム粒子の成分としては、シリコーン系ゴム、アクリル系ゴム、ブタジエン系ゴム、フッ素系ゴムが挙げられる。特にガラス転移温度(Tg)が低いという点で、シリコーン系ゴムが好ましい。ゴム粒子および/またはアクリル系樹脂において、二成分以上の共重合体、その他ウレタン、ポリエステル、ポリカーボネート、ポリイミド樹脂との共重合体(変性体)、ビニル、アリル、エポキシ、アルコキシ、カルボキシル、水酸基等反応基を含有する樹脂との共重合体を用いることも可能であり、これら2種類以上の添加も可能である。
また、ゴム粒子を被覆するアクリル系樹脂は、樹脂との親和性、分散性向上、分散後の樹脂粘度調整のために用いられる。エポキシ樹脂、シリコーンオイル等の相溶性のよい液状樹脂あるいは各種有機溶媒に予めゴム粒子を高充填させたマスターバッチの添加も適用可能である。
アクリル系樹脂で被覆されたゴム粒子を得る方法には、特に制限はないが、乳化重合で製造するのが一般的かつ簡便である。また、有機溶媒系マスターバッチについても開示されている。例えば、特願2003−326711を参考にして製造するのがよい。
アクリル系樹脂に用いられる単量体成分としては、公知のものが多数存在するが、必要な機能に応じて適宜選択すれば良い。なお、取り扱い性の点から、単独で重合した時に得られる重合体のガラス転移温度(Tg)が30℃以上である(メタ)アクリル系単量体を用いるのが好ましく、Tgが150℃以上であるのが更に好ましい。具体例としては、例えば、アクリル酸t−ブチル、アクリル酸ヘキサデシル、アクリル酸フェニル、などのアクリル酸アルキルエステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ベンジル、メタクリル酸グリシジル、メタクリル酸2−ヒドロキシエチルなどのメタクリル酸アルキルエステル;アクリル酸、メタクリル酸などの(メタ)アクリル酸およびその酸無水物およびその金属塩などが挙げられるが、これらに限定されるものではない。また、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n−ブチル、アクリル酸2−エチルヘキシル、メタクリル酸2−エチルヘキシル、メタクリル酸ラウリルのように、単独で重合するとガラス転移温度(Tg)が30℃未満になる単量体も、ガラス転移温度(Tg)が30℃以上の重合体が得られるように使用量を調節して、他の単量体さらには架橋成分と共重合すれば使用可能である。これらの中では、入手性および経済性の点から、炭素数1〜18のアルキル基を有する(メタ)アクリル酸アルキルエステルが好ましく、特にアクリル酸t−ブチル、メタクリル酸メチル、メタクリル酸t−ブチル、メタクリル酸グリシジル、およびメタクリル酸2−ヒドロキシエチルが好ましい。さらにメタクリル酸メチルが好ましい。
また、アクリル系樹脂が架橋成分を有するのが好ましい。これは、配合時の粘度をの増大を抑制可能なこと、および/またはアクリル系樹脂のTgを高めることが可能なことから好ましい。架橋成分の量については、単量体成分や架橋剤成分の種類などにより、適宜設定する。その際、粘度やTgを基準に決定することができる。一般的には1〜90重量%が好ましく、5〜60%がさらに好ましい。
本発明で用いられる架橋成分の具体例としては、メタクリル酸アリル、アクリル酸アリル、フタル酸ジアリル、シアヌル酸トリアリル、イソシアヌル酸トリアリル、エチレングリコールジアクリレートなどがあげられる。これらは単独で用いてもよく、2種以上を組み合わせて使用してもよい。これらのなかでは、架橋効率が良好であるという点から、メタクリル酸アリルが好ましい。
更に、配合時の粘度を増大を抑制するという点から、ゴム粒子とアクリル系樹脂は、その重量比が、(ゴム粒子)/(アクリル系樹脂)=75/25〜40/60であるのが好ましい。
添加部数に関しては、(A)成分と(B)成分の総和100重量部に対して0.5〜70重量部が好ましく、さらに低弾性化効果、及び樹脂粘度を考慮すると2〜50重量部が好ましい。
アクリル系樹脂で被覆されたゴム粒子の粒径(体積平均粒子径)に関しては、0.05μm以上の粒子が使用可能で、樹脂の粘度上昇を引き起こしにくいという点では0.1μm以上であることが好ましく、さらに樹脂に高充填させ、著しい低弾性効果を得るという観点から0.2μm以上であることが好ましい。
(添加剤)
(無機フィラ−)
本発明の組成物には、強度向上、線膨張係数低減等のために、無機フィラーを添加することもできる。無機フィラーとしては各種のものが用いられるが、例えば、石英、ヒュームドシリカ、沈降性シリカ、無水ケイ酸、溶融シリカ、結晶性シリカ、超微粉無定型シリカ等のシリカ系無機フィラー、アルミナ、ジルコン、酸化チタン、窒化ケイ素、窒化ホウ素、窒化アルミ、炭化ケイ素、ガラス繊維、アルミナ繊維、炭素繊維、マイカ、黒鉛、カーボンブラック、グラファイト、ケイソウ土、白土、クレー、タルク、水酸化アルミニウム、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、チタン酸カリウム、ケイ酸カルシウム、無機バルーン、銀粉等の無機フィラーをはじめとして、エポキシ系等の従来の封止材の充填材として、一般的に使用あるいは/および提案されている無機フィラー等を挙げることができる。無機フィラーとしては、半導体素子へダメージを与え難いという観点からは、低放射線性であることが好ましい。
無機フィラーは適宜表面処理してもよい。表面処理としては、アルキル化処理、トリメチルシリル化処理、シリコーン処理、カップリング剤による処理等が挙げられる。
この場合のカップリング剤の例としては、シランカップリング剤が挙げられる。シランカップリング剤としては、分子中に有機基と反応性のある官能基と、加水分解性のケイ素基を各々少なくとも1個有する化合物であれば特に限定されない。有機基と反応性のある基としては、取扱い性の点から、エポキシ基、メタクリル基、アクリル基、イソシアネート基、イソシアヌレート基、ビニル基、カルバメート基から選ばれる少なくとも1個の官能基が好ましく、硬化性及び接着性の点から、エポキシ基、メタクリル基、アクリル基が特に好ましい。加水分解性のケイ素基としては、取扱い性の点から、アルコキシシリル基が好ましく、反応性の点から、メトキシシリル基、エトキシシリル基が特に好ましい。
好ましいシランカップリング剤としては、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ官能基を有するアルコキシシラン類:3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリエトキシシラン、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、アクリロキシメチルトリメトキシシラン、アクリロキシメチルトリエトキシシラン等のメタクリル基あるいはアクリル基を有するアルコキシシラン類が例示できる。
また、無機フィラーは、例えば、アルコキシシラン、アシロキシシラン、ハロゲン化シラン等の加水分解性シランモノマーあるいはオリゴマーや、チタン、アルミニウム等の金属のアルコキシド、アシロキシド、ハロゲン化物等を、本発明の組成物に添加して、組成物中あるいは組成物の部分反応物中で反応させることにより、組成物中で生成させてもよい。
無機フィラーの平均粒径や粒径分布としては、エポキシ系等の従来の封止材の充填材として使用および/又は提案されているものをはじめ、特に限定なく各種のものを用いることができるが、良好な流動性を有する組成物とするためには、平均粒径が0.1〜120μmであるのが好ましく、0.5〜60μmであるのがより好ましく、0.5〜15μmであるのが特に好ましい。
無機フィラーの比表面積についても、エポキシ系等の従来の封止材の充填材として使用および/又は提案されているものをはじめ、所望の特性に応じて適宜選択できる。
無機フィラーの形状としては、破砕状、片状、球状、棒状等、各種のものを用いることができる。アスペクト比も種々のものを用いることができる。得られる硬化物の強度が高くなりやすいという点においては、アスペクト比が10以上のものが好ましい。また、樹脂の等方性収縮の点からは、繊維状よりは粉末状であるのが好ましい。あるいは、高充填時にも、良好な成形時流動性を得やすいという点においては、球状のものが好ましい。
(硬化遅延剤)
本発明の組成物には、保存安定性を改良する目的、あるいは製造過程でのヒドロシリル化反応の反応性を調整する目的で、硬化遅延剤を使用することができる。硬化遅延剤としては、脂肪族不飽和結合を含有する化合物、有機リン化合物、有機イオウ化合物、窒素含有化合物、スズ系化合物、有機過酸化物等が挙げられ、これらは二以上組み合わせて使用してもかまわない。
脂肪族不飽和結合を含有する化合物としては、3−ヒドロキシ−3−メチル−1−ブチン、3−ヒドロキシ−3−フェニル−1−ブチン、1−エチニル−1−シクロヘキサノール等のプロパギルアルコール類、エン−イン化合物類、ジメチルマレート等のマレイン酸エステル類等が例示される。有機リン化合物としては、トリオルガノフォスフィン類、ジオルガノフォスフィン類、オルガノフォスフォン類、トリオルガノフォスファイト類等が例示される。有機イオウ化合物としては、オルガノメルカプタン類、ジオルガノスルフィド類、硫化水素、ベンゾチアゾール、チアゾール、ベンゾチアゾールジサルファイド等が例示される。窒素含有化合物としては、アンモニア、1〜3級アルキルアミン類、アリールアミン類、尿素、ヒドラジン等が例示される。スズ系化合物としては、ハロゲン化第一スズ2水和物、カルボン酸第一スズ等が例示される。有機過酸化物としては、ジ−t−ブチルペルオキシド、ジクミルペルオキシド、ベンゾイルペルオキシド、過安息香酸t−ブチル等が例示される。
これらの硬化遅延剤のうち、遅延活性が良好で原料入手性がよいという観点からは、ベンゾチアゾール、チアゾール、ジメチルマレート、3−ヒドロキシ−3−メチル−1−ブチン、1−エチニル−1−シクロヘキサノールが好ましい。
硬化遅延剤の添加量は適宜設定できるが、使用するヒドロシリル化触媒1molに対して、10-1〜103モル添加するのが好ましく、1〜50モル添加するのが更に好ましい
また、これらの硬化遅延剤は単独で使用してもよく、2種以上組み合わせて使用してもよい。
(接着性改良剤)
本発明の組成物には、接着性改良剤を添加することもできる。接着性改良剤としては一般に用いられている接着剤の他、例えば種々のカップリング剤、エポキシ化合物、フェノール樹脂、クマロン−インデン樹脂、ロジンエステル樹脂、テルペン−フェノール樹脂、α−メチルスチレン−ビニルトルエン共重合体、ポリエチルメチルスチレン、芳香族ポリイソシアネート等を挙げることができる。
カップリング剤としては、例えば、シランカップリング剤、チタネート系カップリング剤等が挙げられる。
シランカップリング剤としては、分子中に有機基と反応性のある官能基あるいは/および加水分解性のケイ素基を少なくとも1個有する化合物を使用することができる。有機基と反応性のある基としては、取扱い性の点からエポキシ基、メタクリル基、アクリル基、イソシアネート基、イソシアヌレート基、ビニル基、カルバメート基、ウレイド基から選ばれる少なくとも1個の官能基が好ましく、硬化性及び接着性の点から、エポキシ基、メタクリル基、アクリル基が特に好ましい。加水分解性のケイ素基としては、取扱い性の点からアルコキシシリル基が好ましく、反応性の点からメトキシシリル基、エトキシシリル基が特に好ましい。
好ましいシランカップリング剤としては、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ官能基を有するシラン類、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリエトキシシラン、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、アクリロキシメチルトリメトキシシラン、アクリロキシメチルトリエトキシシラン等のメタクリル基あるいはアクリル基を有するシラン類、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン、ビニルトリアセトキシシラン等のビニル基を有するシラン類、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン等のメルカプトシラン類、γ−アミノプロピルトリエトキシシラン、γ−[ビス(β−ヒドロキシエチル)]アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−(β−アミノエチル)アミノプロピルジメトキシメチルシラン、N−(トリメトキシシリルプロピル)エチレンジアミン、N−(ジメトキシメチルシリルイソプロピル)エチレンジアミン、N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルトリメトキシシラン等のアミノ基を有するシラン類、メチルトリメトキシシラン、メチルトリエトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−アニリノプロピルトリメトキシシラン等のシラン類等が挙げられる。
チタネート系カップリング剤としては、イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N−アミノエチル−アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2−ジアリルオキシメチル−1−ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート等が挙げられる。
カップリング剤の添加量は特に問うものではないが、[(A)成分+(B)成分]100重量部に対して、1〜50重量部添加するのが好ましく、2〜25重量部添加するのが更に好ましい。添加量が少ないと接着性改良効果が表れず、添加量が多いと硬化物物性に悪影響を及ぼす場合がある。
エポキシ化合物としてはエポキシ基含有シランカップリング剤以外の化合物であり、例えば、ノボラックフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビスフェノールFジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、2,2'−ビス(4−グリシジルオキシシクロヘキシル)プロパン、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカーボキシレート、ビニルシクロヘキセンジオキサイド、2−(3,4−エポキシシクロヘキシル)−5,5−スピロ−(3,4−エポキシシクロヘキサン)−1,3−ジオキサン、ビス(3,4−エポキシシクロヘキシル)アジペート、1,2−シクロプロパンジカルボン酸ビスグリシジルエステル、トリグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート、ジアリルモノグリシジルイソシアヌレート等を挙げることができる。
エポキシ化合物の添加量は特に問うものではないが、[(A)成分+(B)成分]100重量部に対して、1〜50重量部添加するのが好ましく、2〜25重量部添加するのが更に好ましい。添加量が少ないと接着性改良効果が表れず、添加量が多いと硬化物物性に悪影響を及ぼす場合がある。
また、これらのカップリング剤、シランカップリング剤、エポキシ化合物等は単独で使用してもよく、2種以上組み合わせて使用してもよい。
また、本発明においてはカップリング剤やエポキシ化合物の効果を高めるために、さらにシラノール縮合触媒を用いることができ、接着性の向上および/あるいは安定化が可能である。このようなシラノール縮合触媒としては特に限定されないが、ほう素系化合物あるいは/およびアルミニウム系化合物あるいは/およびチタン系化合物が好ましい。シラノール縮合触媒となるアルミニウム系化合物としては、アルミニウムトリイソプロポキシド、sec−ブトキシアルミニウムジイソフロポキシド、アルミニウムトリsec−ブトキシド等のアルミニウムアルコキシド類:、エチルアセトアセテートアルミニウムジイソプロポキシド、アルミニウムトリス(エチルアセトアセテート)、アルミキレートM(川研ファインケミカル製、アルキルアセトアセテートアルミニウムジイソプロポキシド)、アルミニウムトリス(アセチルアセトネート)、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)等のアルミニウムキレート類等が例示でき、取扱い性の点からアルミニウムキレート類がより好ましい。シラノール縮合触媒となるチタン系化合物としては、テトライソプロポキシチタン、テトラブトキシチタン等のテトラアルコキシチタン類:チタンテトラアセチルアセトナート等のチタンキレート類:オキシ酢酸やエチレングリコール等の残基を有する一般的なチタネートカップリング剤が例示できる。
シラノール縮合触媒となるほう素系化合物としては、ほう酸エステルが挙げられる。ほう酸エステルとしては下記一般式(VII)、(VIII)で示されるものを好適に用いることが出来る。
(式中R8、R9は炭素数1〜48の有機基を表す。)
ほう酸エステルの具体例として、ほう酸トリ−2−エチルヘキシル、ほう酸ノルマルトリオクタデシル、ほう酸トリノルマルオクチル、ほう酸トリフェニル、トリメチレンボレート、トリス(トリメチルシリル)ボレート、ほう酸トリノルマルブチル、ほう酸トリ−sec−ブチル、ほう酸トリ−tert−ブチル、ほう酸トリイソプロピル、ほう酸トリノルマルプロピル、ほう酸トリアリル、ほう酸トリエチル、ほう酸トリメチル、ほう素メトキシエトキサイドを好適に用いることができる。
これらほう酸エステルは、1種類のみを用いてもよく、2種類以上を混合して用いても良い。混合は事前に行なっても良く、また硬化物作成時に混合しても良い。
これらほう酸エステルのうち、容易に入手でき、工業的実用性が高いという点からは、ほう酸トリメチル、ほう酸トリエチル、ほう酸トリノルマルブチルが好ましく、なかでもほう酸トリメチルがより好ましい。
硬化時の揮発性を抑制できるという点からは、ほう酸ノルマルトリオクタデシル、ほう酸トリノルマルオクチル、ほう酸トリフェニル、トリメチレンボレート、トリス(トリメチルシリル)ボレート、ほう酸トリノルマルブチル、ほう酸トリ−sec−ブチル、ほう酸トリ−tert−ブチル、ほう酸トリイソプロピル、ほう酸トリノルマルプロピル、ほう酸トリアリル、ほう素メトキシエトキサイドが好ましく、なかでもほう酸ノルマルトリオクタデシル、ほう酸トリ−tert−ブチル、ほう酸トリフェニル、ほう酸トリノルマルブチルがより好ましい。
低揮発性、および良好な作業性という点からは、ほう酸トリノルマルブチル、ほう酸トリイソプロピル、ほう酸トリノルマルプロピルが好ましく、なかでもほう酸トリノルマルブチルがより好ましい。
高温下での着色性が低いという点からは、ほう酸トリメチル、ほう酸トリエチルが好ましく、なかでもほう酸トリメチルがより好ましい。
シラノール縮合触媒を用いる場合の使用量は種々設定できるが、カップリング剤および/又はエポキシ化合物エポキシ化合物100重量部に対して、0.1〜50重量部用いるのが好ましく、1〜30重量部用いるのが更に好ましい。添加量が少ないと接着性改良効果が表れず、添加量が多いと硬化物物性に悪影響を及ぼす場合がある。
また、これらのシラノール縮合触媒は、単独で使用してもよく、2種以上組み合わせて使用してもよい。
また、本発明においては、さらにシラノール源化合物を用いることができる。これにより、接着性の向上および/又は安定化が可能となり、リードとの密着性向上に寄与し、パッケージとリードの界面からの水分の浸入の防止に効果的である。このようなシラノール源としては、例えば、トリフェニルシラノール、ジフェニルジヒドロキシシラン等のシラノール化合物、ジフェニルジメトキシシラン、テトラメトキシシラン、メチルトリメトキシシラン等のアルコキシシラン類等を挙げることができる。
シラノール源化合物を用いる場合の使用量は適宜設定できるが、カップリング剤および/又はエポキシ化合物エポキシ化合物100重量部に対して、0.1〜50重量部用いるのが好ましく、1〜30重量部用いるのが更に好ましい。添加量が少ないと接着性改良効果が表れず、添加量が多いと硬化物物性に悪影響を及ぼす場合がある。
また、これらのシラノール源化合物は単独で使用してもよく、2種以上組み合わせて使用してもよい。
本発明においては、カップリング剤やエポキシ化合物の効果を高めるために、カルボン酸類および/又は酸無水物類を用いることができる。これにより、接着性の向上および/又は安定化が可能である。このようなカルボン酸類、酸無水物類としては特に限定されないが、
2−エチルヘキサン酸、シクロヘキサンカルボン酸、シクロヘキサンジカルボン酸、メチルシクロヘキサンジカルボン酸、テトラヒドロフタル酸、メチルテトラヒドロフタル酸、メチルハイミック酸、ノルボルネンジカルボン酸、水素化メチルナジック酸、マレイン酸、アセチレンジカルボン酸、乳酸、リンゴ酸、クエン酸、酒石酸、安息香酸、ヒドロキシ安息香酸、桂皮酸、フタル酸、トリメリット酸、ピロメリット酸、ナフタレンカルボン酸、ナフタレンジカルボン酸、およびそれらの単独あるいは複合酸無水物が挙げられる。
これらのカルボン酸類および/又は酸無水物類のうち、ヒドロシリル化反応性を有し、硬化物からの染み出しの可能性が少なく、得られる硬化物の物性を損ない難いという点においては、SiH基と反応性を有する炭素−炭素二重結合を含有するものが好ましい。好ましいカルボン酸類および/又は酸無水物類としては、例えば、
テトラヒドロフタル酸、メチルテトラヒドロフタル酸およびそれらの単独あるいは複合酸無水物等が挙げられる。
カルボン酸類および/又は酸無水物類を用いる場合の使用量は、適宜設定できるが、カップリング剤および/又はエポキシ化合物100重量部に対しての好ましい添加量の下限は0.1重量部、より好ましくは1重量部であり、好ましい添加量の上限は50重量部、より好ましくは10重量部である。添加量が少ないと、接着性改良効果が表れず、添加量が多いと硬化物物性に悪影響を及ぼす場合がある。
また、これらのカルボン酸類および/又は酸無水物類は、単独で使用してもよく、2種以上組み合わせて使用してもよい。
(熱硬化性樹脂)
本発明の組成物には、特性を改質する等の目的で、種々の熱硬化性樹脂を添加することも可能である。熱硬化性樹脂としては、エポキシ樹脂、シアネートエステル樹脂、フェノール樹脂、ポリイミド樹脂、ウレタン樹脂、ビスマレイミド樹脂等が例示されるがこれに限定されるものではない。これらのうち、接着性等の実用特性に優れるという観点から、エポキシ樹脂が好ましい。
エポキシ樹脂としては、例えば、ノボラックフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビスフェノールFジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、2,2'−ビス(4−グリシジルオキシシクロヘキシル)プロパン、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカーボキシレート、ビニルシクロヘキセンジオキサイド、2−(3,4−エポキシシクロヘキシル)−5,5−スピロ−(3,4−エポキシシクロヘキサン)−1,3−ジオキサン、ビス(3,4−エポキシシクロヘキシル)アジペート、1,2−シクロプロパンジカルボン酸ビスグリシジルエステル、トリグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート、ジアリルモノグリシジルイソシアヌレート等のエポキシ樹脂を、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、トリアルキルテトラヒドロ無水フタル酸、水素化メチルナジック酸無水物等の脂肪族酸無水物で硬化させるものが挙げられる。これらのエポキシ樹脂あるいは硬化剤はそれぞれ単独で用いても、複数のものを組み合わせて使用してもよい。
熱硬化性樹脂の添加量としては、特に限定はないが、硬化性組成物全体の5〜50重量%であるのが好ましく、10〜30重量%であるのがより好ましい。添加量が少ないと、接着性等の目的とする効果が得られにくくなり、添加量が多いと脆くなる傾向にあるためである。
これらの熱硬化性樹脂は単独で用いても、複数のものを組み合わせて用いてもよい。
熱硬化樹脂は、樹脂原料および/又は硬化させたものを、(A)成分および/又は(B)成分に混合して均一な状態として混合してもよいし、粉砕して粒子状態で混合してもよいし、溶媒に混合する等して分散状態としてもよい。得られる硬化物がより透明になりやすいという点においては、(A)成分および/又は(B)成分に混合して均一な状態として混合することが好ましい。この場合も、熱硬化性樹脂を(A)成分および/又は(B)成分に直接混合させてもよいし、溶媒等を用いて均一に混合してもよいし、その後溶媒を除いて均一な分散状態あるいは/および混合状態としてもよい。
硬化させた熱硬化性樹脂を分散させて用いる場合は、所望の特性に応じて、平均粒子径は適宜設定できるが、平均粒子径が10nm〜10μmとするのが好ましい。また、粒子は、単一分散であっても複数のピーク粒径を持っていてもよいが、硬化性組成物の粘度が低く成形性が良好となりやすいという観点からは、粒子径の変動係数が10%以下であることが好ましい。
(熱可塑性樹脂)
本発明の組成物には特性を改質する等の目的で、種々の熱可塑性樹脂を添加することも可能である。熱可塑性樹脂としては種々のものを用いることができ、例えば、メチルメタクリレートの単独重合体あるいはメチルメタクリレートと他のモノマーとのランダム、ブロック、あるいはグラフト重合体等のポリメチルメタクリレート系樹脂(例えば日立化成工業(株)製オプトレッツ(登録商標)等)、ブチルアクリレートの単独重合体あるいはブチルアクリレートと他モノマーとのランダム、ブロック、あるいはグラフト重合体等のポリブチルアクリレート系樹脂等に代表されるアクリル系樹脂、ビスフェノールA、3,3,5−トリメチルシクロヘキシリデンビスフェノール等をモノマー構造として含有するポリカーボネート樹脂等のポリカーボネート系樹脂(例えば帝人化成製APEC等)、ノルボルネン誘導体、ビニルモノマー等を単独あるいは共重合した樹脂、ノルボルネン誘導体を開環メタセシス重合させた樹脂、あるいはその水素添加物等のシクロオレフィン系樹脂(例えば、三井化学(株)製APEL(登録商標)、日本ゼオン(株)製ZEONOR(登録商標)、ZEONEX(登録商標)、JSR(株)製ARTON(登録商標)等)
、エチレンとマレイミドの共重合体等のオレフィン−マレイミド系樹脂(例えば東ソー(株)製TI−PAS等)、ビスフェノールA、ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレン等のビスフェノール類やジエチレングリコール等のジオール類とテレフタル酸、イソフタル酸、等のフタル酸類や脂肪族ジカルボン酸類を重縮合させたポリエステル等のポリエステル系樹脂(例えば鐘紡(株)製OPET等)、ポリエーテルスルホン樹脂、ポリアリレート樹脂、ポリビニルアセタール樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリアミド樹脂、シリコーン樹脂、フッ素樹脂等の他、天然ゴム、EPDMといったゴム状樹脂が例示されるがこれに限定されるものではない。
熱可塑性樹脂としては、分子中にSiH基と反応性を有する炭素−炭素二重結合および/又はSiH基を有していてもよい。得られる硬化物がより強靭となりやすいという点においては、分子中にSiH基と反応性を有する炭素−炭素二重結合および/又はSiH基を平均して1分子中に1個以上有していることが好ましい。
熱可塑性樹脂としてはその他の架橋性基を有していてもよい。この場合の架橋性基としては、エポキシ基、アミノ基、ラジカル重合性不飽和基、カルボキシル基、イソシアネート基、ヒドロキシル基、アルコキシシリル基等が挙げられる。得られる硬化物の耐熱性が高くなりやすいという点においては、架橋性基を平均して1分子中に1個以上有していることが好ましい。
熱可塑性樹脂の分子量としては、特に限定はなく、所望の特性に応じて適宜選択する。
(A)成分や(B)成分との相溶性が良好となりやすいという点においては、数平均分子量が10000以下であることが好ましく、5000以下であることがより好ましい。逆に、得られる硬化物が強靭となりやすいという点においては、数平均分子量が10000以上であることが好ましく、100000以上であることがより好ましい。分子量分布についても特に限定はないが、混合物の粘度が低くなり成形性が良好となりやすいという点から、分子量分布が3以下であることが好ましく、2以下であることがより好ましく、1.5以下であることがさらに好ましい。
熱可塑性樹脂の配合量としては特に限定はないが、硬化性組成物全体に対して、5〜50重量%であるのが好ましく、10〜30重量%であるのがより好ましい。添加量が少ないと得られる硬化物が脆くなりやすく、多いと耐熱性(高温での弾性率)が低くなりやすい。
熱可塑性樹脂としては、単一のものを用いてもよいし、複数のものを組み合わせて用いてもよい。
熱可塑性樹脂は、(A)成分および/又は(B)成分に混合して均一な状態として混合してもよいし、粉砕して粒子状態で混合してもよいし、溶媒に混合して混合する等して分散状態としてもよい。得られる硬化物がより透明になりやすいという点においては、(A)成分および/又は(B)成分に混合して均一な状態として混合することが好ましい。この場合も、熱可塑性樹脂を(A)成分および/又は(B)成分に直接溶解させてもよいし、溶媒等を用いて均一に混合してもよいし、その後溶媒を除いて均一な分散状態および/又は混合状態としてもよい。
熱可塑性樹脂を分散させて用いる場合は、平均粒子径は所望の特性に応じて適宜選択するが、粒子の製造しやすさの点から、10nm〜10μmであるのが好ましい。また、粒子は、単一分散であっても複数のピーク粒径を持っていてもよいが、硬化性組成物の粘度が低く成形性が良好となりやすいという観点からは粒子径の変動係数が10%以下であることが好ましい。
(老化防止剤)
本発明の組成物には、老化防止剤を添加してもよい。老化防止剤としては、ヒンダートフェノール系等一般に用いられている老化防止剤の他、クエン酸やリン酸、硫黄系老化防止剤等が挙げられる。
ヒンダートフェノール系老化防止剤としては、チバ・スペシャルティ・ケミカルズ・ホールディング・インコーポレーテッド社から入手できるイルガノックス1010をはじめとして、各種のものが用いられる。
硫黄系老化防止剤としては、メルカプタン類、メルカプタンの塩類、スルフィドカルボン酸エステル類や、ヒンダードフェノール系スルフィド類を含むスルフィド類、ポリスルフィド類、ジチオカルボン酸塩類、チオウレア類、チオホスフェイト類、スルホニウム化合物、チオアルデヒド類、チオケトン類、メルカプタール類、メルカプトール類、モノチオ酸類、ポリチオ酸類、チオアミド類、スルホキシド類等が挙げられる。
また、これらの老化防止剤は単独で使用してもよく、2種以上併用してもよい。
(ラジカル禁止剤)
本発明の組成物には、ラジカル禁止剤を添加してもよい。ラジカル禁止剤としては、例えば、2,6−ジ−t−ブチル−3−メチルフェノール(BHT)、2,2'−メチレン−ビス(4−メチル−6−t−ブチルフェノール)、テトラキス(メチレン−3(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート)メタン等のフェノール系ラジカル禁止剤や、フェニル−β−ナフチルアミン、α−ナフチルアミン、N,N'−第二ブチル−p−フェニレンジアミン、フェノチアジン、N,N'−ジフェニル−p−フェニレンジアミン等のアミン系ラジカル禁止剤等が挙げられる。
また、これらのラジカル禁止剤は単独で使用してもよく、2種以上組み合わせて用いてもよい。
(紫外線吸収剤)
本発明の組成物には、紫外線吸収剤を添加してもよい。紫外線吸収剤としては、例えば2(2'−ヒドロキシ−3',5'−ジ−t−ブチルフェニル)ベンゾトリアゾール、ビス(2,2,6,6−テトラメチル−4−ピペリジン)セバケート等が挙げられる。
また、これらの紫外線吸収剤は単独で使用してもよく、2種以上組み合わせて使用してもよい。
(その他添加剤)
本発明の組成物には、その他蛍光体、着色剤、離型剤、難燃剤、難燃助剤、界面活性剤、消泡剤、乳化剤、レベリング剤、はじき防止剤、アンチモン−ビスマス等のイオントラップ剤、チクソ性付与剤、粘着性付与剤、保存安定改良剤、オゾン劣化防止剤、光安定剤、増粘剤、可塑剤、反応性希釈剤、酸化防止剤、熱安定化剤、導電性付与剤、帯電防止剤、放射線遮断剤、核剤、リン系過酸化物分解剤、滑剤、顔料、金属不活性化剤、熱伝導性付与剤、物性調整剤等を、本発明の目的および効果を損なわない範囲において添加することができる。
(溶剤)
本発明の組成物は溶剤と混合して用いることも可能である。使用する溶剤は組成物が均一に混合する限りにおいては特に限定されるものではなく、具体的に例示すれば、ベンゼン、トルエン、ヘキサン、ヘプタン等の炭化水素系溶媒、テトラヒドロフラン、1, 4−ジオキサン、1,3−ジオキソラン、ジエチルエーテル等のエーテル系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、クロロホルム、塩化メチレン、1, 2−ジクロロエタン等のハロゲン系溶媒を好適に用いることができる。
溶媒としては、トルエン、テトラヒドロフラン、1,3−ジオキソラン、クロロホルムが好ましい。
使用する溶媒量は適宜設定できるが、用いる硬化性組成物1gに対して、0.1〜10mL用いるのが望ましい。使用量が少ないと、低粘度化等の溶媒を用いることの効果が得られにくく、また、使用量が多いと、材料に溶剤が残留して熱クラック等の問題となり易く、またコスト的にも不利になり工業的利用価値が低下する。
これらの、溶媒は単独で使用してもよく、2種類以上の混合溶媒として用いることもできる。
(Bステージ化)
本発明の組成物は、各成分および添加剤等の配合物をそのまま用いてもよいし、加熱等により部分的に反応(Bステージ化)させてから使用してもよい。Bステージ化することにより粘度調整が可能であり、トランスファー成形性を調整することもできる。
(半導体装置について)
本発明で言う半導体装置とは、IC、LSI等の集積回路、トランジスター、ダイオード、発光ダイオード等の素子の他、CCD等の受光素子等を挙げることができる。
以下に、本発明の実施例および比較例を示すが、本発明は以下によって限定されるものではない。
(合成例1)
5Lの四つ口フラスコに、攪拌装置、滴下漏斗、冷却管をセットした。このフラスコにトルエン1800g、1,3,5,7−テトラメチルシクロテトラシロキサン1440gを入れ、120℃のオイルバス中で加熱、攪拌した。トリアリルイソシアヌレート200g、トルエン200g及び白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)1.44mlの混合液を、50分かけて滴下した。得られた溶液をそのまま6時間加温、攪拌した後、未反応の1,3,5,7−テトラメチルシクロテトラシロキサン及びトルエンを減圧留去した。1H−NMRによりこのものは1,3,5,7−テトラメチルシクロテトラシロキサンのSiH基の一部がトリアリルイソシアヌレートと反応したものであることがわかった(反応物Aと称する)。また、1,2−ジブロモメタンを内部標準に用いて1H−NMRによりSiH基の含有量を求めたところ、8.08mmol/gのSiH基を含有していることがわかった。生成物は混合物であるが、本発明の(B)成分である下記のものを主成分として含有している。また、本発明の(C)成分である白金ビニルシロキサン錯体を含有している。
(合成例2)
攪拌機、還流冷却機、モノマー追加口、温度計を備えた4口フラスコに純水300重量部を入れた。これとは別に、純水100重量部、ドデシルベンゼンスルホン酸ナトリウム15%水溶液0.5重量部(固形分)、オクタメチルシクロテトラシロキサン100重量部、γ−メタクリロキシプロピルメチルジメトキシシラン3重量部からなる混合物をホモジナイザーにて、7000rpmで5分間強制乳化した後、一括して加えた。5分間攪拌後、ドデシルベンゼンスルホン酸10%水溶液1重量部(固形分)を加えて、さらに15分間攪拌後、系を80℃に昇温させた。80℃に到達後、280分間撹拌を続けた後、系を25℃に冷却して、シリコーンゴムコア粒子を含むラテックス溶液を得た。
攪拌機、還流冷却機、窒素吹込口、モノマー追加口、温度計を備えた5口フラスコに、上述のシリコーンゴムコア粒子70.0重量部(固形分)と純水700重量部を仕込み、窒素雰囲気下で40℃に昇温させた。40℃到達後、ナトリウムホルムアルデヒドスルホキシレート(SFS)0.39重量部と、エチレンジアミン4酢酸2ナトリウム(EDTA)0.0048重量部、硫酸第一鉄0.0012重量部を加えた。次にメチルメタクリレート24重量部、アリルメタクリレート6重量部、クメンハイドロパーオキサイド0.11重量部の混合物を75分間かけて滴下し、追加終了後、30分間攪拌した。さらにナトリウムホルムアルデヒドスルホキシレート(SFS)0.01重量部を加え15分攪拌した後、クメンハイドロパーオキサイド0.01重量部(固形部)加えてさらに1時間攪拌することで、架橋されたアクリル樹脂で被覆されたシリコーンゴム粒子(体積平均粒子径0.24μm:ナノトラック粒度分析計UPA150(日機装株式会社製)を用いて測定した)を含むラテックス溶液を得た。
つづいて、ラテックス溶液を純水で希釈し、固形分濃度を20%とした後、2.5%塩化カルシウム水溶液4重量部(固形分)を添加して凝固スラリーを得た。凝固スラリーを95℃まで加熱した後、50℃まで冷却して脱水後、乾燥させることで架橋されたアクリル樹脂で被覆されたシリコーンゴム粒子の粉体を得た。
(実施例1)
トリアリルイソシアヌレート17.5g、白金−ジビニルテトラメチルジシロキサン錯体のキシレン溶液(白金3重量%含有)130.8mg、及びほう酸メチル217.9mgを混合し、攪拌、脱泡したものをA液とした。また、合成例1で調製した反応物A26.1g、1−エチニルシクロヘキサノール130.8mg、(γ―グリシドキシプロピル)トリメトキシシラン(商品名:A−187)1.09gをB液とした。その後、A液とB液を混合させたものを遊星式攪拌脱泡機にて攪拌・脱泡を行った。さらに、このA液・B液混合物に、合成例2で得られた、架橋されたアクリル樹脂で被覆されたシリコーンゴム粒子4.52gを添加し、スパチュラで混合後、再び遊星式攪拌脱泡機にて攪拌・脱泡を行った。
2枚のガラス板に3mm厚みのシリコーンゴムシートをスペーサーとしてはさみこんで作製したセルに、この混合液を流し込み、60℃で6時間、続いて70℃で1時間、80℃で1時間、120℃で1時間、150℃で1時間空気中にて加熱を行い、白色硬質な硬化物を得た。
(比較例1)
トリアリルイソシアヌレート17.5g、白金−ジビニルテトラメチルジシロキサン錯体のキシレン溶液(白金3重量%含有)130.8mg、及びほう酸メチル217.9mgを混合し、攪拌、脱泡したものをA液とした。また、合成例1で調製した反応物A26.1g、1−エチニルシクロヘキサノール130.8mg、(γ―グリシドキシプロピル)トリメトキシシラン(商品名:A−187)1.09gをB液とした。その後、A液とB液を混合させたものを、遊星式攪拌脱泡機にて攪拌・脱泡を行った。
2枚のガラス板に3mm厚みのシリコーンゴムシートをスペーサーとしてはさみこんで作製したセルに、この混合液を流し込み、60℃で6時間、続いて70℃で1時間、80℃で1時間、120℃で1時間、150℃で1時間空気中にて加熱を行い、硬質無色透明な硬化物を得た。
(測定例1)
実施例1、比較例1により作製した硬化物は、次のように分析、評価を行った。まず、ガラスセルから作製した硬化物のTgと引張貯蔵弾性率を、アイティー計測制御製動的粘弾性測定装置DVA−200により、昇温速度5℃/minで測定した結果を表1に示す。
表1からわかるように、シリコーンゴム粒子を混合した実施例1の組成物を硬化させたものでは、30℃における貯蔵弾性率に有意な低下が確認された。また、ガラス転移温度の低下もほとんど見られなかった。
概して、応力は弾性率とは比例的な関係にあるため、貯蔵弾性率の低下は、モールド樹脂部に生じる応力を低下させることが可能なことを意味しており、このことから、本発明に係る組成物は、高い実装信頼性を有し、冷熱衝撃性に優れることがわかる。

Claims (7)

  1. (A)SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有する有機化合物、(B)1分子中に少なくとも2個のSiH基を含有する化合物、(C)ヒドロシリル化触媒及び(D)アクリル系樹脂で被覆されたゴム粒子を必須成分として含有することを特徴とする硬化性組成物。
  2. 前記ゴム粒子がシリコーン系ゴム粒子、アクリル系ゴム粒子、ブタジエン系ゴム粒子若しくはフッ素系ゴム粒子のいずれか、又はこれらを二以上組み合わせたものであることを特徴とする請求項1に記載の硬化性組成物。
  3. 前記ゴム粒子が、シリコーンゴム粒子であることを特徴とする請求項1または2に記載の硬化性組成物。
  4. 前記アクリル系樹脂が、架橋成分を有することを特徴とする請求項1〜3のいずれか一項に記載の硬化性組成物。
  5. 前記のゴム粒子とアクリル系樹脂の比が、重量比で、(ゴム粒子)/(アクリル系樹脂)=75/25〜40/60であることを特徴とする請求項1〜4のいずれか一項に記載の硬化性組成物。
  6. 前記(A)成分が、下記一般式(I)
    (式中R1は炭素数1〜50の一価の有機基を表し、それぞれのR1は異なっていても同一であってもよい。)で表される有機化合物を含むことを特徴とする請求項1〜5のいずれか一項に記載の硬化性組成物。
  7. 請求項1〜6のいずれか一項に記載の硬化性組成物を用いて封止、被覆された半導体装置。
JP2006547770A 2004-11-24 2005-11-21 硬化性組成物およびその硬化性組成物により封止、被覆された半導体装置 Pending JPWO2006057218A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004339302 2004-11-24
JP2004339302 2004-11-24
PCT/JP2005/021363 WO2006057218A1 (ja) 2004-11-24 2005-11-21 硬化性組成物およびその硬化性組成物により封止、被覆された半導体装置

Publications (1)

Publication Number Publication Date
JPWO2006057218A1 true JPWO2006057218A1 (ja) 2008-06-05

Family

ID=36497955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006547770A Pending JPWO2006057218A1 (ja) 2004-11-24 2005-11-21 硬化性組成物およびその硬化性組成物により封止、被覆された半導体装置

Country Status (2)

Country Link
JP (1) JPWO2006057218A1 (ja)
WO (1) WO2006057218A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213899A (ja) * 2005-02-07 2006-08-17 Kaneka Corp 硬化性組成物、および、その硬化性組成物により封止された半導体装置
EP2291477B1 (en) 2008-06-02 2016-03-23 3M Innovative Properties Company Adhesive encapsulating composition and electronic devices made therewith
US20110073901A1 (en) * 2008-06-02 2011-03-31 Jun Fujita Adhesive encapsulating composition and electronic devices made therewith
JP5583928B2 (ja) * 2009-06-16 2014-09-03 株式会社カネカ 硬化性組成物、および、硬化物
EP3094685B1 (en) * 2014-01-17 2019-03-06 Henkel AG & Co. KGaA Curable composition for optical semiconductor devices
WO2016112487A1 (en) * 2015-01-13 2016-07-21 Henkel (China) Company Limited Organopolysiloxane prepolymer and curable organopolysiloxane composition comprising same
WO2020162475A1 (ja) * 2019-02-08 2020-08-13 キヤノン株式会社 硬化性樹脂組成物
JP7443069B2 (ja) * 2019-02-08 2024-03-05 キヤノン株式会社 硬化性樹脂組成物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288336A (ja) * 2000-04-06 2001-10-16 Techno Polymer Co Ltd エポキシ樹脂組成物
JP2002088224A (ja) * 2000-09-13 2002-03-27 Hitachi Chem Co Ltd 封止用エポキシ樹脂成形材料及び電子部品装置
JP2003261770A (ja) * 2002-03-08 2003-09-19 Kanegafuchi Chem Ind Co Ltd 封止剤、半導体等の封止方法、半導体装置の製造方法、および半導体装置
JP2003313438A (ja) * 2002-04-26 2003-11-06 Kanegafuchi Chem Ind Co Ltd 光学材料用硬化物の製造方法およびその硬化物及びその硬化物により封止された発光ダイオード
WO2005028546A1 (ja) * 2003-09-18 2005-03-31 Kaneka Corporation ゴム状重合体粒子の製造方法およびこれを含有する樹脂組成物の製造方法
JP2005255916A (ja) * 2004-03-12 2005-09-22 Kaneka Corp 硬化性組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4611617B2 (ja) * 2002-04-26 2011-01-12 株式会社カネカ 発光ダイオード
JP2003327838A (ja) * 2002-05-09 2003-11-19 Kanegafuchi Chem Ind Co Ltd 硬化性組成物及び硬化性組成物を用いた速硬化性接着剤

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288336A (ja) * 2000-04-06 2001-10-16 Techno Polymer Co Ltd エポキシ樹脂組成物
JP2002088224A (ja) * 2000-09-13 2002-03-27 Hitachi Chem Co Ltd 封止用エポキシ樹脂成形材料及び電子部品装置
JP2003261770A (ja) * 2002-03-08 2003-09-19 Kanegafuchi Chem Ind Co Ltd 封止剤、半導体等の封止方法、半導体装置の製造方法、および半導体装置
JP2003313438A (ja) * 2002-04-26 2003-11-06 Kanegafuchi Chem Ind Co Ltd 光学材料用硬化物の製造方法およびその硬化物及びその硬化物により封止された発光ダイオード
WO2005028546A1 (ja) * 2003-09-18 2005-03-31 Kaneka Corporation ゴム状重合体粒子の製造方法およびこれを含有する樹脂組成物の製造方法
JP2005255916A (ja) * 2004-03-12 2005-09-22 Kaneka Corp 硬化性組成物

Also Published As

Publication number Publication date
WO2006057218A1 (ja) 2006-06-01

Similar Documents

Publication Publication Date Title
JP4778085B2 (ja) 半導体のパッケージ用硬化性樹脂組成物および半導体
JP5844252B2 (ja) 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード
JP5685284B2 (ja) 発光ダイオード用パッケージおよび発光ダイオード
JP5426064B2 (ja) 硬化性組成物
JPWO2006057218A1 (ja) 硬化性組成物およびその硬化性組成物により封止、被覆された半導体装置
JP4723289B2 (ja) SiH基含有化合物、その製造方法、並びに、SiH基含有化合物を用いた硬化性組成物、その硬化物
JP6227884B2 (ja) 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード
JP5749543B2 (ja) 熱硬化性樹脂組成物タブレットおよびそれを用いた半導体のパッケージ
JP2006213899A (ja) 硬化性組成物、および、その硬化性組成物により封止された半導体装置
JP5837385B2 (ja) 熱硬化性樹脂組成物およびそれを用いた発光ダイオード用のパッケージ
JP4578338B2 (ja) 硬化性組成物及びその硬化物
JP5442941B2 (ja) 硬化性組成物
JP5848572B2 (ja) 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード
JP2013224359A (ja) 熱硬化性樹脂組成物、タブレット、発光ダイオード用パッケージ、それらの製造方法
JP5875780B2 (ja) 白色硬化性樹脂組成物およびそれを用いた半導体のパッケージ
JP2007138098A (ja) 形状保持性硬化性組成物
JP6154094B2 (ja) 半導体のパッケージ
JP4504077B2 (ja) 硬化性組成物の製造方法
JP5813446B2 (ja) 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード
JP5563628B2 (ja) 半導体のパッケージ用硬化性樹脂組成物および半導体
JP5869827B2 (ja) 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード
JP2007224095A (ja) 硬化剤、硬化性組成物および硬化物
JP5563696B2 (ja) 半導体のパッケージ用硬化性樹脂組成物および半導体
JP5563695B2 (ja) 半導体のパッケージ用硬化性樹脂組成物および半導体
JP2015199811A (ja) 発光ダイオード用硬化性樹脂組成物、発光ダイオードのパッケージ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130423