JPWO2006046592A1 - 小型光走査装置 - Google Patents

小型光走査装置 Download PDF

Info

Publication number
JPWO2006046592A1
JPWO2006046592A1 JP2006543200A JP2006543200A JPWO2006046592A1 JP WO2006046592 A1 JPWO2006046592 A1 JP WO2006046592A1 JP 2006543200 A JP2006543200 A JP 2006543200A JP 2006543200 A JP2006543200 A JP 2006543200A JP WO2006046592 A1 JPWO2006046592 A1 JP WO2006046592A1
Authority
JP
Japan
Prior art keywords
optical
light
objective lens
lens system
scanning device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006543200A
Other languages
English (en)
Other versions
JP4589931B2 (ja
Inventor
賢志 唐澤
賢志 唐澤
純 ホジェリオ 水野
純 ホジェリオ 水野
Original Assignee
ペンタックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ペンタックス株式会社 filed Critical ペンタックス株式会社
Publication of JPWO2006046592A1 publication Critical patent/JPWO2006046592A1/ja
Application granted granted Critical
Publication of JP4589931B2 publication Critical patent/JP4589931B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/127Adaptive control of the scanning light beam, e.g. using the feedback from one or more detectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0036Scanning details, e.g. scanning stages
    • G02B21/0048Scanning details, e.g. scanning stages scanning mirrors, e.g. rotating or galvanomirrors, MEMS mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Microscoopes, Condenser (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

観察対象物に照射する照射光を走査するための走査手段と、観察対象物上で焦点を結ぶように照射光を集光する対物レンズ系と、対物レンズ系の出射側で且つ対物レンズ系の光軸上に配置され、照射光を透過させてその透過した位置を検出する光検出素子とを有する光走査装置を提供する。この光走査装置によれば、対物レンズ系の光軸上に光検出素子を配置することで従来よりも小型化が可能であり且つ照射光を直接検出することにより精度の高いスポット位置検出を可能とする光位置検出器を備えた光走査装置を提供することができる。

Description

本発明は、光のスポット位置を検出する光位置検出器を備えた小型光走査装置に関する。
従来より共焦点プローブ装置が知られている。共焦点プローブ装置は、光走査装置と共焦点光学系とを備える。光走査装置は、光源からの照射光(レーザー光)を観察対象物上で走査する手段であり、駆動可能な光ファイバや静電駆動されるミラー装置により走査を行っている。共焦点光学系は、光走査装置によって観察対象物上の焦点面上で走査された光の戻り光を受光し、結果として観察対象物の共焦点画像を生成する。また、共焦点プローブ装置は、照射光の観察対象物上のスポット位置を検出して、該検出結果に基づいて観察対象物における照射光の走査位置を制御する。照射光のスポット位置を検出する方法としては以下の方法が従来から知られている。
図6は、照射光を走査する手段として静電駆動されるミラー装置を備えた、従来の光走査装置300を示す。光走査装置300は、ミラー装置302と、対物レンズ系305とを備える。レーザー光である照射光311がミラー装置302に入射し、ミラー装置302で反射され、その後対物レンズ系305に入射する。ミラー装置302に入射する照射光311は、平行光束であり、対物レンズ系305を介することによって、観察対象物315上において焦点を結ぶ(図6では光スポット317が焦点位置を示す)。
ミラー装置302は、照射光311を走査するミラー面の裏面側に位置する不図示の基板を有し、該基板上には駆動電極が配設されている。そして、任意の駆動電極に電圧を印加することにより、駆動電極とミラー間に静電引力が発生し、ミラーの一部分は駆動電極に引き寄せられるため、ミラー装置302のミラー面は傾斜する。該駆動電極に電圧を印加することで該駆動電極に蓄えられた静電容量と、ミラー面の傾斜角との関係には線形性があるため、該駆動電極に蓄えられた静電容量からミラー面の傾斜角を把握することができる。このミラー面の傾斜角に基づいて、観察対象物315における光スポット317の位置座標を計算することができる。従来の典型的な静電駆動されるミラー装置は、例えば以下の特許文献1に開示される。
特開2003−29172号公報
上記のような、特許文献1に記載の光走査装置300においては、ミラー装置302のミラー面の傾斜角が大きくなると、静電容量とミラー面の傾斜角との関係は非線形になり、ミラー面の傾斜角を正確に把握できなくなる。その結果、光走査装置300の制御部が光スポット317があるべき位置と認識している位置(ターゲット位置)と、実際に制御された光スポット317の位置は、ミラー面の傾斜が大きくなるほど相違する。そのため取得された画像は、ミラー面の傾斜の大きい位置で、歪んでしまうという問題点がある。
以上のような問題点から、歪のない画像を取得するには、光スポットの位置を間接的に測定するのではなく直接的に測定することが求められる。光スポットの位置を直接測定する方法としては、以下の方法が従来から知られている。
図7は、光スポットの位置を直接測定する従来の光走査装置400を示す。光走査装置400は、光ファイバ401、対物レンズ系405、ビームスプリッタ407、光検出素子409(例えば、フォトダイオード)を備える。光ファイバ401は走査部403を有する。なお光ファイバ401は、前述したミラー装置302と置き換えが可能である。
走査部403は、不図示の駆動手段により駆動されて、照射光411を走査する。照射光411は、走査部403から対物レンズ系405へ向けて出射される。対物レンズ系405を透過した照射光411は、ビームスプリッタ407に入射し、照射光411の一部は進行方向に対して90度曲げられ、光検出素子409に入射する。残りの照射光411は直進して観察対象物415に達する。
ここで観察対象物415においてXYZ座標及び原点Oを図7に示すように定義する。すなわち、光軸413と観察対象物415の所定の位置との交点を原点Oとし、光軸413に平行な方向をZ軸方向とする。また光検出素子409において別の座標系X’Y’Z’座標及び原点O’を定義する。すなわち、光軸413と光検出素子409(の入射面)との交点を原点O’とし光軸413に平行な方向をZ’軸方向とする。
観察対象物415における光スポット417の原点Oからの位置座標(X,Y)は、光検出素子409における光スポット417’の原点O’からの位置座標(X’,Y’)を検出することにより判明する。このようにして光スポットの位置を直接測定することが可能となる。
しかしながら、光走査装置400は、ビームスプリッタ407で分離された光を、光軸から外れた位置で受光するので、装置が大型化する。プローブ先端部等の狭小な場所において、より小型であり且つ光スポットの位置検出の精度が高い光走査装置が求められていた。
本発明は、以上の事情に鑑み、小型であり、精度の高い光スポットの位置検出が可能な光位置検出器を有する光走査装置を提供することを目的とする。
上記目的を達成するため、本発明の一つの側面によって提供されるのは、観察対象物に照射する照射光を走査するための走査手段と、前記観察対象物上で焦点を結ぶように前記照射光を集光する対物レンズ系と、前記対物レンズ系の出射側で且つ前記対物レンズ系の光軸上に配置され、前記照射光を透過させてその透過した位置を検出する光検出素子とを有する光走査装置である。この光走査装置によれば、対物レンズ系の光軸上に光検出素子を配置することで従来よりも小型化が可能であり、且つ照射光を直接検出することにより精度の高いスポット位置検出を可能とする光位置検出器を備えた光走査装置を提供することができる。
また、本発明の一つの側面によって提供されるのは、観察対象物に照射する照射光を走査するための走査手段と、前記走査手段からの照射光を受光し、像側テレセントリック光学系を構成する第一の対物レンズ系と、前記第一の対物レンズ系から出射した照射光が前記観察対象物上で焦点を結ぶように集光する第二の対物レンズ系と、前記第一の対物レンズ系と前記第二の対物レンズ系の間で且つ光軸上に配置され、照射光を透過させてその透過した位置を検出する光検出素子とを有する光走査装置である。この光走査装置によれば、照射光を対物レンズ系の光軸と平行にする第一の対物レンズ系と照射光を集光させる第二の対物レンズ系との間に光検出素子を配置し観察対象物のスポット位置を直接的に検出することによりその精度を高めることができると共に、光軸上に光検出素子を配置することにより従来よりも小型化が可能である光位置検出器を備えた光走査装置を提供することができる。
また、本発明の一つの側面によって提供されるのは、観察対象物上で焦点を結ぶように照射光を集光する対物レンズ系と、前記対物レンズ系の出射側で且つ前記対物レンズ系の光軸上に配置され、前記照射光を透過させてその透過した位置を検出する光検出素子と、を有することを特徴とする光位置検出器である。この光位置検出器によれば、対物レンズ系の光軸上に光検出素子を配置することで従来よりも小型化が可能であり、且つ照射光を直接検出することにより精度の高いスポット位置検出を可能とする光位置検出器を提供することができる。
また、本発明の一つの側面によって提供されるのは、像側テレセントリック光学系を構成する第一の対物レンズ系と、前記第一の対物レンズ系から出射した前記照射光が観察対象物上で焦点を結ぶように集光する第二の対物レンズ系と、前記第一の対物レンズ系と前記第二の対物レンズ系の間で且つ光軸上に配置され、照射光を透過させてその透過した位置を検出する光検出素子とを有する光位置検出器である。この光位置検出器によれば、照射光を対物レンズ系の光軸と平行にする第一の対物レンズ系と照射光を集光させる第二の対物レンズ系との間に光検出素子を配置し観察対象物のスポット位置を直接的に検出することによりその精度を高めることができると共に、光軸上に光検出素子を配置することにより従来よりも小型化が可能である光位置検出器を提供することができる。
光走査装置の光軸上に光検出素子が配設された、光走査装置を示す。 光走査装置の制御フローを示す図である。 光走査装置の光軸上に光検出素子が配設された、光走査装置を示す。 光走査装置の光位置検出器の斜視図である。 図4の光位置検出器の側面図である。 照射光を走査する手段として静電駆動されるミラー装置を備えた、従来の光走査装置を示す。 光スポットの位置を直接測定する従来の光走査装置を示す。
図面を参照して本発明の実施の形態を説明する。図1は、光走査装置100の原理を説明するための図である。光走査装置100は、ミラー装置102(走査手段)と、光位置検出器110と、制御部125とを有する。光位置検出器110は、対物レンズ系105と、光検出素子119と、光検出素子121とを備える。なお、対物レンズ系105の光軸を光走査装置100の光軸113とも称するものとする。
ミラー装置102、対物レンズ系105、光検出素子119、光検出素子121は、それぞれ光軸113上に配設されている。光走査装置100では、図示しない光源により供給される照射光111(レーザ光)は、平行光であり、ミラー装置102に入射し、その後ミラー装置102により反射されて対物レンズ系105へ入射する。なお、ミラー装置102上で照射光111(の光軸)が反射される位置を中心点131とする。また、ミラー装置102は、照射光111の反射角度を調整して、照射光111を走査する「走査手段」としての機能を有する。
対物レンズ系105は、複数のレンズ及び光学部材から構成されたレンズ系であり、観察対象物115上において、平行光束である照射光111を集光させる(スポット径は約1μm程度)機能を有する。観察対象物115上に図1に示すような直交座標系を定義するものとする(光軸113上であって観察対象物115との交点を原点Oとし、光軸113に平行な方向をZ軸方向、その他図のようにX軸、Y軸を定める)。照射光111は、対物レンズ系105のパワーにより、原点Oを通るXY平面において、焦点を結ぶ(光スポット117)。なお、本発明の実施形態では、ミラー装置102の中心点131は対物レンズ系105の焦点位置となるように調整されている。すなわち、この位置関係は像側テレセントリック光学系をなし、対物レンズ系105を通過した照射光111は光軸113に対して常に平行となる。したがって、ミラー装置102により照射光111が走査されたとしても、原点Oを通るXY平面上において常に照射光111を集光させることができる。
光検出素子119及び光検出素子121は、その受光面が光軸113と略垂直であり且つその受光面の中心が光軸と一致するように配置されている。すなわち、本発明においては、光検出素子119および光検出素子121への入射位置により、観察対象物115上の光スポット117の位置(X座標、Y座標)を検出することができる。
光検出素子についてさらに詳述する。本発明においては、例えば、特開平11−312821号公報において開示されるような、光を透過する透明な半導体受光素子を、光検出素子として使用することを想定している。その半導体受光素子は、受光した光の一部のみを吸収し、受光した光の大部分をその背面に透過させる機能を有する。また、光を吸収することにより電流(光電流)を生ずる。半導体受光素子は、例えば、pn接合で形成されたフォトダイオードであり、光が透過する程度の薄膜に形成されている。
光検出素子119は、X軸方向に等分割され、分割された各領域には図示しないがそれぞれ電極が接続されている。照射光111が光検出素子119を透過したとき、どの電極に光電流が流れるかを検出することにより観察対象物115上の光スポット117のX座標を検出することができる。本発明では、対物レンズ系105を通過した照射光111と光軸113が平行であるので、光検出素子119で検出されたX座標が光スポット117のX座標となる。光検出素子121は、Y軸方向に等分割され、分割された各領域には図示しないがそれぞれ電極が接続されている。照射光111が光検出素子121を透過したとき、どの電極に光電流が流れるかを検出することにより光スポット117のY座標を検出できる。なお、対物レンズ系105を通過した照射光111と光軸113が平行でなく、該照射光111が光軸113と所定の角度をなす場合には、そのなす角度と、光検出素子119で検出されたX座標、光検出素子119の観察対象物115からのZ軸上の距離等を用いて幾何学的に光スポット117のX座標を検出することができる。同様に光スポット117のY座標を検出することもできる。しかし、ミラー装置102と対物レンズ系105により像側テレセントリック光学系を形成して照射光111と光軸113とを平行にしたほうが、光検出素子119,121の検出範囲を大きくとることができると共に、検出位置の分解能を高くすることができる(すなわち、照射光111が光軸113と非平行であると、光検出素子119,121の入射範囲が制限されるとともに、検出素子上でのスポット径が広がってしまう)。
本発明によれば、照射光を透過する光検出素子を用いることにより、対物レンズ系の光軸上に少なくとも1つの光検出素子を用いることを可能にし、その結果、従来の4分割PD等を用いた検出方法と比して検出のメカニズムを簡易とし且つ高精度な検出を可能としている。
制御部125は、制御回路127及び駆動回路129を備える。制御回路127は光検出素子119,121により検出されるX,Y座標を示す信号を取得する機能と駆動回路129を制御する機能とを有する。駆動回路129は制御回路127の制御に基づいて駆動手段123を駆動させる機能を有する。例えば前述した従来の方法によって、駆動手段123は、ミラー装置102の中心点131を中心にしてミラー装置102を静電駆動させる。また、本発明の実施形態では、走査手段として、ミラー装置102の代わりに、光ファイバを用いることができる。
次に、光走査装置100の制御を説明する。
図2は、光走査装置100の制御フローを示す図である。光学系では、まず初めに照射光111を光源から走査手段(ミラー装置102)へ出射する(STEP1)。一方、制御系では、制御部125は、走査しようとする光スポット117の座標(ターゲット座標(X1,Y1))を示す信号(駆動信号)を制御回路127へ送信する(STEP2)。制御回路127は、駆動信号により得られるターゲット座標ごとに走査手段の傾斜角を決定し、相当する制御信号を駆動回路129へ送信する(STEP3)。駆動回路129は、その制御信号に基づいて走査手段を傾斜させる(STEP4)。傾斜した走査手段は、所定の出射角を有する照射光111を対物レンズ系105へ向けて出射する(STEP5)。そして対物レンズ系105を経た照射光111が、光検出素子119を透過することにより、光検出素子119における照射光111のX座標が検出され(STEP6)、同様に光検出素子121における照射光111のY座標が検出される(STEP7)。検出されたX座標、Y座標は、制御回路127において観察対象物115における光スポット117の位置の座標(X2、Y2)とみなされる。そしてターゲット座標(X1、Y1)と検出された座標(X2、Y2)の差分を補正した補正制御信号が駆動回路129に送信される(STEP8)。そして駆動回路129は、その補正制御信号に基づいて走査手段を傾斜させる(STEP9)。
STEP5からSTEP9までの処理は、ターゲット座標(X1、Y1)と検出された座標(X2、Y2)が一致するまで繰り返される。以上のように、光走査装置100の制御部125は、光検出素子119及び光検出素子121の検出結果に基づいて、走査手段をフィードバック制御することにより、観察対象物115における照射光111の位置をターゲット座標に精度良く一致させることができる。
ここまで、スポット位置をX軸方向及びY軸方向の直交座標系で取得する光走査装置100について説明した。次に、本発明の他の実施形態であるスポット位置を極座標系(r、θ)で取得する光走査装置200を説明する。
図3は、光走査装置200の原理を説明するための図である。光走査装置200は、光ファイバ201と、光位置検出器210と、制御部225とを有する。光位置検出器210は、対物レンズ系205と、光検出素子219と、光検出素子221とを備える。なお、対物レンズ系205の光軸を光走査装置200の光軸213というものとする。また、光ファイバ201は走査部203を有し、走査部203が走査手段としての機能を有する。
光ファイバ201の走査部203、対物レンズ系205、光検出素子219、光検出素子221は、それぞれ光軸213上に配設されている。光走査装置200では、図示しない光源により供給される照射光211(レーザ光)は、平行光であり、光ファイバ201の走査部203から出射し、その後対物レンズ系205へ入射する。走査部203は、照射光211の出射角度を調整して、照射光211を走査することができ、照射光を走査するという機能においては前述のミラー装置102と同等の機能を有する。対物レンズ系205は、光走査装置100の対物レンズ系105と機能が同等であるためその説明は省略する。
光軸213、XYZ座標系、及びその原点Oは、図1における例と同様に定義される。また極座標(r、θ)として、ターゲット座標(X1,Y1)から光軸213におろした垂線の長さをr、該垂線がXZ平面となす角をθとする。
光検出素子219は、光軸213を中心としたリング状の領域を複数有し、例えばそのリング状の領域は半径方向に等間隔毎に分割されている。また、分割された各リング状の領域には図示しないがそれぞれ電極が接続されている。なお、電極としては、例えば、充分線幅の細いもの、或いはLCDに用いられている透明電極(ITO)等を用いることができる。照射光211が光検出素子219を透過したとき、どの電極に光電流が流れるかを検出することにより光スポット217のr座標を検出することができる。光検出素子221は、光軸213を中心として配列された略扇形状の領域を複数有し、例えばその扇形状の領域はそれぞれの中心角が等角度に分割されている。また、分割された各扇形状の領域には図示しないがそれぞれ電極が接続されている。照射光211が光検出素子221を透過したとき、どの電極に光電流が流れるかを検出することにより光スポット217のθ座標を検出することができる。
制御部225は、制御回路227及び駆動回路229を備える。光ファイバ201の走査部203は、駆動手段223により駆動される。
極座標系(r、θ)の軸方向に沿って分割された光検出素子219及び光検出素子221を用いた光走査装置200では、図2を用いて説明した光走査装置100の制御とほぼ同様の制御が行われる。ただし、STEP6およびSTEP7において検出される座標が曲座標系であるため、STEP8では、その検出された極座標をX,Y座標に変換したものを光スポット217の位置とみなして、その後補正制御信号を駆動回路129へ送信する点のみが異なる。
以上述べたように光軸上に、光を透過する半導体受光素子で形成された光検出素子を配置することにより、光軸上の光を分岐することなく、光スポットの位置を直接検出することができる。よって制御すべき光スポットの位置と、実際の光スポットの位置を精度よく一致させることが可能となる。
次に、光走査装置の光位置検出器の具体的な構成を説明する。図4は、光走査装置の光位置検出器10の斜視図である。図5は、図4の光走査装置10の側面図である。なお、光位置検出器10は、光走査装置100(或いは光走査装置200)の光位置検出器110(或いは光位置検出器210)として用いることができる。
光位置検出器10は、対物レンズ系5a、光検出素子19、ガラス板31、光検出素子21対物レンズ系5bから構成される。対物レンズ系5aは光位置検出器10の入射側に配置され、対物レンズ系5bは光位置検出器10の出射側に配置されている。対物レンズ系5a及び対物レンズ系5bは各々が複数のレンズから構成され(単レンズでもよい)、対物レンズ系5aと対物レンズ系5bとにより、平行光である照射光を観察対象物上に結像させる。より詳細には、例えば、対物レンズ系5aが、走査手段からの照射光を対物レンズ系5a及び対物レンズ系5bの光軸に平行にするような像側テレセントリック系をなし、対物レンズ系5bが平行光である照射光を集光させる系をなす構成となっている。
光検出素子19は、光を透過する半導体受光素子で形成された薄膜部19a、薄膜部19aを分割した各部分に接続された電極19bを有する。光検出素子21も光検出素子19と同様の構造を有する。対物レンズ系5aは光検出素子19に接合され、光検出素子19はガラス板31に接合され、ガラス板31は光検出素子21に接合され、光検出素子21は対物レンズ系5bに接合されている。走査手段から出射された照射光は、対物レンズ系5a、光検出素子19、ガラス板31、光検出素子21、対物レンズ系5bの順に透過する。なお、本発明の実施形態では、光位置検出器10においては、入射する照射光は直径約200μmの平行光であり、観察対象上での照射光のスポット径は約1μmである。また、対物レンズ系のおおよその径は1.0〜1.5mmであり、走査手段による走査範囲は250μmから400μmである。
上述のように、対物レンズ系の光学部品及び光検出素子を互いに接合して一体部品として構成することにより、光位置検出器の小型化が可能となる。また最終的に組み立てられた光走査装置では、各光学部品および検出素子間の光軸合わせの手間が省け、配置及び調整を簡単に行うことができる。また、光検出素子は、照射光のスポット位置を直接的に検出しているため、ミラー装置の静電駆動等による間接的な検出方法よりも高い精度で照射光のスポット位置を検出することができる。なお、図4及び図5に示す光位置検出器では、対物レンズ系5aと5bを用いているが、いずれか一方であってもよい(図1や図3に示す光走査装置にみるように、対物レンズ系が一方であっても、その機能を達成することができる)。
なお本発明における光走査装置は、例えば体腔内の生態組織を観察する、共焦点顕微鏡又は内視鏡に使用される共焦点プローブへの適用が想定される。
したがって、本発明では、走査手段と、対物レンズ系と、光を透過するよう形成された光検出素子とを、光走査装置の光軸上の所定の位置に配設することによって、小型であり、精度の高い光スポットの位置検出が可能な光位置検出器を有する光走査装置を提供することができる。

Claims (21)

  1. 観察対象物に照射する照射光を走査するための走査手段と、
    前記観察対象物上で焦点を結ぶように前記照射光を集光する対物レンズ系と、
    前記対物レンズ系の出射側で且つ前記対物レンズ系の光軸上に配置され、前記照射光を透過させてその透過した位置を検出する光検出素子と、を有することを特徴とする光走査装置。
  2. 前記対物レンズ系が像側テレセントリック光学系をなすことを特徴とする請求項1に記載の光走査装置。
  3. 観察対象物に照射する照射光を走査するための走査手段と、
    前記走査手段からの照射光を受光し、像側テレセントリック光学系を構成する第一の対物レンズ系と、
    前記第一の対物レンズ系から出射した照射光が前記観察対象物上で焦点を結ぶように集光する第二の対物レンズ系と、
    前記第一の対物レンズ系と前記第二の対物レンズ系の間で且つ光軸上に配置され、照射光を透過させてその透過した位置を検出する光検出素子と、
    を有することを特徴とする光走査装置。
  4. 前記光検出素子が、前記光軸と垂直に配置されていることを特徴とする請求項1から3のいずれかに記載の光走査装置。
  5. 前記光検出素子は、第一の方向に垂直に分割された受光領域を有する第一の光検出素子と、第二の方向に垂直に分割された受光領域を有する第二の光検出素子とを少なくとも有することを特徴とする請求項1から4のいずれかに記載の光走査装置。
  6. 前記第一の方向と前記第二の方向が直交することを特徴とする請求項5に記載の光走査装置。
  7. 前記光検出素子は、光軸に垂直で且つ光軸を中心とする同心円の円周により分割された受光領域を有する第一の光検出素子と、前記同心円のうちの最大の直径を有する円と等しい直径を有する円を複数の扇形により形成した場合の該複数の扇形からなる受光領域を有する第二の光検出素子と、を少なくとも有する、
    ことを特徴とする請求項1から4のいずれかに記載の光走査装置。
  8. 前記光走査装置は、前記光検出素子の検出結果に基づいて、前記観察対象物上の照射光の位置をターゲットの位置にするために、フィードバック制御する制御手段を有することを特徴とする請求項1から7のいずれかに記載の光走査装置。
  9. 前記光検出素子は、光を透過する半導体で形成されたフォトダイオードを有することを特徴とする請求項1から8のいずれかに記載の光走査装置。
  10. 対物レンズ系を構成する光学部品と、光検出素子とが互いに接合して一体部品として構成される光位置検出器を備えることを特徴とする請求項1から9のいずれかに記載の光走査装置。
  11. 観察対象物上で焦点を結ぶように照射光を集光する対物レンズ系と、
    前記対物レンズ系の出射側で且つ前記対物レンズ系の光軸上に配置され、前記照射光を透過させてその透過した位置を検出する光検出素子と、を有することを特徴とする光位置検出器。
  12. 前記対物レンズ系が像側テレセントリック光学系をなすことを特徴とする請求項11に記載の光位置検出器。
  13. 像側テレセントリック光学系を構成する第一の対物レンズ系と、
    前記第一の対物レンズ系から出射した前記照射光が観察対象物上で焦点を結ぶように集光する第二の対物レンズ系と、
    前記第一の対物レンズ系と前記第二の対物レンズ系の間で且つ光軸上に配置され、照射光を透過させてその透過した位置を検出する光検出素子と、を有することを特徴とする光位置検出器。
  14. 前記光検出素子が、前記光軸と垂直に配置されていることを特徴とする請求項11から13のいずれかに記載の光位置検出器。
  15. 前記光検出素子は、第一の方向に垂直に分割された受光領域を有する第一の光検出素子と、第二の方向に垂直に分割された受光領域を有する第二の光検出素子とを少なくとも有することを特徴とする請求項11から14のいずれかに記載の光位置検出器。
  16. 前記第一の方向と前記第二の方向が直交することを特徴とする請求項15に記載の光位置検出器。
  17. 前記光検出素子は、光軸に垂直で且つ光軸を中心とする同心円の円周により分割された受光領域を有する第一の光検出素子と、前記同心円のうちの最大の直径を有する円と等しい直径を有する円を複数の扇形により形成した場合の該複数の扇形からなる受光領域を有する第二の光検出素子と、を少なくとも有する、
    ことを特徴とする請求項11から14のいずれかに記載の光位置検出器。
  18. 前記光検出素子は、光を透過する半導体で形成されたフォトダイオードを有する、
    ことを特徴とする請求項11から17のいずれかに記載の光位置検出器。
  19. 対物レンズ系を構成する光学部品と、光検出素子とが互いに接合して一体部品として構成されることを特徴とする請求項11から18のいずれかに記載の光位置検出器。
  20. 請求項1から10のいずれかに記載の光走査装置を備えることを特徴とする共焦点プローブ装置。
  21. 請求項11から19のいずれかに記載の光位置検出器を備えることを特徴とする共焦点プローブ装置。
JP2006543200A 2004-10-29 2005-10-26 小型光走査装置 Expired - Fee Related JP4589931B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004316106 2004-10-29
JP2004316106 2004-10-29
PCT/JP2005/019667 WO2006046592A1 (ja) 2004-10-29 2005-10-26 小型光走査装置

Publications (2)

Publication Number Publication Date
JPWO2006046592A1 true JPWO2006046592A1 (ja) 2008-05-22
JP4589931B2 JP4589931B2 (ja) 2010-12-01

Family

ID=36227833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006543200A Expired - Fee Related JP4589931B2 (ja) 2004-10-29 2005-10-26 小型光走査装置

Country Status (3)

Country Link
US (2) US7479626B2 (ja)
JP (1) JP4589931B2 (ja)
WO (1) WO2006046592A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006046592A1 (ja) * 2004-10-29 2006-05-04 Pentax Corporation 小型光走査装置
US8771085B1 (en) 2010-08-06 2014-07-08 Arthur C. Clyde Modular law enforcement baton
USD726185S1 (en) * 2013-05-23 2015-04-07 Bluebird Inc. Data scan device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782814A (en) * 1980-11-12 1982-05-24 Nec Corp Optical scanner
JPS60189724A (ja) * 1984-03-09 1985-09-27 Hitachi Medical Corp 光走査装置
JPS62184304A (ja) * 1986-02-07 1987-08-12 Komatsu Ltd 2次元半導体光位置検出器
JPH09103893A (ja) * 1995-10-11 1997-04-22 Nec Corp レーザビームスキャナ及びレーザ加工装置
JPH11312821A (ja) * 1998-04-30 1999-11-09 Kazuhiro Hane 透明な半導体受光素子およびその製造方法
JP2000098271A (ja) * 1998-09-18 2000-04-07 Hitachi Constr Mach Co Ltd ガルバノミラー駆動装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63306413A (ja) * 1987-06-09 1988-12-14 Olympus Optical Co Ltd 走査型光学顕微鏡
JP3283400B2 (ja) * 1995-06-20 2002-05-20 株式会社リコー 光走査装置
JP3632886B2 (ja) * 1997-10-22 2005-03-23 日本板硝子株式会社 液晶表示素子
US20020033988A1 (en) 1998-03-19 2002-03-21 Takashi Morita Scanner having a light beam incident position adjusting device
US6091067A (en) * 1998-06-02 2000-07-18 Science Applications International Corporation Scanning device using fiber optic bimorph
JP2001215634A (ja) 2000-02-03 2001-08-10 Asahi Optical Co Ltd フィルムスキャナ
JP2002031770A (ja) 2000-07-19 2002-01-31 Asahi Optical Co Ltd レーザ走査装置の走査同期信号検出回路
US6727934B2 (en) 2001-05-31 2004-04-27 Pentax Corporation Semiconductor laser driving apparatus and laser scanner
JP3722021B2 (ja) 2001-07-18 2005-11-30 株式会社デンソー 光スイッチ
WO2006046592A1 (ja) * 2004-10-29 2006-05-04 Pentax Corporation 小型光走査装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782814A (en) * 1980-11-12 1982-05-24 Nec Corp Optical scanner
JPS60189724A (ja) * 1984-03-09 1985-09-27 Hitachi Medical Corp 光走査装置
JPS62184304A (ja) * 1986-02-07 1987-08-12 Komatsu Ltd 2次元半導体光位置検出器
JPH09103893A (ja) * 1995-10-11 1997-04-22 Nec Corp レーザビームスキャナ及びレーザ加工装置
JPH11312821A (ja) * 1998-04-30 1999-11-09 Kazuhiro Hane 透明な半導体受光素子およびその製造方法
JP2000098271A (ja) * 1998-09-18 2000-04-07 Hitachi Constr Mach Co Ltd ガルバノミラー駆動装置

Also Published As

Publication number Publication date
US20090101801A1 (en) 2009-04-23
JP4589931B2 (ja) 2010-12-01
WO2006046592A1 (ja) 2006-05-04
US7601949B2 (en) 2009-10-13
US7479626B2 (en) 2009-01-20
US20070201121A1 (en) 2007-08-30

Similar Documents

Publication Publication Date Title
KR101845187B1 (ko) 레이저 다이싱 장치 및 다이싱 방법
JP4762593B2 (ja) 外部レーザ導入装置
US7800750B2 (en) Optical trap utilizing a reflecting mirror for alignment
JP2007183264A (ja) スキャナの駆動特性の評価装置及びその評価方法
US20120300197A1 (en) Scanning mirror device
JP2020076718A (ja) 距離測定装置及び移動体
JP4589931B2 (ja) 小型光走査装置
JP7344280B2 (ja) 走査型顕微鏡ユニット
JPH10318718A (ja) 光学式高さ検出装置
JP3349779B2 (ja) スキャナシステム及びこれを用いた走査型顕微鏡
CN116421134A (zh) 一种基于并行共聚焦的角膜检测装置及角膜检测方法
CN113994246B (zh) 用于检验扫描的和反扫描的显微镜组件的共聚焦性的方法和装置
JPH11173821A (ja) 光学式検査装置
JPH06265773A (ja) 顕微鏡自動焦点装置
JP7343376B2 (ja) レーザ加工装置
JP7465376B2 (ja) 固浸レンズユニット、半導体検査装置
JP2003097911A (ja) 変位測定装置およびそれを用いた変位測定方法
JPH11153405A (ja) スキャナーシステムの変位センサー
CN116399223A (zh) 用于晶圆键合对准精度检测的装置及方法
JP2004155140A (ja) 光書き込みプリントヘッドの調整組立て方法及びその調整組立装置
JP2022071666A (ja) 光学装置、計測装置、ロボット、電子機器および造形装置
JP2005107097A (ja) 共焦点型検査装置
JP2003279307A (ja) 表面変位測定器及びその測定器を用いた測定方法
JP2636017B2 (ja) 傾き検出ヘッド
WO2018207356A1 (ja) 光走査装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080502

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees