JPWO2004090954A1 - 保持装置、光学系、露光装置および露光方法 - Google Patents
保持装置、光学系、露光装置および露光方法 Download PDFInfo
- Publication number
- JPWO2004090954A1 JPWO2004090954A1 JP2005505258A JP2005505258A JPWO2004090954A1 JP WO2004090954 A1 JPWO2004090954 A1 JP WO2004090954A1 JP 2005505258 A JP2005505258 A JP 2005505258A JP 2005505258 A JP2005505258 A JP 2005505258A JP WO2004090954 A1 JPWO2004090954 A1 JP WO2004090954A1
- Authority
- JP
- Japan
- Prior art keywords
- crystal orientation
- optical member
- crystal
- optical axis
- holding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/70808—Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
- G03F7/70825—Mounting of individual elements, e.g. mounts, holders or supports
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/023—Mountings, adjusting means, or light-tight connections, for optical elements for lenses permitting adjustment
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/7095—Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
- G03F7/70958—Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Optics & Photonics (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Lenses (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
蛍石のような立方晶系の結晶材料における滑りを考慮して適切な箇所で光学部材を保持することができ、ひいては滑りに起因する光学部材の変形を抑える。立方晶系の結晶材料により形成された透過光学部材の結晶方位<111>と透過光学部材の光軸とをほぼ一致させた状態で透過光学部材を保持する保持装置(IIa,IIb))。結晶方位<110>から実質的に離れた領域において(たとえば結晶方位<211>に対応する領域において)透過光学部材を保持する。あるいは、結晶方位<110>および結晶方位<211>から実質的に離れた領域において(たとえば互いに隣り合う結晶方位<110>と結晶方位<211>とのほぼ中間に対応する領域において)透過光学部材を保持する。
Description
本発明は、保持装置、光学系、露光装置および露光方法に関する。さらに詳細には、本発明は、半導体素子などのマイクロデバイスをフォトリソグラフィ工程で製造する際に使用される露光装置に好適な光学系における蛍石レンズの保持に関するものである。
近年、半導体素子の製造や半導体チップ実装基板の製造では、微細化がますます進んでおり、パターンを焼き付ける露光装置ではより解像力の高い投影光学系が要求されてきている。この高解像の要求を満足するには、露光光を短波長化するとともに、NA(投影光学系の開口数)を大きくしなければならない。しかしながら、露光光の波長が短くなると、光の吸収のため実用に耐える光学材料の種類が限られてくる。
たとえば波長が200nm以下の真空紫外域の光、特にF2レーザー光(波長157nm)を露光光として用いる場合、投影光学系を構成する光透過性光学材料としては、フッ化カルシウム(蛍石:CaF2)やフッ化バリウム(BaF2)等のフッ化物結晶を多用せざるを得ない。実際には、露光光としてF2レーザー光を用いる露光装置では、基本的に蛍石だけで投影光学系を形成する設計が想定されている。蛍石は、立方晶系(等軸晶系)に属する結晶材料であり、結晶学的には等方的で、複屈折が実質的にないと思われていた。
しかしながら、最近、このように波長の短い紫外線に対しては、蛍石においても、固有複屈折が存在することが報告されている。具体的には、蛍石の固有複屈折は、結晶方位<111>および結晶方位<100>ではほぼ零であるが、その他の結晶方位では実質的に零でない値を有する。
特に、結晶方位[110],[−1−10],[−110],[1−10],[101],[−10−1],[−101],[10−1],[011],[0−1−1],[01−1],[0−11]の12方向では、波長157nmの光に対して最大で11.2nm/cm、波長193nmの光に対して最大で3.4nm/cmの複屈折の値を有する。電子デバイスの製造に用いられる投影光学系のような超高精度の光学系においては、レンズ材料の複屈折に伴って生じる収差は致命的であり、固有複屈折の影響を実質的に回避したレンズ構成およびレンズ設計の採用が不可欠である。
そこで、一対の蛍石レンズの光軸と結晶方位<111>とを一致させ、且つ光軸を中心として一対の蛍石レンズを約60度だけ相対的に回転させることにより複屈折の影響を低減する手法が提案されている。また、一対の蛍石レンズの光軸と結晶方位<100>とを一致させ、且つ光軸を中心として一対の蛍石レンズを約45度だけ相対的に回転させることにより複屈折の影響を低減する手法も提案されている。しかしながら、従来技術では、蛍石における滑りを考慮して適切な箇所で光学部材を保持するという考慮が特になされていなかった。
本発明は、前述の課題に鑑みてなされたものであり、蛍石のような立方晶系の結晶材料における滑りを考慮して適切な箇所で光学部材を保持することができ、ひいては滑りに起因する光学部材の変形を抑えることのできる保持装置を提供することを目的とする。
また、本発明では、蛍石のような立方晶系の結晶材料における滑りに起因する光学部材の変形を抑えることのできる保持装置を用いて、複屈折の影響を実質的に受けることなく、滑りに起因する光学部材の変形を抑えて、良好な光学性能を確保することのできる光学系を提供することを目的とする。
さらに、本発明では、複屈折の影響を実質的に受けることなく、滑りに起因する光学部材の変形を抑えて、良好な光学性能を有する光学系を用いて、高解像で高精度な投影露光を行うことのできる露光装置および露光方法を提供することを目的とする。
たとえば波長が200nm以下の真空紫外域の光、特にF2レーザー光(波長157nm)を露光光として用いる場合、投影光学系を構成する光透過性光学材料としては、フッ化カルシウム(蛍石:CaF2)やフッ化バリウム(BaF2)等のフッ化物結晶を多用せざるを得ない。実際には、露光光としてF2レーザー光を用いる露光装置では、基本的に蛍石だけで投影光学系を形成する設計が想定されている。蛍石は、立方晶系(等軸晶系)に属する結晶材料であり、結晶学的には等方的で、複屈折が実質的にないと思われていた。
しかしながら、最近、このように波長の短い紫外線に対しては、蛍石においても、固有複屈折が存在することが報告されている。具体的には、蛍石の固有複屈折は、結晶方位<111>および結晶方位<100>ではほぼ零であるが、その他の結晶方位では実質的に零でない値を有する。
特に、結晶方位[110],[−1−10],[−110],[1−10],[101],[−10−1],[−101],[10−1],[011],[0−1−1],[01−1],[0−11]の12方向では、波長157nmの光に対して最大で11.2nm/cm、波長193nmの光に対して最大で3.4nm/cmの複屈折の値を有する。電子デバイスの製造に用いられる投影光学系のような超高精度の光学系においては、レンズ材料の複屈折に伴って生じる収差は致命的であり、固有複屈折の影響を実質的に回避したレンズ構成およびレンズ設計の採用が不可欠である。
そこで、一対の蛍石レンズの光軸と結晶方位<111>とを一致させ、且つ光軸を中心として一対の蛍石レンズを約60度だけ相対的に回転させることにより複屈折の影響を低減する手法が提案されている。また、一対の蛍石レンズの光軸と結晶方位<100>とを一致させ、且つ光軸を中心として一対の蛍石レンズを約45度だけ相対的に回転させることにより複屈折の影響を低減する手法も提案されている。しかしながら、従来技術では、蛍石における滑りを考慮して適切な箇所で光学部材を保持するという考慮が特になされていなかった。
本発明は、前述の課題に鑑みてなされたものであり、蛍石のような立方晶系の結晶材料における滑りを考慮して適切な箇所で光学部材を保持することができ、ひいては滑りに起因する光学部材の変形を抑えることのできる保持装置を提供することを目的とする。
また、本発明では、蛍石のような立方晶系の結晶材料における滑りに起因する光学部材の変形を抑えることのできる保持装置を用いて、複屈折の影響を実質的に受けることなく、滑りに起因する光学部材の変形を抑えて、良好な光学性能を確保することのできる光学系を提供することを目的とする。
さらに、本発明では、複屈折の影響を実質的に受けることなく、滑りに起因する光学部材の変形を抑えて、良好な光学性能を有する光学系を用いて、高解像で高精度な投影露光を行うことのできる露光装置および露光方法を提供することを目的とする。
前記課題を解決するために、本発明の第1形態では、立方晶系の結晶材料により形成された透過光学部材の結晶方位<111>と前記透過光学部材の光軸とをほぼ一致させた状態で前記透過光学部材を保持する保持装置において、
前記透過光学部材の光軸とほぼ一致させた前記結晶方位<111>方向にほぼ垂直な面内における結晶方位<110>から実質的に離れた領域において前記透過光学部材を保持することを特徴とする保持装置を提供する。この場合、前記透過光学部材の光軸とほぼ一致させた前記結晶方位<111>方向にほぼ垂直な面内における結晶方位<211>に対応する領域において前記透過光学部材を保持することが好ましい。
本発明の第2形態では、立方晶系の結晶材料により形成された透過光学部材の結晶方位<111>と前記透過光学部材の光軸とをほぼ一致させた状態で前記透過光学部材を保持する保持装置において、
前記透過光学部材の光軸とほぼ一致させた前記結晶方位<111>方向にほぼ垂直な面内における結晶方位<110>および結晶方位<211>から実質的に離れた領域において前記透過光学部材を保持することを特徴とする保持装置を提供する。この場合、互いに隣り合う結晶方位<110>と結晶方位<211>とのほぼ中間に対応する領域において前記透過光学部材を保持することが好ましい。
本発明の第3形態では、立方晶系の結晶材料により形成された透過光学部材の結晶方位<100>と前記透過光学部材の光軸とをほぼ一致させた状態で前記透過光学部材を保持する保持装置において、
前記透過光学部材の光軸とほぼ一致させた前記結晶方位<100>方向にほぼ垂直な面内における結晶方位<100>から実質的に離れた領域において前記透過光学部材を保持することを特徴とする保持装置を提供する。この場合、前記透過光学部材の光軸とほぼ一致させた前記結晶方位<100>方向にほぼ垂直な面内における結晶方位<110>に対応する領域において前記透過光学部材を保持することが好ましい。
本発明の第4形態では、立方晶系の結晶材料により形成された透過光学部材の結晶方位<100>と前記透過光学部材の光軸とをほぼ一致させた状態で前記透過光学部材を保持する保持装置において、
前記透過光学部材の光軸とほぼ一致させた前記結晶方位<100>方向にほぼ垂直な面内における結晶方位<100>および結晶方位<110>から実質的に離れた領域において前記透過光学部材を保持することを特徴とする保持装置を提供する。この場合、互いに隣り合う結晶方位<100>と結晶方位<110>とのほぼ中間に対応する領域において前記透過光学部材を保持することが好ましい。
本発明の第5形態では、第1形態〜第4形態の保持装置により保持された前記透過光学部材を備えていることを特徴とする光学系を提供する。
本発明の第6形態では、マスクを照明するための第5形態の光学系を備え、前記マスクのパターンを感光性基板上に露光することを特徴とする露光装置を提供する。
本発明の第7形態では、第5形態の光学系を備え、該光学系を介してマスクのパターンを感光性基板上に投影露光することを特徴とする露光装置を提供する。
本発明の第8形態では、第5形態の光学系を介してマスクを照明し、前記マスクに形成されたパターンを感光性基板上に露光することを特徴とする露光方法を提供する。
本発明の第9形態では、マスクに形成されたパターンを、第5形態の光学系を介して、感光性基板上に投影露光することを特徴とする露光方法を提供する。
前記透過光学部材の光軸とほぼ一致させた前記結晶方位<111>方向にほぼ垂直な面内における結晶方位<110>から実質的に離れた領域において前記透過光学部材を保持することを特徴とする保持装置を提供する。この場合、前記透過光学部材の光軸とほぼ一致させた前記結晶方位<111>方向にほぼ垂直な面内における結晶方位<211>に対応する領域において前記透過光学部材を保持することが好ましい。
本発明の第2形態では、立方晶系の結晶材料により形成された透過光学部材の結晶方位<111>と前記透過光学部材の光軸とをほぼ一致させた状態で前記透過光学部材を保持する保持装置において、
前記透過光学部材の光軸とほぼ一致させた前記結晶方位<111>方向にほぼ垂直な面内における結晶方位<110>および結晶方位<211>から実質的に離れた領域において前記透過光学部材を保持することを特徴とする保持装置を提供する。この場合、互いに隣り合う結晶方位<110>と結晶方位<211>とのほぼ中間に対応する領域において前記透過光学部材を保持することが好ましい。
本発明の第3形態では、立方晶系の結晶材料により形成された透過光学部材の結晶方位<100>と前記透過光学部材の光軸とをほぼ一致させた状態で前記透過光学部材を保持する保持装置において、
前記透過光学部材の光軸とほぼ一致させた前記結晶方位<100>方向にほぼ垂直な面内における結晶方位<100>から実質的に離れた領域において前記透過光学部材を保持することを特徴とする保持装置を提供する。この場合、前記透過光学部材の光軸とほぼ一致させた前記結晶方位<100>方向にほぼ垂直な面内における結晶方位<110>に対応する領域において前記透過光学部材を保持することが好ましい。
本発明の第4形態では、立方晶系の結晶材料により形成された透過光学部材の結晶方位<100>と前記透過光学部材の光軸とをほぼ一致させた状態で前記透過光学部材を保持する保持装置において、
前記透過光学部材の光軸とほぼ一致させた前記結晶方位<100>方向にほぼ垂直な面内における結晶方位<100>および結晶方位<110>から実質的に離れた領域において前記透過光学部材を保持することを特徴とする保持装置を提供する。この場合、互いに隣り合う結晶方位<100>と結晶方位<110>とのほぼ中間に対応する領域において前記透過光学部材を保持することが好ましい。
本発明の第5形態では、第1形態〜第4形態の保持装置により保持された前記透過光学部材を備えていることを特徴とする光学系を提供する。
本発明の第6形態では、マスクを照明するための第5形態の光学系を備え、前記マスクのパターンを感光性基板上に露光することを特徴とする露光装置を提供する。
本発明の第7形態では、第5形態の光学系を備え、該光学系を介してマスクのパターンを感光性基板上に投影露光することを特徴とする露光装置を提供する。
本発明の第8形態では、第5形態の光学系を介してマスクを照明し、前記マスクに形成されたパターンを感光性基板上に露光することを特徴とする露光方法を提供する。
本発明の第9形態では、マスクに形成されたパターンを、第5形態の光学系を介して、感光性基板上に投影露光することを特徴とする露光方法を提供する。
第1図は、本発明の実施形態にかかる露光装置の構成を概略的に示す図である。
第2図は、蛍石の結晶方位について説明する図である。
第3A図は、蛍石レンズの光軸と結晶方位<111>とを一致させた状態を示す図であって、光軸と直交する面に対して垂直な垂直結晶面{110}を示している。
第3B図は、蛍石レンズの光軸と結晶方位<111>とを一致させた状態を示す図であって、光軸と直交する面に対して傾斜した斜め結晶面{100}、{111}および{110}を示している。
第4A図は、蛍石レンズの光軸と結晶方位[100]とを一致させた状態を示す図であって、光軸と直交する面に対して垂直な垂直結晶面{100}および{110}を示している。
第4B図は、蛍石レンズの光軸と結晶方位[100]とを一致させた状態を示す図であって、光軸と直交する面に対して傾斜した斜め結晶面{111}および{110}を示している。
第5図は、本実施形態の保持部における蛍石レンズの保持形態を模式的に示す図である。
第6図は、マイクロデバイスとしての半導体デバイスを得る際の手法のフローチャートである。
第7図は、マイクロデバイスとしての液晶表示素子を得る際の手法のフローチャートである。
第2図は、蛍石の結晶方位について説明する図である。
第3A図は、蛍石レンズの光軸と結晶方位<111>とを一致させた状態を示す図であって、光軸と直交する面に対して垂直な垂直結晶面{110}を示している。
第3B図は、蛍石レンズの光軸と結晶方位<111>とを一致させた状態を示す図であって、光軸と直交する面に対して傾斜した斜め結晶面{100}、{111}および{110}を示している。
第4A図は、蛍石レンズの光軸と結晶方位[100]とを一致させた状態を示す図であって、光軸と直交する面に対して垂直な垂直結晶面{100}および{110}を示している。
第4B図は、蛍石レンズの光軸と結晶方位[100]とを一致させた状態を示す図であって、光軸と直交する面に対して傾斜した斜め結晶面{111}および{110}を示している。
第5図は、本実施形態の保持部における蛍石レンズの保持形態を模式的に示す図である。
第6図は、マイクロデバイスとしての半導体デバイスを得る際の手法のフローチャートである。
第7図は、マイクロデバイスとしての液晶表示素子を得る際の手法のフローチャートである。
本発明の実施形態を、添付図面に基づいて説明する。
第1図は、本発明の実施形態にかかる露光装置の構成を概略的に示す図である。なお、第1図において、投影光学系PLの光軸AXに平行にZ軸を、光軸AXに垂直な面内において第1図の紙面に平行にY軸を、第1図の紙面に垂直にX軸をそれぞれ設定している。本実施形態にかかる露光装置は、紫外領域の照明光を供給するための光源LSとして、たとえばArFエキシマレーザー光源(発振波長193nm)またはF2レーザー光源(発振波長157nm)を備えている。
光源LSから射出された光は、照明光学系ILを介して、所定のパターンが形成されたレチクル(マスク)Rを重畳的に照明する。なお、光源LSと照明光学系ILとの間の光路はケーシング(不図示)で密封されており、光源LSから照明光学系IL中の最もレチクル側の光学部材までの空間は、露光光の吸収率が低い気体であるヘリウムガスや窒素などの不活性ガスで置換されているか、あるいはほぼ真空状態に保持されている。
レチクルRは、レチクルホルダRHを介して、レチクルステージRS上においてXY平面に平行に保持されている。レチクルRには転写すべきパターンが形成されており、パターン領域全体のうちX方向に沿って長辺を有し且つY方向に沿って短辺を有する矩形状(スリット状)のパターン領域が照明される。レチクルステージRSは、図示を省略した駆動系の作用により、レチクル面(すなわちXY平面)に沿って二次元的に移動可能であり、その位置座標はレチクル移動鏡RMを用いた干渉計RIFによって計測され且つ位置制御されるように構成されている。
レチクルRに形成されたパターンからの光は、投影光学系PLを介して、感光性基板であるウェハW上にレチクルパターン像を形成する。投影光学系PLは、蛍石で形成された一対のレンズ、すなわち蛍石レンズLaおよびLbを含む多数のレンズを備えている。蛍石レンズLaおよびLbは、保持部(保持装置)HaおよびHbによりそれぞれ保持されている。ウェハWは、ウェハテーブル(ウェハホルダ)WTを介して、ウェハステージWS上においてXY平面に平行に保持されている。そして、レチクルR上での矩形状の照明領域に光学的に対応するように、ウェハW上ではX方向に沿って長辺を有し且つY方向に沿って短辺を有する矩形状の露光領域にパターン像が形成される。
ウェハステージWSは、図示を省略した駆動系の作用によりウェハ面(すなわちXY平面)に沿って二次元的に移動可能であり、その位置座標はウェハ移動鏡WMを用いた干渉計WIFによって計測され且つ位置制御されるように構成されている。また、投影光学系PLを構成する光学部材のうち最もレチクル側に配置された光学部材と最もウェハ側に配置された光学部材との間で投影光学系PLの内部が気密状態を保つように構成され、投影光学系PLの内部の気体はヘリウムガスや窒素などの不活性ガスで置換されているか、あるいはほぼ真空状態に保持されている。
さらに、照明光学系ILと投影光学系PLとの間の狭い光路には、レチクルRおよびレチクルステージRSなどが配置されているが、レチクルRおよびレチクルステージRSなどを密封包囲するケーシング(不図示)の内部に窒素やヘリウムガスなどの不活性ガスが充填されているか、あるいはほぼ真空状態に保持されている。また、投影光学系PLとウェハWとの間の狭い光路には、ウェハWおよびウェハステージWSなどが配置されているが、ウェハWおよびウェハステージWSなどを密封包囲するケーシング(不図示)の内部に窒素やヘリウムガスなどの不活性ガスが充填されているか、あるいはほぼ真空状態に保持されている。このように、光源LSからウェハWまでの光路の全体に亘って、露光光がほとんど吸収されることのない雰囲気が形成されている。
上述したように、照明光学系ILによって規定されるレチクルR上の照明領域およびウェハW上の露光領域(すなわち実効露光領域)は、Y方向に沿って短辺を有する矩形状である。したがって、駆動系および干渉計(RIF、WIF)などを用いてレチクルRおよびウェハWの位置制御を行いながら、矩形状の露光領域および照明領域の短辺方向すなわちY方向に沿ってレチクルステージRSとウェハステージWSとを、ひいてはレチクルRとウェハWとを同期的に移動(走査)させることにより、ウェハW上には露光領域の長辺に等しい幅を有し且つウェハWの走査量(移動量)に応じた長さを有する領域に対してレチクルパターンが走査露光される。
第2図は、蛍石の結晶方位について説明する図である。第2図を参照すると、蛍石の結晶方位は、立方晶系の結晶軸a1a2a3に基づいて規定される。すなわち、結晶軸+a1に沿って結晶方位[100]が、結晶軸+a2に沿って結晶方位[010]が、結晶軸+a3に沿って結晶方位[001]がそれぞれ規定される。また、a1a3平面において結晶方位[100]および結晶方位[001]と45度をなす方向に結晶方位[101]が、a1a2平面において結晶方位[100]および結晶方位[010]と45度をなす方向に結晶方位[110]が、a2a3平面において結晶方位[010]および結晶方位[001]と45度をなす方向に結晶方位[011]がそれぞれ規定される。さらに、結晶軸+a1、結晶軸+a2および結晶軸+a3に対して等しい鋭角をなす方向に結晶方位[111]が規定される。
第2図では、結晶軸+a1、結晶軸+a2および結晶軸+a3で規定される空間における結晶方位のみを図示しているが、他の空間においても同様に結晶方位が規定される。蛍石では、第2図中実線で示す結晶方位[111]、およびこれと結晶学的に等価な不図示の結晶方位[−1−1−1],[−111],[1−1−1][1−11],[−11−1],[11−1],[−1−11]では、複屈折がほぼ零(最小)である。同様に、第2図中実線で示す結晶方位[100],[010],[001]およびこれと結晶学的に等価な不図示の結晶方位[−100],[0−10],[00−1]においても、複屈折がほぼ零(最小)である。一方、第2図中破線で示す結晶方位[110],[101],[011],およびこれと結晶学的に等価な不図示の結晶方位[−1−10],[−10−1],[0−1−1],[−110],[1−10],[−101],[10−1],[01−1],[0−11]方向では、複屈折が最大である。
なお、本願明細書中において、「ある結晶方位と結晶学的に等価な結晶方位」とは、ある結晶方位に対して、当該結晶方位の指数の順序を入れ替えた結晶方位と、さらにそれらの各指数の少なくとも一部についての符号を反転した結晶方位であり、例えばある結晶方位が[uvw]である場合は、[uwv]、[vuw]、[vwu]、[wuv]、[wvu]、[−uvw]、[−uwv]、[−vuw]、[−vwu]、[−wuv]、[−wvu]、[u−vw]、[u−wv]、[v−uw]、[v−wu]、[w−uv]、[w−vu]、[uv−w]、[uw−v]、[vu−w]、[vw−u]、[wu−v]、[wv−u]、[−u−vw]、[−u−wv]、[−uv−w]、[−uw−v]、[−v−uw][−v−wu]、[−vu−w][−vw−u]、[−w−uv]、[−w−vu]、[−wu−v]、[−wv−u]、[u−v−w]、[u−w−v]、[v−u−w]、[v−w−u]、[w−u−v]、[w−v−u]、[−u−v−w]、[−u−w−v]、[−v−u−w]、[−v−w−u]、[−w−u−v]、[−w−v−u]が結晶学的に等価な結晶方位である。本願明細書では、結晶方位[uvw]およびこれと結晶学的に等価な結晶方位を結晶方位<uvw>と表記している。また、結晶方位[uvw]およびこれと結晶学的に等価な結晶方位と直交する面を結晶面{uvw}と表記している。
一般に、蛍石のような結晶構造の結晶材料では、結晶方位<100>と直交する結晶面{100}に沿って最も滑りが発生し易い。また、高温時(例えば200°C程度以上)には、結晶方位<111>と直交する結晶面{111}に沿って滑りが発生し易い。さらに、高温時(例えば200°C程度以上)には、結晶方位<110>と直交する結晶面{110}に沿って滑りが発生し易い。ただし、結晶面{110}の方が結晶面{111}よりも滑りが発生しにくい。
次に、複屈折の影響を受けにくいレンズ構成を実現する手法について簡単に説明する。第1手法では、一対の蛍石レンズ(一般には蛍石で形成された透過光学部材)の光軸と結晶方位<111>とを一致させ、且つ光軸を中心として一対の蛍石レンズを約60度だけ相対的に回転させる。ここで、一方の蛍石レンズと他方の蛍石レンズとを光軸を中心として約60度だけ相対的に回転させるとは、一方の蛍石レンズおよび他方の蛍石レンズにおける光軸とは異なる方向に向けられる所定の結晶方位(たとえば結晶方位[−111]、[11−1]、または[1−11])同士の光軸を中心とした相対的な角度が約60度であることを意味する。
具体的には、たとえば一方の蛍石レンズにおける結晶方位[−111]と、他方の蛍石レンズにおける結晶方位[−111]との光軸を中心とした相対的な角度が約60度であることを意味する。そして、光軸を中心として約60度だけ相対的に回転させるということは、光軸を中心として約60度+(n×120度)だけ相対的に回転させること、すなわち60度、180度、または300度・・・だけ相対的に回転させることと同じ意味である(ここで、nは整数である)。
第2手法では、一対の蛍石レンズの光軸と結晶方位<100>とを一致させ、且つ光軸を中心として一対の蛍石レンズを約45度だけ相対的に回転させる。ここで、一方の蛍石レンズと他方の蛍石レンズとを光軸を中心として約45度だけ相対的に回転させるとは、一方の蛍石レンズおよび他方の蛍石レンズにおける光軸とは異なる方向に向けられる所定の結晶方位(たとえば結晶方位[010],[001],[011]または[01−1])同士の光軸を中心とした相対的な角度が約45度であることを意味する。
具体的には、たとえば一方の蛍石レンズにおける結晶方位[010]と、他方の蛍石レンズにおける結晶方位[010]との光軸を中心とした相対的な角度が約45度であることを意味する。そして、光軸を中心として約45度だけ相対的に回転させるということは、光軸を中心として約45度+(n×90度)だけ相対的に回転させること、すなわち45度、135度、225度、または315度・・・だけ相対的に回転させることと同じ意味である(ここで、nは整数である)。
そこで、本実施形態では、複屈折の影響を受けにくくするために、一対の蛍石レンズLaおよびLbの光軸と結晶方位<111>とを一致させ、且つ光軸を中心として一対の蛍石レンズLaとLbとを約60度だけ相対的に回転させている。あるいは、複屈折の影響を受けにくくするために、一対の蛍石レンズLaおよびLbの光軸と結晶方位<100>とを一致させ、且つ光軸を中心として一対の蛍石レンズLaとLbとを約45度だけ相対的に回転させている。
第3A図は、蛍石レンズの光軸と結晶方位<111>とを一致させた状態を示す図であって、光軸と直交する面(蛍石レンズの光軸と一致させた結晶方位<111>方向に垂直な面)に対して垂直な垂直結晶面{110}を示している。第3B図は、蛍石レンズの光軸と結晶方位<111>とを一致させた状態を示す図であって、光軸と直交する面(蛍石レンズの光軸と一致させた結晶方位<111>方向に垂直な面)に対して傾斜した斜め結晶面{100}、{111}および{110}を示している。なお、第3B図では、蛍石レンズの光軸Oと直交する面に対して傾斜した斜め結晶面として、3種類の結晶面{100}と3種類の結晶面{111}と3種類の結晶面{110}とが存在する。第3A図および第3B図を参照すると、蛍石レンズの光軸Oと結晶方位<111>とを一致させた状態において、光軸Oを中心とした蛍石レンズの円筒外周面10は光軸Oを中心とした円として表わされている。この場合、第3A図に示すように、光軸Oと直交する面(第3A図および第3B図の紙面に平行な面)に対して垂直な垂直結晶面として、3種類の結晶面{110}が存在する。ここで、光軸Oと直交する面と垂直結晶面{110}との交差線を表わす線11a〜11cは、垂直結晶面{110}の絶対的な位置を示すものではなく、線11a〜11cに平行な任意の線に沿って垂直結晶面{110}が無限に存在することになる。
一方、第3B図に示すように、光軸Oと直交する面と斜め結晶面{100}との交差線、光軸Oと直交する面と斜め結晶面{111}との交差線、および光軸Oと直交する面と斜め結晶面{110}との交差線は互いに一致する。これらの交差線を表わす線12a〜12cは、斜め結晶面{100}、斜め結晶面{111}および斜め結晶面{110}の絶対的な位置を示すものではなく、線12a〜12cに平行な任意の線に沿って斜め結晶面{100}、斜め結晶面{111}および斜め結晶面{110}が無限に存在することになる。
上述したように、蛍石では、結晶面{100}に沿って最も滑りが発生し易く、高温時には結晶面{111}および結晶面{110}に沿って滑りが発生し易い。したがって、第3B図を参照すると、斜め結晶面{100}と円筒外周面10とが光軸Oと直交する面においてほぼ90度で交わる(厳密には結晶面{100}を表わす直線と円筒外周面10を表わす円との交点において円の接線と当該直線とがほぼ90度で交わる)6つの特定領域(小円で示す)13において蛍石レンズを紙面と直交する方向で保持すると、最も滑りが発生し易いことになる。また、斜め結晶面{111}と円筒外周面10とが光軸Oと直交する面においてほぼ90度で交わる6つの特定領域(小円で示す)14において蛍石レンズを紙面と直交する方向で保持すると、高温時に滑りが発生し易いことになる。
さらに、斜め結晶面{110}と円筒外周面10とが光軸Oと直交する面においてほぼ90度で交わる6つの特定領域(小円で示す)15において蛍石レンズを紙面と直交する方向で保持すると、高温時に滑りが発生し易いことになる。なお、6つの特定領域13と6つの特定領域14と6つの特定領域15とは一致する。一方、第3A図を参照すると、垂直結晶面{110}と円筒外周面10とが光軸Oと直交する面においてほぼ90度で交わる6つの特定領域(小円で示す)16において蛍石レンズを紙面と直交する方向で保持すると、高温時に滑りが発生し易いことになる。
そこで、本実施形態の保持部(Ha,Hb)では、蛍石レンズ(La,Lb)の光軸Oと結晶方位<111>とを一致させる場合、互いに隣り合う第1特定領域(13,14,15)と第2特定領域(16)との外周方向に沿ったほぼ中間領域(小円で示す)17(第3B図を参照)において蛍石レンズ(La,Lb)を紙面と直交する方向で保持している。ただし、前述したように、第3A図においては、線11a〜11cに平行な線に沿って垂直面{110}が無限に存在し、第3B図においては、線12a〜12cに平行な任意の線に沿って斜め結晶面{100}、斜め結晶面{111}及び斜め結晶面{110}が無限に存在するのであるから、蛍石レンズ(La,Lb)を紙面と直交する方向で保持する場合には、各線11a〜11cに平行な同一直線上にある2つの中間領域や、各線12a〜12cに平行な同一直線上にある2つの中間領域17で保持すると滑りが発生する可能性がある。そこで、各線11a〜11cに平行な同一直線上にない中間領域、及び各線12a〜12cに平行な同一直線上にない中間領域17において蛍石レンズ(La,Lb)を紙面と直交する方向で保持すればよい。例えば、複数の中間領域のうち、約120°間隔にある中間領域17で、蛍石レンズを保持することが好ましい。ここで、第1特定領域(13,14,15)は結晶方位<110>に対応する領域であり、第2特定領域(16)は結晶方位<211>に対応する領域である。したがって、中間領域17は、結晶方位<110>と結晶方位<211>とのほぼ中間に対応する領域である。
あるいは、本実施形態の保持部(Ha,Hb)では、蛍石レンズ(La,Lb)の光軸Oと結晶方位<111>とを一致させる場合において高温時における滑りの発生を考慮する必要のない場合、滑りが発生しにくくなるように、互いに隣り合う2つの第1特定領域(13,14,15)の外周方向に沿ったほぼ中間領域(小円で示す)18(第3B図を参照)において蛍石レンズ(La,Lb)を紙面と直交する方向で保持している。なお、第3A図と第3B図とを比較するとわかるように、中間領域18は第2特定領域(16)と一致し、結晶方位<211>に対応する領域である。
第4A図は、蛍石レンズの光軸と結晶方位[100]とを一致させた状態を示す図であって、光軸と直交する面(蛍石レンズの光軸と一致させた結晶方位<100>方向に垂直な面)に対して垂直な垂直結晶面{100}および{110}を示している。第4B図は、蛍石レンズの光軸と結晶方位[100]とを一致させた状態を示す図であって、光軸と直交する面(蛍石レンズの光軸と一致させた結晶方位<100>方向に垂直な面)に対して傾斜した斜め結晶面{111}および{110}を示している。なお、第4B図では、蛍石レンズの光軸Oと直交する面に対して傾斜した斜め結晶面として、4種類の結晶面{111}と4種類の結晶面{110}とが存在する。第4A図および第4B図を参照すると、蛍石レンズの光軸Oと結晶方位<100>とを一致させた状態において、光軸Oを中心とした蛍石レンズの円筒外周面20は光軸Oを中心とした円として表わされている。この場合、第4A図に示すように、光軸Oと直交する面(第4A図および第4B図の紙面に平行な面)に対して垂直な垂直結晶面として、2種類の結晶面{100}と2種類の{110}とが存在する。
ここで、光軸Oと直交する面と垂直結晶面{100}との交差線を表わす線21aおよび21bは、垂直結晶面{100}の絶対的な位置を示すものではなく、線21aおよび21bに平行な任意の線に沿って垂直結晶面{100}が無限に存在することになる。また、光軸Oと直交する面と垂直結晶面{110}との交差線を表わす線22aおよび22bは、垂直結晶面{110}の絶対的な位置を示すものではなく、線22aおよび22bに平行な任意の線に沿って垂直結晶面{110}が無限に存在することになる。
一方、第4B図に示すように、光軸Oと直交する面と斜め結晶面{111}との交差線を表わす線23aおよび23bは、斜め結晶面{111}の絶対的な位置を示すものではなく、線23aおよび23bに平行な任意の線に沿って斜め結晶面{111}が無限に存在することになる。また、光軸Oと直交する面と斜め結晶面{110}との交差線を表わす線24aおよび24bは、斜め結晶面{110}の絶対的な位置を示すものではなく、線24aおよび24bに平行な任意の線に沿って斜め結晶面{110}が無限に存在することになる。
上述したように、蛍石では、結晶面{100}に沿って最も滑りが発生し易く、高温時には結晶面{111}および結晶面{110}に沿って滑りが発生し易い。したがって、第4A図を参照すると、垂直結晶面{100}と円筒外周面20とが光軸Oと直交する面においてほぼ90度で交わる4つの領域(小円で示す)25において蛍石レンズを紙面と直交する方向で保持すると、最も滑りが発生し易いことになる。また、垂直結晶面{110}と円筒外周面20とが光軸Oと直交する面においてほぼ90度で交わる4つの領域(小円で示す)26において蛍石レンズを紙面と直交する方向で保持すると、高温時に滑りが発生し易いことになる。
一方、第4B図を参照すると、斜め結晶面{111}と円筒外周面20とが光軸Oと直交する面においてほぼ90度で交わる4つの領域(小円で示す)27において蛍石レンズを紙面と直交する方向で保持すると、高温時に滑りが発生し易いことになる。また、斜め結晶面{110}と円筒外周面20とが光軸Oと直交する面においてほぼ90度で交わる4つの領域(小円で示す)28において蛍石レンズを紙面と直交する方向で保持すると、高温時に滑りが発生し易いことになる。なお、4つの領域25と4つの領域28とは一致し、4つの領域26と4つの領域27とは一致する。
そこで、本実施形態の保持部(Ha,Hb)では、蛍石レンズ(La,Lb)の光軸Oと結晶方位<100>とを一致させる場合、滑りが発生しにくくなるように、互いに隣り合う第1特定領域(25,28)と第2特定領域(26,27)との外周方向に沿ったほぼ中間領域(小円で示す)29(第4B図を参照)において蛍石レンズ(La,Lb)を紙面と直交する方向で保持している。ただし、前述したように、第4A図においては、線21aおよび21bに平行な任意の線に沿って垂直結晶面{100}が無限に存在し、また、線22aおよび22bに平行な任意の線に沿って垂直結晶面{110}が無限に存在する。第4B図においては、線23aおよび23bに平行な任意の線に沿って斜め結晶面{111}が無限に存在し、線24aおよび24bに平行な任意の線に沿って斜め結晶面{110}が無限に存在する。したがって、蛍石レンズ(La,Lb)を紙面と直交する方向で保持する場合には、各線21a、21b、22a、22b、23a、23b、24a、24bに平行な同一直線上にある2つの中間領域29で保持すると滑りが発生する可能性がある。そこで、各線に平行な同一線上にない中間領域29において蛍石レンズ(La,Lb)を紙面と直交する方向で保持すればよい。例えば、複数の中間領域のうち、約120°間隔にある中間領域29で、蛍石レンズを保持することが好ましい。ここで、第1特定領域(25,28)は結晶方位<100>に対応する領域であり、第2特定領域(26,27)は結晶方位<110>に対応する領域である。したがって、中間領域29は、結晶方位<100>と結晶方位<110>とのほぼ中間に対応する領域である。
あるいは、本実施形態の保持部(Ha,Hb)では、蛍石レンズ(La,Lb)の光軸Oと結晶方位<100>とを一致させる場合において高温時における滑りの発生を考慮する必要のない場合、滑りが発生しにくくなるように、互いに隣り合う2つの領域25の外周方向に沿ったほぼ中間領域すなわち領域26(第4A図を参照)において蛍石レンズ(La,Lb)を紙面と直交する方向で保持している。上述したように、領域26は結晶方位<110>に対応する領域である。
こうして、本実施形態では、滑りを考慮して適切な箇所で蛍石レンズ(La,Lb)を保持しているので、投影光学系PLにおいて、複屈折の影響を実質的に受けることなく、滑りに起因する蛍石レンズ(La,Lb)の変形を抑えて、良好な光学性能を確保することができ、ひいては高解像で高精度な投影露光を行うことができる。
なお、蛍石レンズ(La,Lb)の光軸Oと結晶方位<111>とを一致させる場合、中間領域17において蛍石レンズ(La,Lb)を保持しなくても、第1特定領域(13,14,15)および第2特定領域(16)から外周方向に沿って実質的に離れた領域において(すなわち結晶方位<110>および結晶方位<211>から実質的に離れた領域において)蛍石レンズ(La,Lb)を保持することにより、本発明の効果を得ることができる。また、蛍石レンズ(La,Lb)の光軸Oと結晶方位<111>とを一致させる場合において高温時における滑りの発生を考慮する必要のない場合には、中間領域18において蛍石レンズ(La,Lb)を保持しなくても、第1特定領域(13,14,15)から外周方向に沿って実質的に離れた領域において(すなわち結晶方位<110>から実質的に離れた領域において)蛍石レンズ(La,Lb)を保持することにより、本発明の効果を得ることができる。
一方、蛍石レンズ(La,Lb)の光軸Oと結晶方位<100>とを一致させる場合、中間領域29において蛍石レンズ(La,Lb)を保持しなくても、第1特定領域(25,28)および第2特定領域(26,27)から外周方向に沿って実質的に離れた領域において(すなわち結晶方位<100>および結晶方位<110>から実質的に離れた領域において)蛍石レンズ(La,Lb)を保持することにより、本発明の効果を得ることができる。また、蛍石レンズ(La,Lb)の光軸Oと結晶方位<100>とを一致させる場合において高温時における滑りの発生を考慮する必要のない場合には、領域26において蛍石レンズ(La,Lb)を保持しなくても、特定領域25から外周方向に沿って実質的に離れた領域において(すなわち結晶方位<100>から実質的に離れた領域において)蛍石レンズ(La,Lb)を保持することにより、本発明の効果を得ることができる。
なお、第3A図および第3B図並びに第4A図および第4B図では、蛍石レンズ(La,Lb)が光軸Oを中心とした円筒外周面10および20を有するが、蛍石レンズ(La,Lb)の外周面が正確に円筒形状でない場合にも、光軸Oを中心とした仮想的な円筒外周面を想定することにより適切な保持領域を決定することができる。
第5図は、本実施形態の保持部における蛍石レンズの保持形態を模式的に示す図である。第5図を参照すると、蛍石レンズ(La,Lb)の保持領域であるフランジ部FRが平行平面状に切削加工され、たとえば適当な金属からなる一対の平行平面板30を介して挟持されている。すなわち、本実施形態の保持部(Ha,Hb)では、周知の従来技術にしたがって、蛍石レンズ(La,Lb)のフランジ部FRを一対の平行平面板30を介して押圧するような形態で蛍石レンズ(La,Lb)を保持している。また、平行平面板30を、この平行平面板30の長手方向をフランジの接線方向に平行に配置することによって、滑りが発生しやすい結晶面に対して、平行な力が加わり難くなり、滑りの発生を抑制することができる。平行平面板30を介して蛍石レンズを保持する場合も、蛍石レンズのフランジ部を3ヶ所で保持することが望ましい。
上述の実施形態の露光装置では、照明装置によってレチクル(マスク)を照明し(照明工程)、投影光学系を用いてマスクに形成された転写用のパターンを感光性基板に露光する(露光工程)ことにより、マイクロデバイス(半導体素子、撮像素子、液晶表示素子、薄膜磁気ヘッド等)を製造することができる。以下、本実施形態の露光装置を用いて感光性基板としてのウェハ等に所定の回路パターンを形成することによって、マイクロデバイスとしての半導体デバイスを得る際の手法の一例につき第6図のフローチャートを参照して説明する。
先ず、第6図のステップ301において、1ロットのウェハ上に金属膜が蒸着される。次のステップ302において、その1ロットのウェハ上の金属膜上にフォトレジストが塗布される。その後、ステップ303において、本実施形態の露光装置を用いて、マスク上のパターンの像がその投影光学系を介して、その1ロットのウェハ上の各ショット領域に順次露光転写される。その後、ステップ304において、その1ロットのウェハ上のフォトレジストの現像が行われた後、ステップ305において、その1ロットのウェハ上でレジストパターンをマスクとしてエッチングを行うことによって、マスク上のパターンに対応する回路パターンが、各ウェハ上の各ショット領域に形成される。
その後、更に上のレイヤの回路パターンの形成等を行うことによって、半導体素子等のデバイスが製造される。上述の半導体デバイス製造方法によれば、極めて微細な回路パターンを有する半導体デバイスをスループット良く得ることができる。なお、ステップ301〜ステップ305では、ウェハ上に金属を蒸着し、その金属膜上にレジストを塗布、そして露光、現像、エッチングの各工程を行っているが、これらの工程に先立って、ウェハ上にシリコンの酸化膜を形成後、そのシリコンの酸化膜上にレジストを塗布、そして露光、現像、エッチング等の各工程を行っても良いことはいうまでもない。
また、本実施形態の露光装置では、プレート(ガラス基板)上に所定のパターン(回路パターン、電極パターン等)を形成することによって、マイクロデバイスとしての液晶表示素子を得ることもできる。以下、第7図のフローチャートを参照して、このときの手法の一例につき説明する。第7図において、パターン形成工程401では、本実施形態の露光装置を用いてマスクのパターンを感光性基板(レジストが塗布されたガラス基板等)に転写露光する、所謂光リソグラフィ工程が実行される。この光リソグラフィー工程によって、感光性基板上には多数の電極等を含む所定パターンが形成される。その後、露光された基板は、現像工程、エッチング工程、レジスト剥離工程等の各工程を経ることによって、基板上に所定のパターンが形成され、次のカラーフィルター形成工程402へ移行する。
次に、カラーフィルター形成工程402では、R(Red)、G(Green)、B(Blue)に対応した3つのドットの組がマトリックス状に多数配列されたり、またはR、G、Bの3本のストライプのフィルターの組を複数水平走査線方向に配列されたりしたカラーフィルターを形成する。そして、カラーフィルター形成工程402の後に、セル組み立て工程403が実行される。セル組み立て工程403では、パターン形成工程401にて得られた所定パターンを有する基板、およびカラーフィルター形成工程402にて得られたカラーフィルター等を用いて液晶パネル(液晶セル)を組み立てる。セル組み立て工程403では、例えば、パターン形成工程401にて得られた所定パターンを有する基板とカラーフィルター形成工程402にて得られたカラーフィルターとの間に液晶を注入して、液晶パネル(液晶セル)を製造する。
その後、モジュール組み立て工程404にて、組み立てられた液晶パネル(液晶セル)の表示動作を行わせる電気回路、バックライト等の各部品を取り付けて液晶表示素子として完成させる。上述の液晶表示素子の製造方法によれば、極めて微細な回路パターンを有する液晶表示素子をスループット良く得ることができる。
なお、上述の実施形態では、立方晶系の結晶材料として蛍石を用いているが、これに限定されることなく、フッ化バリウム(BaF2)、フッ化リチウム(LiF2)、フッ化ナトリウム(NaF)、フッ化ストロンチウム(SrF2)のような立方晶系の結晶材料に対して本発明を適用することもできる。
また、上述の実施形態では、露光装置に搭載される投影光学系に対して本発明を適用しているが、これに限定されることなく、露光装置に搭載される照明光学系や、他の一般的な光学系に対して本発明を適用することもできる。さらに、上述の実施形態では、ArFエキシマレーザー光源またはF2レーザー光源を用いているが、これに限定されることなく、所定の波長光を供給する他の適当な光源を用いることもできる。
また、上述の実施形態では、マスクおよび基板を投影光学系に対して相対移動させながら基板の各露光領域に対してマスクパターンをスキャン露光するステップ・アンド・スキャン方式の露光装置に対して本発明を適用している。しかしながら、これに限定されることなく、マスクと基板とを静止させた状態でマスクのパターンを基板へ一括的に転写し、基板を順次ステップ移動させて各露光領域にマスクパターンを逐次露光するステップ・アンド・リピート方式の露光装置に対して本発明を適用することもできる。
第1図は、本発明の実施形態にかかる露光装置の構成を概略的に示す図である。なお、第1図において、投影光学系PLの光軸AXに平行にZ軸を、光軸AXに垂直な面内において第1図の紙面に平行にY軸を、第1図の紙面に垂直にX軸をそれぞれ設定している。本実施形態にかかる露光装置は、紫外領域の照明光を供給するための光源LSとして、たとえばArFエキシマレーザー光源(発振波長193nm)またはF2レーザー光源(発振波長157nm)を備えている。
光源LSから射出された光は、照明光学系ILを介して、所定のパターンが形成されたレチクル(マスク)Rを重畳的に照明する。なお、光源LSと照明光学系ILとの間の光路はケーシング(不図示)で密封されており、光源LSから照明光学系IL中の最もレチクル側の光学部材までの空間は、露光光の吸収率が低い気体であるヘリウムガスや窒素などの不活性ガスで置換されているか、あるいはほぼ真空状態に保持されている。
レチクルRは、レチクルホルダRHを介して、レチクルステージRS上においてXY平面に平行に保持されている。レチクルRには転写すべきパターンが形成されており、パターン領域全体のうちX方向に沿って長辺を有し且つY方向に沿って短辺を有する矩形状(スリット状)のパターン領域が照明される。レチクルステージRSは、図示を省略した駆動系の作用により、レチクル面(すなわちXY平面)に沿って二次元的に移動可能であり、その位置座標はレチクル移動鏡RMを用いた干渉計RIFによって計測され且つ位置制御されるように構成されている。
レチクルRに形成されたパターンからの光は、投影光学系PLを介して、感光性基板であるウェハW上にレチクルパターン像を形成する。投影光学系PLは、蛍石で形成された一対のレンズ、すなわち蛍石レンズLaおよびLbを含む多数のレンズを備えている。蛍石レンズLaおよびLbは、保持部(保持装置)HaおよびHbによりそれぞれ保持されている。ウェハWは、ウェハテーブル(ウェハホルダ)WTを介して、ウェハステージWS上においてXY平面に平行に保持されている。そして、レチクルR上での矩形状の照明領域に光学的に対応するように、ウェハW上ではX方向に沿って長辺を有し且つY方向に沿って短辺を有する矩形状の露光領域にパターン像が形成される。
ウェハステージWSは、図示を省略した駆動系の作用によりウェハ面(すなわちXY平面)に沿って二次元的に移動可能であり、その位置座標はウェハ移動鏡WMを用いた干渉計WIFによって計測され且つ位置制御されるように構成されている。また、投影光学系PLを構成する光学部材のうち最もレチクル側に配置された光学部材と最もウェハ側に配置された光学部材との間で投影光学系PLの内部が気密状態を保つように構成され、投影光学系PLの内部の気体はヘリウムガスや窒素などの不活性ガスで置換されているか、あるいはほぼ真空状態に保持されている。
さらに、照明光学系ILと投影光学系PLとの間の狭い光路には、レチクルRおよびレチクルステージRSなどが配置されているが、レチクルRおよびレチクルステージRSなどを密封包囲するケーシング(不図示)の内部に窒素やヘリウムガスなどの不活性ガスが充填されているか、あるいはほぼ真空状態に保持されている。また、投影光学系PLとウェハWとの間の狭い光路には、ウェハWおよびウェハステージWSなどが配置されているが、ウェハWおよびウェハステージWSなどを密封包囲するケーシング(不図示)の内部に窒素やヘリウムガスなどの不活性ガスが充填されているか、あるいはほぼ真空状態に保持されている。このように、光源LSからウェハWまでの光路の全体に亘って、露光光がほとんど吸収されることのない雰囲気が形成されている。
上述したように、照明光学系ILによって規定されるレチクルR上の照明領域およびウェハW上の露光領域(すなわち実効露光領域)は、Y方向に沿って短辺を有する矩形状である。したがって、駆動系および干渉計(RIF、WIF)などを用いてレチクルRおよびウェハWの位置制御を行いながら、矩形状の露光領域および照明領域の短辺方向すなわちY方向に沿ってレチクルステージRSとウェハステージWSとを、ひいてはレチクルRとウェハWとを同期的に移動(走査)させることにより、ウェハW上には露光領域の長辺に等しい幅を有し且つウェハWの走査量(移動量)に応じた長さを有する領域に対してレチクルパターンが走査露光される。
第2図は、蛍石の結晶方位について説明する図である。第2図を参照すると、蛍石の結晶方位は、立方晶系の結晶軸a1a2a3に基づいて規定される。すなわち、結晶軸+a1に沿って結晶方位[100]が、結晶軸+a2に沿って結晶方位[010]が、結晶軸+a3に沿って結晶方位[001]がそれぞれ規定される。また、a1a3平面において結晶方位[100]および結晶方位[001]と45度をなす方向に結晶方位[101]が、a1a2平面において結晶方位[100]および結晶方位[010]と45度をなす方向に結晶方位[110]が、a2a3平面において結晶方位[010]および結晶方位[001]と45度をなす方向に結晶方位[011]がそれぞれ規定される。さらに、結晶軸+a1、結晶軸+a2および結晶軸+a3に対して等しい鋭角をなす方向に結晶方位[111]が規定される。
第2図では、結晶軸+a1、結晶軸+a2および結晶軸+a3で規定される空間における結晶方位のみを図示しているが、他の空間においても同様に結晶方位が規定される。蛍石では、第2図中実線で示す結晶方位[111]、およびこれと結晶学的に等価な不図示の結晶方位[−1−1−1],[−111],[1−1−1][1−11],[−11−1],[11−1],[−1−11]では、複屈折がほぼ零(最小)である。同様に、第2図中実線で示す結晶方位[100],[010],[001]およびこれと結晶学的に等価な不図示の結晶方位[−100],[0−10],[00−1]においても、複屈折がほぼ零(最小)である。一方、第2図中破線で示す結晶方位[110],[101],[011],およびこれと結晶学的に等価な不図示の結晶方位[−1−10],[−10−1],[0−1−1],[−110],[1−10],[−101],[10−1],[01−1],[0−11]方向では、複屈折が最大である。
なお、本願明細書中において、「ある結晶方位と結晶学的に等価な結晶方位」とは、ある結晶方位に対して、当該結晶方位の指数の順序を入れ替えた結晶方位と、さらにそれらの各指数の少なくとも一部についての符号を反転した結晶方位であり、例えばある結晶方位が[uvw]である場合は、[uwv]、[vuw]、[vwu]、[wuv]、[wvu]、[−uvw]、[−uwv]、[−vuw]、[−vwu]、[−wuv]、[−wvu]、[u−vw]、[u−wv]、[v−uw]、[v−wu]、[w−uv]、[w−vu]、[uv−w]、[uw−v]、[vu−w]、[vw−u]、[wu−v]、[wv−u]、[−u−vw]、[−u−wv]、[−uv−w]、[−uw−v]、[−v−uw][−v−wu]、[−vu−w][−vw−u]、[−w−uv]、[−w−vu]、[−wu−v]、[−wv−u]、[u−v−w]、[u−w−v]、[v−u−w]、[v−w−u]、[w−u−v]、[w−v−u]、[−u−v−w]、[−u−w−v]、[−v−u−w]、[−v−w−u]、[−w−u−v]、[−w−v−u]が結晶学的に等価な結晶方位である。本願明細書では、結晶方位[uvw]およびこれと結晶学的に等価な結晶方位を結晶方位<uvw>と表記している。また、結晶方位[uvw]およびこれと結晶学的に等価な結晶方位と直交する面を結晶面{uvw}と表記している。
一般に、蛍石のような結晶構造の結晶材料では、結晶方位<100>と直交する結晶面{100}に沿って最も滑りが発生し易い。また、高温時(例えば200°C程度以上)には、結晶方位<111>と直交する結晶面{111}に沿って滑りが発生し易い。さらに、高温時(例えば200°C程度以上)には、結晶方位<110>と直交する結晶面{110}に沿って滑りが発生し易い。ただし、結晶面{110}の方が結晶面{111}よりも滑りが発生しにくい。
次に、複屈折の影響を受けにくいレンズ構成を実現する手法について簡単に説明する。第1手法では、一対の蛍石レンズ(一般には蛍石で形成された透過光学部材)の光軸と結晶方位<111>とを一致させ、且つ光軸を中心として一対の蛍石レンズを約60度だけ相対的に回転させる。ここで、一方の蛍石レンズと他方の蛍石レンズとを光軸を中心として約60度だけ相対的に回転させるとは、一方の蛍石レンズおよび他方の蛍石レンズにおける光軸とは異なる方向に向けられる所定の結晶方位(たとえば結晶方位[−111]、[11−1]、または[1−11])同士の光軸を中心とした相対的な角度が約60度であることを意味する。
具体的には、たとえば一方の蛍石レンズにおける結晶方位[−111]と、他方の蛍石レンズにおける結晶方位[−111]との光軸を中心とした相対的な角度が約60度であることを意味する。そして、光軸を中心として約60度だけ相対的に回転させるということは、光軸を中心として約60度+(n×120度)だけ相対的に回転させること、すなわち60度、180度、または300度・・・だけ相対的に回転させることと同じ意味である(ここで、nは整数である)。
第2手法では、一対の蛍石レンズの光軸と結晶方位<100>とを一致させ、且つ光軸を中心として一対の蛍石レンズを約45度だけ相対的に回転させる。ここで、一方の蛍石レンズと他方の蛍石レンズとを光軸を中心として約45度だけ相対的に回転させるとは、一方の蛍石レンズおよび他方の蛍石レンズにおける光軸とは異なる方向に向けられる所定の結晶方位(たとえば結晶方位[010],[001],[011]または[01−1])同士の光軸を中心とした相対的な角度が約45度であることを意味する。
具体的には、たとえば一方の蛍石レンズにおける結晶方位[010]と、他方の蛍石レンズにおける結晶方位[010]との光軸を中心とした相対的な角度が約45度であることを意味する。そして、光軸を中心として約45度だけ相対的に回転させるということは、光軸を中心として約45度+(n×90度)だけ相対的に回転させること、すなわち45度、135度、225度、または315度・・・だけ相対的に回転させることと同じ意味である(ここで、nは整数である)。
そこで、本実施形態では、複屈折の影響を受けにくくするために、一対の蛍石レンズLaおよびLbの光軸と結晶方位<111>とを一致させ、且つ光軸を中心として一対の蛍石レンズLaとLbとを約60度だけ相対的に回転させている。あるいは、複屈折の影響を受けにくくするために、一対の蛍石レンズLaおよびLbの光軸と結晶方位<100>とを一致させ、且つ光軸を中心として一対の蛍石レンズLaとLbとを約45度だけ相対的に回転させている。
第3A図は、蛍石レンズの光軸と結晶方位<111>とを一致させた状態を示す図であって、光軸と直交する面(蛍石レンズの光軸と一致させた結晶方位<111>方向に垂直な面)に対して垂直な垂直結晶面{110}を示している。第3B図は、蛍石レンズの光軸と結晶方位<111>とを一致させた状態を示す図であって、光軸と直交する面(蛍石レンズの光軸と一致させた結晶方位<111>方向に垂直な面)に対して傾斜した斜め結晶面{100}、{111}および{110}を示している。なお、第3B図では、蛍石レンズの光軸Oと直交する面に対して傾斜した斜め結晶面として、3種類の結晶面{100}と3種類の結晶面{111}と3種類の結晶面{110}とが存在する。第3A図および第3B図を参照すると、蛍石レンズの光軸Oと結晶方位<111>とを一致させた状態において、光軸Oを中心とした蛍石レンズの円筒外周面10は光軸Oを中心とした円として表わされている。この場合、第3A図に示すように、光軸Oと直交する面(第3A図および第3B図の紙面に平行な面)に対して垂直な垂直結晶面として、3種類の結晶面{110}が存在する。ここで、光軸Oと直交する面と垂直結晶面{110}との交差線を表わす線11a〜11cは、垂直結晶面{110}の絶対的な位置を示すものではなく、線11a〜11cに平行な任意の線に沿って垂直結晶面{110}が無限に存在することになる。
一方、第3B図に示すように、光軸Oと直交する面と斜め結晶面{100}との交差線、光軸Oと直交する面と斜め結晶面{111}との交差線、および光軸Oと直交する面と斜め結晶面{110}との交差線は互いに一致する。これらの交差線を表わす線12a〜12cは、斜め結晶面{100}、斜め結晶面{111}および斜め結晶面{110}の絶対的な位置を示すものではなく、線12a〜12cに平行な任意の線に沿って斜め結晶面{100}、斜め結晶面{111}および斜め結晶面{110}が無限に存在することになる。
上述したように、蛍石では、結晶面{100}に沿って最も滑りが発生し易く、高温時には結晶面{111}および結晶面{110}に沿って滑りが発生し易い。したがって、第3B図を参照すると、斜め結晶面{100}と円筒外周面10とが光軸Oと直交する面においてほぼ90度で交わる(厳密には結晶面{100}を表わす直線と円筒外周面10を表わす円との交点において円の接線と当該直線とがほぼ90度で交わる)6つの特定領域(小円で示す)13において蛍石レンズを紙面と直交する方向で保持すると、最も滑りが発生し易いことになる。また、斜め結晶面{111}と円筒外周面10とが光軸Oと直交する面においてほぼ90度で交わる6つの特定領域(小円で示す)14において蛍石レンズを紙面と直交する方向で保持すると、高温時に滑りが発生し易いことになる。
さらに、斜め結晶面{110}と円筒外周面10とが光軸Oと直交する面においてほぼ90度で交わる6つの特定領域(小円で示す)15において蛍石レンズを紙面と直交する方向で保持すると、高温時に滑りが発生し易いことになる。なお、6つの特定領域13と6つの特定領域14と6つの特定領域15とは一致する。一方、第3A図を参照すると、垂直結晶面{110}と円筒外周面10とが光軸Oと直交する面においてほぼ90度で交わる6つの特定領域(小円で示す)16において蛍石レンズを紙面と直交する方向で保持すると、高温時に滑りが発生し易いことになる。
そこで、本実施形態の保持部(Ha,Hb)では、蛍石レンズ(La,Lb)の光軸Oと結晶方位<111>とを一致させる場合、互いに隣り合う第1特定領域(13,14,15)と第2特定領域(16)との外周方向に沿ったほぼ中間領域(小円で示す)17(第3B図を参照)において蛍石レンズ(La,Lb)を紙面と直交する方向で保持している。ただし、前述したように、第3A図においては、線11a〜11cに平行な線に沿って垂直面{110}が無限に存在し、第3B図においては、線12a〜12cに平行な任意の線に沿って斜め結晶面{100}、斜め結晶面{111}及び斜め結晶面{110}が無限に存在するのであるから、蛍石レンズ(La,Lb)を紙面と直交する方向で保持する場合には、各線11a〜11cに平行な同一直線上にある2つの中間領域や、各線12a〜12cに平行な同一直線上にある2つの中間領域17で保持すると滑りが発生する可能性がある。そこで、各線11a〜11cに平行な同一直線上にない中間領域、及び各線12a〜12cに平行な同一直線上にない中間領域17において蛍石レンズ(La,Lb)を紙面と直交する方向で保持すればよい。例えば、複数の中間領域のうち、約120°間隔にある中間領域17で、蛍石レンズを保持することが好ましい。ここで、第1特定領域(13,14,15)は結晶方位<110>に対応する領域であり、第2特定領域(16)は結晶方位<211>に対応する領域である。したがって、中間領域17は、結晶方位<110>と結晶方位<211>とのほぼ中間に対応する領域である。
あるいは、本実施形態の保持部(Ha,Hb)では、蛍石レンズ(La,Lb)の光軸Oと結晶方位<111>とを一致させる場合において高温時における滑りの発生を考慮する必要のない場合、滑りが発生しにくくなるように、互いに隣り合う2つの第1特定領域(13,14,15)の外周方向に沿ったほぼ中間領域(小円で示す)18(第3B図を参照)において蛍石レンズ(La,Lb)を紙面と直交する方向で保持している。なお、第3A図と第3B図とを比較するとわかるように、中間領域18は第2特定領域(16)と一致し、結晶方位<211>に対応する領域である。
第4A図は、蛍石レンズの光軸と結晶方位[100]とを一致させた状態を示す図であって、光軸と直交する面(蛍石レンズの光軸と一致させた結晶方位<100>方向に垂直な面)に対して垂直な垂直結晶面{100}および{110}を示している。第4B図は、蛍石レンズの光軸と結晶方位[100]とを一致させた状態を示す図であって、光軸と直交する面(蛍石レンズの光軸と一致させた結晶方位<100>方向に垂直な面)に対して傾斜した斜め結晶面{111}および{110}を示している。なお、第4B図では、蛍石レンズの光軸Oと直交する面に対して傾斜した斜め結晶面として、4種類の結晶面{111}と4種類の結晶面{110}とが存在する。第4A図および第4B図を参照すると、蛍石レンズの光軸Oと結晶方位<100>とを一致させた状態において、光軸Oを中心とした蛍石レンズの円筒外周面20は光軸Oを中心とした円として表わされている。この場合、第4A図に示すように、光軸Oと直交する面(第4A図および第4B図の紙面に平行な面)に対して垂直な垂直結晶面として、2種類の結晶面{100}と2種類の{110}とが存在する。
ここで、光軸Oと直交する面と垂直結晶面{100}との交差線を表わす線21aおよび21bは、垂直結晶面{100}の絶対的な位置を示すものではなく、線21aおよび21bに平行な任意の線に沿って垂直結晶面{100}が無限に存在することになる。また、光軸Oと直交する面と垂直結晶面{110}との交差線を表わす線22aおよび22bは、垂直結晶面{110}の絶対的な位置を示すものではなく、線22aおよび22bに平行な任意の線に沿って垂直結晶面{110}が無限に存在することになる。
一方、第4B図に示すように、光軸Oと直交する面と斜め結晶面{111}との交差線を表わす線23aおよび23bは、斜め結晶面{111}の絶対的な位置を示すものではなく、線23aおよび23bに平行な任意の線に沿って斜め結晶面{111}が無限に存在することになる。また、光軸Oと直交する面と斜め結晶面{110}との交差線を表わす線24aおよび24bは、斜め結晶面{110}の絶対的な位置を示すものではなく、線24aおよび24bに平行な任意の線に沿って斜め結晶面{110}が無限に存在することになる。
上述したように、蛍石では、結晶面{100}に沿って最も滑りが発生し易く、高温時には結晶面{111}および結晶面{110}に沿って滑りが発生し易い。したがって、第4A図を参照すると、垂直結晶面{100}と円筒外周面20とが光軸Oと直交する面においてほぼ90度で交わる4つの領域(小円で示す)25において蛍石レンズを紙面と直交する方向で保持すると、最も滑りが発生し易いことになる。また、垂直結晶面{110}と円筒外周面20とが光軸Oと直交する面においてほぼ90度で交わる4つの領域(小円で示す)26において蛍石レンズを紙面と直交する方向で保持すると、高温時に滑りが発生し易いことになる。
一方、第4B図を参照すると、斜め結晶面{111}と円筒外周面20とが光軸Oと直交する面においてほぼ90度で交わる4つの領域(小円で示す)27において蛍石レンズを紙面と直交する方向で保持すると、高温時に滑りが発生し易いことになる。また、斜め結晶面{110}と円筒外周面20とが光軸Oと直交する面においてほぼ90度で交わる4つの領域(小円で示す)28において蛍石レンズを紙面と直交する方向で保持すると、高温時に滑りが発生し易いことになる。なお、4つの領域25と4つの領域28とは一致し、4つの領域26と4つの領域27とは一致する。
そこで、本実施形態の保持部(Ha,Hb)では、蛍石レンズ(La,Lb)の光軸Oと結晶方位<100>とを一致させる場合、滑りが発生しにくくなるように、互いに隣り合う第1特定領域(25,28)と第2特定領域(26,27)との外周方向に沿ったほぼ中間領域(小円で示す)29(第4B図を参照)において蛍石レンズ(La,Lb)を紙面と直交する方向で保持している。ただし、前述したように、第4A図においては、線21aおよび21bに平行な任意の線に沿って垂直結晶面{100}が無限に存在し、また、線22aおよび22bに平行な任意の線に沿って垂直結晶面{110}が無限に存在する。第4B図においては、線23aおよび23bに平行な任意の線に沿って斜め結晶面{111}が無限に存在し、線24aおよび24bに平行な任意の線に沿って斜め結晶面{110}が無限に存在する。したがって、蛍石レンズ(La,Lb)を紙面と直交する方向で保持する場合には、各線21a、21b、22a、22b、23a、23b、24a、24bに平行な同一直線上にある2つの中間領域29で保持すると滑りが発生する可能性がある。そこで、各線に平行な同一線上にない中間領域29において蛍石レンズ(La,Lb)を紙面と直交する方向で保持すればよい。例えば、複数の中間領域のうち、約120°間隔にある中間領域29で、蛍石レンズを保持することが好ましい。ここで、第1特定領域(25,28)は結晶方位<100>に対応する領域であり、第2特定領域(26,27)は結晶方位<110>に対応する領域である。したがって、中間領域29は、結晶方位<100>と結晶方位<110>とのほぼ中間に対応する領域である。
あるいは、本実施形態の保持部(Ha,Hb)では、蛍石レンズ(La,Lb)の光軸Oと結晶方位<100>とを一致させる場合において高温時における滑りの発生を考慮する必要のない場合、滑りが発生しにくくなるように、互いに隣り合う2つの領域25の外周方向に沿ったほぼ中間領域すなわち領域26(第4A図を参照)において蛍石レンズ(La,Lb)を紙面と直交する方向で保持している。上述したように、領域26は結晶方位<110>に対応する領域である。
こうして、本実施形態では、滑りを考慮して適切な箇所で蛍石レンズ(La,Lb)を保持しているので、投影光学系PLにおいて、複屈折の影響を実質的に受けることなく、滑りに起因する蛍石レンズ(La,Lb)の変形を抑えて、良好な光学性能を確保することができ、ひいては高解像で高精度な投影露光を行うことができる。
なお、蛍石レンズ(La,Lb)の光軸Oと結晶方位<111>とを一致させる場合、中間領域17において蛍石レンズ(La,Lb)を保持しなくても、第1特定領域(13,14,15)および第2特定領域(16)から外周方向に沿って実質的に離れた領域において(すなわち結晶方位<110>および結晶方位<211>から実質的に離れた領域において)蛍石レンズ(La,Lb)を保持することにより、本発明の効果を得ることができる。また、蛍石レンズ(La,Lb)の光軸Oと結晶方位<111>とを一致させる場合において高温時における滑りの発生を考慮する必要のない場合には、中間領域18において蛍石レンズ(La,Lb)を保持しなくても、第1特定領域(13,14,15)から外周方向に沿って実質的に離れた領域において(すなわち結晶方位<110>から実質的に離れた領域において)蛍石レンズ(La,Lb)を保持することにより、本発明の効果を得ることができる。
一方、蛍石レンズ(La,Lb)の光軸Oと結晶方位<100>とを一致させる場合、中間領域29において蛍石レンズ(La,Lb)を保持しなくても、第1特定領域(25,28)および第2特定領域(26,27)から外周方向に沿って実質的に離れた領域において(すなわち結晶方位<100>および結晶方位<110>から実質的に離れた領域において)蛍石レンズ(La,Lb)を保持することにより、本発明の効果を得ることができる。また、蛍石レンズ(La,Lb)の光軸Oと結晶方位<100>とを一致させる場合において高温時における滑りの発生を考慮する必要のない場合には、領域26において蛍石レンズ(La,Lb)を保持しなくても、特定領域25から外周方向に沿って実質的に離れた領域において(すなわち結晶方位<100>から実質的に離れた領域において)蛍石レンズ(La,Lb)を保持することにより、本発明の効果を得ることができる。
なお、第3A図および第3B図並びに第4A図および第4B図では、蛍石レンズ(La,Lb)が光軸Oを中心とした円筒外周面10および20を有するが、蛍石レンズ(La,Lb)の外周面が正確に円筒形状でない場合にも、光軸Oを中心とした仮想的な円筒外周面を想定することにより適切な保持領域を決定することができる。
第5図は、本実施形態の保持部における蛍石レンズの保持形態を模式的に示す図である。第5図を参照すると、蛍石レンズ(La,Lb)の保持領域であるフランジ部FRが平行平面状に切削加工され、たとえば適当な金属からなる一対の平行平面板30を介して挟持されている。すなわち、本実施形態の保持部(Ha,Hb)では、周知の従来技術にしたがって、蛍石レンズ(La,Lb)のフランジ部FRを一対の平行平面板30を介して押圧するような形態で蛍石レンズ(La,Lb)を保持している。また、平行平面板30を、この平行平面板30の長手方向をフランジの接線方向に平行に配置することによって、滑りが発生しやすい結晶面に対して、平行な力が加わり難くなり、滑りの発生を抑制することができる。平行平面板30を介して蛍石レンズを保持する場合も、蛍石レンズのフランジ部を3ヶ所で保持することが望ましい。
上述の実施形態の露光装置では、照明装置によってレチクル(マスク)を照明し(照明工程)、投影光学系を用いてマスクに形成された転写用のパターンを感光性基板に露光する(露光工程)ことにより、マイクロデバイス(半導体素子、撮像素子、液晶表示素子、薄膜磁気ヘッド等)を製造することができる。以下、本実施形態の露光装置を用いて感光性基板としてのウェハ等に所定の回路パターンを形成することによって、マイクロデバイスとしての半導体デバイスを得る際の手法の一例につき第6図のフローチャートを参照して説明する。
先ず、第6図のステップ301において、1ロットのウェハ上に金属膜が蒸着される。次のステップ302において、その1ロットのウェハ上の金属膜上にフォトレジストが塗布される。その後、ステップ303において、本実施形態の露光装置を用いて、マスク上のパターンの像がその投影光学系を介して、その1ロットのウェハ上の各ショット領域に順次露光転写される。その後、ステップ304において、その1ロットのウェハ上のフォトレジストの現像が行われた後、ステップ305において、その1ロットのウェハ上でレジストパターンをマスクとしてエッチングを行うことによって、マスク上のパターンに対応する回路パターンが、各ウェハ上の各ショット領域に形成される。
その後、更に上のレイヤの回路パターンの形成等を行うことによって、半導体素子等のデバイスが製造される。上述の半導体デバイス製造方法によれば、極めて微細な回路パターンを有する半導体デバイスをスループット良く得ることができる。なお、ステップ301〜ステップ305では、ウェハ上に金属を蒸着し、その金属膜上にレジストを塗布、そして露光、現像、エッチングの各工程を行っているが、これらの工程に先立って、ウェハ上にシリコンの酸化膜を形成後、そのシリコンの酸化膜上にレジストを塗布、そして露光、現像、エッチング等の各工程を行っても良いことはいうまでもない。
また、本実施形態の露光装置では、プレート(ガラス基板)上に所定のパターン(回路パターン、電極パターン等)を形成することによって、マイクロデバイスとしての液晶表示素子を得ることもできる。以下、第7図のフローチャートを参照して、このときの手法の一例につき説明する。第7図において、パターン形成工程401では、本実施形態の露光装置を用いてマスクのパターンを感光性基板(レジストが塗布されたガラス基板等)に転写露光する、所謂光リソグラフィ工程が実行される。この光リソグラフィー工程によって、感光性基板上には多数の電極等を含む所定パターンが形成される。その後、露光された基板は、現像工程、エッチング工程、レジスト剥離工程等の各工程を経ることによって、基板上に所定のパターンが形成され、次のカラーフィルター形成工程402へ移行する。
次に、カラーフィルター形成工程402では、R(Red)、G(Green)、B(Blue)に対応した3つのドットの組がマトリックス状に多数配列されたり、またはR、G、Bの3本のストライプのフィルターの組を複数水平走査線方向に配列されたりしたカラーフィルターを形成する。そして、カラーフィルター形成工程402の後に、セル組み立て工程403が実行される。セル組み立て工程403では、パターン形成工程401にて得られた所定パターンを有する基板、およびカラーフィルター形成工程402にて得られたカラーフィルター等を用いて液晶パネル(液晶セル)を組み立てる。セル組み立て工程403では、例えば、パターン形成工程401にて得られた所定パターンを有する基板とカラーフィルター形成工程402にて得られたカラーフィルターとの間に液晶を注入して、液晶パネル(液晶セル)を製造する。
その後、モジュール組み立て工程404にて、組み立てられた液晶パネル(液晶セル)の表示動作を行わせる電気回路、バックライト等の各部品を取り付けて液晶表示素子として完成させる。上述の液晶表示素子の製造方法によれば、極めて微細な回路パターンを有する液晶表示素子をスループット良く得ることができる。
なお、上述の実施形態では、立方晶系の結晶材料として蛍石を用いているが、これに限定されることなく、フッ化バリウム(BaF2)、フッ化リチウム(LiF2)、フッ化ナトリウム(NaF)、フッ化ストロンチウム(SrF2)のような立方晶系の結晶材料に対して本発明を適用することもできる。
また、上述の実施形態では、露光装置に搭載される投影光学系に対して本発明を適用しているが、これに限定されることなく、露光装置に搭載される照明光学系や、他の一般的な光学系に対して本発明を適用することもできる。さらに、上述の実施形態では、ArFエキシマレーザー光源またはF2レーザー光源を用いているが、これに限定されることなく、所定の波長光を供給する他の適当な光源を用いることもできる。
また、上述の実施形態では、マスクおよび基板を投影光学系に対して相対移動させながら基板の各露光領域に対してマスクパターンをスキャン露光するステップ・アンド・スキャン方式の露光装置に対して本発明を適用している。しかしながら、これに限定されることなく、マスクと基板とを静止させた状態でマスクのパターンを基板へ一括的に転写し、基板を順次ステップ移動させて各露光領域にマスクパターンを逐次露光するステップ・アンド・リピート方式の露光装置に対して本発明を適用することもできる。
以上説明したように、本発明の保持装置では、蛍石のような立方晶系の結晶材料における滑りを考慮して適切な箇所で光学部材を保持しているので、滑りに起因する光学部材の変形を良好に抑えることができる。その結果、本発明の保持装置を用いる光学系では、複屈折の影響を実質的に受けることなく、滑りに起因する光学部材の変形を抑えて、良好な光学性能を確保することができる。
したがって、本発明の露光装置および露光方法では、複屈折の影響を実質的に受けることなく、滑りに起因する光学部材の変形を抑えて、良好な光学性能を有する光学系を用いて、高解像で高精度な投影露光を行うことができ、ひいては良好なマイクロデバイスを製造することができる。
したがって、本発明の露光装置および露光方法では、複屈折の影響を実質的に受けることなく、滑りに起因する光学部材の変形を抑えて、良好な光学性能を有する光学系を用いて、高解像で高精度な投影露光を行うことができ、ひいては良好なマイクロデバイスを製造することができる。
Claims (13)
- 立方晶系の結晶材料により形成された透過光学部材の結晶方位<111>と前記透過光学部材の光軸とをほぼ一致させた状態で前記透過光学部材を保持する保持装置において、
前記透過光学部材の光軸とほぼ一致させた前記結晶方位<111>方向にほぼ垂直な面内における結晶方位<110>から実質的に離れた領域において前記透過光学部材を保持することを特徴とする保持装置。 - 請求の範囲第1項に記載の保持装置において、
前記透過光学部材の光軸とほぼ一致させた前記結晶方位<111>方向にほぼ垂直な面内における結晶方位<211>に対応する領域において前記透過光学部材を保持することを特徴とする保持装置。 - 立方晶系の結晶材料により形成された透過光学部材の結晶方位<111>と前記透過光学部材の光軸とをほぼ一致させた状態で前記透過光学部材を保持する保持装置において、
前記透過光学部材の光軸とほぼ一致させた前記結晶方位<111>方向にほぼ垂直な面内における結晶方位<110>および結晶方位<211>から実質的に離れた領域において前記透過光学部材を保持することを特徴とする保持装置。 - 請求の範囲第3項に記載の保持装置において、
互いに隣り合う結晶方位<110>と結晶方位<211>とのほぼ中間に対応する領域において前記透過光学部材を保持することを特徴とする保持装置。 - 立方晶系の結晶材料により形成された透過光学部材の結晶方位<100>と前記透過光学部材の光軸とをほぼ一致させた状態で前記透過光学部材を保持する保持装置において、
前記透過光学部材の光軸とほぼ一致させた前記結晶方位<100>方向にほぼ垂直な面内における結晶方位<100>から実質的に離れた領域において前記透過光学部材を保持することを特徴とする保持装置。 - 請求の範囲第5項に記載の保持装置において、
前記透過光学部材の光軸とほぼ一致させた前記結晶方位<100>方向にほぼ垂直な面内における結晶方位<110>に対応する領域において前記透過光学部材を保持することを特徴とする保持装置。 - 立方晶系の結晶材料により形成された透過光学部材の結晶方位<100>と前記透過光学部材の光軸とをほぼ一致させた状態で前記透過光学部材を保持する保持装置において、
前記透過光学部材の光軸とほぼ一致させた前記結晶方位<100>方向にほぼ垂直な面内における結晶方位<100>および結晶方位<110>から実質的に離れた領域において前記透過光学部材を保持することを特徴とする保持装置。 - 請求の範囲第7項に記載の保持装置において、
互いに隣り合う結晶方位<100>と結晶方位<110>とのほぼ中間に対応する領域において前記透過光学部材を保持することを特徴とする保持装置。 - 請求の範囲第1項乃至第8項のいずれか1項に記載の保持装置により保持された前記透過光学部材を備えていることを特徴とする光学系。
- マスクを照明するための請求の範囲第9項に記載の光学系を備え、前記マスクのパターンを感光性基板上に露光することを特徴とする露光装置。
- 請求の範囲第9項に記載の光学系を備え、該光学系を介してマスクのパターンを感光性基板上に投影露光することを特徴とする露光装置。
- 請求の範囲第9項に記載の光学系を介してマスクを照明し、前記マスクに形成されたパターンを感光性基板上に露光することを特徴とする露光方法。
- マスクに形成されたパターンを、請求の範囲第9項に記載の光学系を介して、感光性基板上に投影露光することを特徴とする露光方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003097538 | 2003-04-01 | ||
JP2003097538 | 2003-04-01 | ||
PCT/JP2004/004805 WO2004090954A1 (ja) | 2003-04-01 | 2004-04-01 | 保持装置、光学系、露光装置および露光方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPWO2004090954A1 true JPWO2004090954A1 (ja) | 2006-07-06 |
Family
ID=33156643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005505258A Withdrawn JPWO2004090954A1 (ja) | 2003-04-01 | 2004-04-01 | 保持装置、光学系、露光装置および露光方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2004090954A1 (ja) |
WO (1) | WO2004090954A1 (ja) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6309461B1 (en) * | 1999-06-07 | 2001-10-30 | Sandia Corporation | Crystal growth and annealing method and apparatus |
JP4770090B2 (ja) * | 2000-08-18 | 2011-09-07 | 株式会社ニコン | 光学素子保持装置、鏡筒及び露光装置並びにマイクロデバイスの製造方法 |
JP2003050349A (ja) * | 2001-05-30 | 2003-02-21 | Nikon Corp | 光学系および該光学系を備えた露光装置 |
-
2004
- 2004-04-01 JP JP2005505258A patent/JPWO2004090954A1/ja not_active Withdrawn
- 2004-04-01 WO PCT/JP2004/004805 patent/WO2004090954A1/ja active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2004090954A1 (ja) | 2004-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7864293B2 (en) | Exposure apparatus, exposure method, and producing method of microdevice | |
TWI629569B (zh) | 曝光裝置、微元件的製造方法、及元件的製造方法 | |
KR100914370B1 (ko) | 투영 광학계와 이를 구비한 노광 장치 및 노광 방법 | |
US20030011893A1 (en) | Optical system and exposure apparatus equipped with the optical system | |
JPH11202472A (ja) | レチクルおよびそれを用いた露光装置ならびに露光方法 | |
KR20030082452A (ko) | 투영 광학계, 노광 장치 및 노광 방법 | |
WO2003088330A1 (fr) | Systeme optique de projection, systeme d'exposition et procede d'exposition | |
JP2007108559A (ja) | 走査型露光装置及びデバイスの製造方法 | |
JP4023541B2 (ja) | リソグラフ用投影装置およびデバイス製造方法 | |
US6666560B2 (en) | Reflection type demagnification optical system, exposure apparatus, and device fabricating method | |
WO2002097508A1 (fr) | Systeme optique et systeme d'exposition equipe du systeme optique | |
JP2005257740A (ja) | 投影光学系、露光装置、および露光方法 | |
JP4482891B2 (ja) | 結像光学系、露光装置、および露光方法 | |
JP2007157824A (ja) | 結像光学系の評価方法、結像光学系の調整方法、露光装置、露光方法、およびデバイスの製造方法 | |
KR20190092275A (ko) | 투영 광학계, 노광 장치, 및 물품의 제조 방법 | |
JPWO2003040785A1 (ja) | 光学素子、その製造方法、光学系、露光装置およびマイクロデバイスの製造方法 | |
JPWO2004090954A1 (ja) | 保持装置、光学系、露光装置および露光方法 | |
WO2003001271A1 (fr) | Systeme optique et systeme d'exposition equipe dudit systeme optique | |
JP4396154B2 (ja) | 立方晶系単結晶材料からなる光学部材の保持方法 | |
JPWO2003023481A1 (ja) | 光学系、投影光学系、この投影光学系を備えた露光装置、及びこの露光装置を用いたマイクロデバイスの製造方法 | |
JP2007178494A (ja) | 露光装置及びデバイスの製造方法 | |
TW201826342A (zh) | 元件製造方法 | |
JP6008165B2 (ja) | 露光方法及び露光装置、並びにデバイス製造方法 | |
JPH0423314A (ja) | 露光装置 | |
JP2006049465A (ja) | 露光装置及びマイクロデバイスの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070208 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20090624 |