JPS649475B2 - - Google Patents

Info

Publication number
JPS649475B2
JPS649475B2 JP7725380A JP7725380A JPS649475B2 JP S649475 B2 JPS649475 B2 JP S649475B2 JP 7725380 A JP7725380 A JP 7725380A JP 7725380 A JP7725380 A JP 7725380A JP S649475 B2 JPS649475 B2 JP S649475B2
Authority
JP
Japan
Prior art keywords
rotor
blade
manufacturing
turbo
vane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7725380A
Other languages
Japanese (ja)
Other versions
JPS56593A (en
Inventor
Shutsutsu Gyuntaa
Utsuseruman Edogaa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balzers und Leybold Deutschland Holding AG
Original Assignee
Leybold AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold AG filed Critical Leybold AG
Publication of JPS56593A publication Critical patent/JPS56593A/en
Publication of JPS649475B2 publication Critical patent/JPS649475B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/02Making specific metal objects by operations not covered by a single other subclass or a group in this subclass turbine or like blades from one piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors

Description

【発明の詳細な説明】 本発明は、ターボ分子ポンプのロータの環状に
配置された羽根を製作するための製法であつて、
羽根円板の縁範囲に半径方向のスリツトを付け
て、スリツト間に残された区分を該区分の半径方
向の中心軸線を中心としてねじることによつて所
望の羽根を形成する形式のもの及びロータに関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a manufacturing method for manufacturing annularly arranged blades of a rotor of a turbomolecular pump, comprising:
A type of rotor in which the desired blade is formed by providing radial slits in the edge area of the blade disk and twisting the section left between the slits about the central radial axis of the section. Regarding.

上記形式の環状の羽根の製法は、例えば「真空
技術(Vakuumtechnik)」23巻4号、109ベージ
および次のベージ以下の記載から公知である。こ
の場合一方では羽根は、羽根を容易にねじりかつ
羽根の端面をできるだけ小さくするために、でき
るだけ薄くしておきたい。すなわち、羽根自体に
関して考察すると、羽根の端面は羽根の羽根面に
対して垂直な「入射角」を有している。従つて、
羽根の端面にぶつかるすべての分子には、羽根面
自体により与えられる所望の搬送方向とは逆向き
の衝撃力が加えられる。端面によつて分子に逆向
きの衝撃力が加えられるという不都合な作用は、
羽根が厚くなればなるほど大きくなる。
The method for manufacturing annular vanes of the above type is known, for example, from Vakuumtechnik, Vol. 23, No. 4, page 109 and following pages. In this case, on the one hand, the blades should be as thin as possible so that they can be easily twisted and the end faces of the blades can be made as small as possible. That is, when considering the blade itself, the end surface of the blade has an "incident angle" perpendicular to the blade surface of the blade. Therefore,
All molecules that strike the end face of the vane are subjected to an impact force in the direction opposite to the desired transport direction provided by the vane face itself. The unfavorable effect of an opposite impact force being applied to the molecule by the end face is
The thicker the feathers, the larger they become.

他方では上記形式の製法で製作される羽根は、
生じる高い回転数に際しても十分な強度を有して
いるように薄すぎてはならない。のこ引きおよび
それに続くねじりによつて製作される羽根におい
ては、幅ひいては質量が半径方向外側に向かつて
増大しており、その結果強度に関して付加的な要
求が課せられる。さらに、羽根の製作に使用され
る羽根円板が薄すぎてはならない。それというの
は薄すぎる羽根円板は、例えば片側からの加工の
際に振動を惹起し、振動が正確な加工を妨げるこ
とになるからである。
On the other hand, the blades manufactured using the above type of manufacturing method are
It must not be too thin so that it has sufficient strength even at the high rotational speeds that occur. In blades produced by sawing and subsequent twisting, the width and thus the mass increases radially outwards, which results in additional demands on the strength. Furthermore, the vane disks used to make the vanes must not be too thin. This is because vane discs that are too thin will cause vibrations, for example when machining from one side, and the vibrations will interfere with accurate machining.

冒頭に述べた形式の公知のすべてのターボ分子
ポンプにおいては、羽根の厚さに関する前述の互
いに矛盾する要求に対し、ターボ分子ポンプのポ
ンプ特性を著しく規定するような妥協が計られて
いる。
In all known turbomolecular pumps of the type mentioned at the outset, a compromise has been made with respect to the aforementioned mutually contradictory requirements regarding the blade thickness, which significantly defines the pumping properties of the turbomolecular pump.

ターボ分子ポンプの別の形式の製法では、羽根
が羽根円板の縁範囲にスリツトを斜めにつけるこ
とによつて製作される(例えばスイス国特許第
532199号明細書、参照)。このような製法は不都
合な作用を生ぜしめる入射角の端面を避けるもの
であるものの、本発明の対象とする冒頭に述べた
形式の製法よりも著しく高価なものである。
In another type of production of turbomolecular pumps, the vanes are produced by making oblique slits in the edge area of the vane disc (for example, as described in Swiss patent no.
532199, see). Although such a manufacturing method avoids the end faces of the angle of incidence which give rise to disadvantageous effects, it is significantly more expensive than the manufacturing method of the type mentioned at the outset, which is the object of the invention.

従つて本発明の課題は、冒頭に述べた形式の製
法に基づくターボ分子ポンプに従来のターボ分子
ポンプよりも著しく良好なポンプ特性を与えるよ
うに、ターボ分子ポンプのロータの製法を改善す
ることにある。
It is therefore an object of the present invention to improve the manufacturing method of the rotor of a turbomolecular pump in such a way that a turbomolecular pump based on a manufacturing method of the type mentioned at the outset has significantly better pumping properties than conventional turbomolecular pumps. be.

上記課題を解決するために本発明の構成では、
環状に配置された羽根の製作に使用される羽根円
板を、該羽根円板の厚さが半径方向外側に向かつ
て連続的に若しくは段階的に減少するように加工
し、次いで羽根円板を半径方向にのこ引きしてス
リツトを付けるようにした。
In order to solve the above problems, the configuration of the present invention includes:
The blade disks used for manufacturing the annularly arranged blades are processed in such a way that the thickness of the blade disks decreases continuously or stepwise radially outward; The slits were made by sawing in the radial direction.

本発明の上記製法に基づき構成されたロータは
著しく高い回転数、即ち著しく高い周速度で運転
可能である。それというのは羽根の厚さが半径方
向外側に向かつて減少しており、ひいては羽根の
質量が同じく半径方向外側に向かつて減少してい
るからである。その結果、ターボ分子ポンプの吸
込能力が著しく高められ、かつ特に例えばH2
ような軽いガスを圧縮する場合にも圧縮度が高め
られる。羽根の周速度の特に高い外側の縁範囲
で、羽根の厚さひいては不都合な作用を及ぼす端
面が小さくなつており、その結果良好なポンプ特
性が得られる。
A rotor constructed according to the above manufacturing method of the present invention can be operated at a significantly high rotational speed, that is, a significantly high circumferential speed. This is because the thickness of the blades decreases radially outwards, and thus the mass of the blades likewise decreases radially outwards. As a result, the suction capacity of the turbomolecular pump is significantly increased and the degree of compression is also increased, especially when compressing light gases such as, for example, H 2 . In the outer edge region where the circumferential speed of the vane is particularly high, the thickness of the vane and thus the detrimental end faces are reduced, resulting in good pumping properties.

有利には羽根のボス範囲の厚さが縁範囲の厚さ
よりも係数5ないし15だけ大きくなつている。羽
根円板の直径がほぼ18cmである場合、羽根の厚さ
はほぼ5mmからほぼ0.5mmに減少していると有利
である。
Preferably, the thickness in the hub region of the blade is greater than the thickness in the edge region by a factor of 5 to 15. If the diameter of the blade disc is approximately 18 cm, it is advantageous if the blade thickness is reduced from approximately 5 mm to approximately 0.5 mm.

ターボ分子ポンプのロータにおいては一般に、
環状の羽根の複数の羽根円板を重ねて配置してあ
り、各羽根円板の環状の羽根の長さ及び/又は入
射角が、それも高真空側から低真空側に向かつて
減少するように多くの場合には部分的に羽根円板
間では異なつている。従つて、互いに無関係な
個々の羽根円板に羽根を製作して、羽根の製作さ
れた羽根円板が所定の順序でロータにまとめられ
る。しかしながら、ロータを一体構成部材から形
成すると特に有利である。そのために、例えばア
ルミニウムから成る円筒形ブロツクにまず軸線に
対して垂直な切り欠きが、それも切り欠き間に環
状の羽根の羽根円板としてのリブを残すように設
けられる。切り欠きを例えば旋削により形成する
製作段階中に同時に、切り欠き間に残されるリブ
がリブの厚さを半径方向外側に向かつて減少させ
られる。次いで自体公知の形式でのこ引きおよび
ねじりによつて羽根の形成が行なわれる。
Generally, in the rotor of a turbomolecular pump,
A plurality of annular blade disks are arranged one on top of the other, and the length and/or incidence angle of the annular blade in each blade disk decreases from the high vacuum side to the low vacuum side. In many cases, the blade discs are partially different. Therefore, the blades are fabricated on individual blade disks that are unrelated to each other, and the blade disks from which the blades have been fabricated are assembled into a rotor in a predetermined order. However, it is particularly advantageous if the rotor is formed from a one-piece component. For this purpose, a cylindrical block made of aluminum, for example, is first provided with a recess perpendicular to the axis, again in such a way that ribs as vane discs of the annular vanes remain between the recesses. At the same time during the manufacturing step in which the cutouts are formed, for example by turning, the ribs remaining between the cutouts are reduced in thickness radially outwards. The blades are then formed by sawing and twisting in a manner known per se.

次に図面を用いて本発明の実施例を具体的に説
明する。
Next, embodiments of the present invention will be specifically described using the drawings.

第1図に示す羽根円板1は厚さを縁範囲2で連
続的に減少させてある。軸線4を有するボス3の
厚さは、羽根円板1を重ねて相互に固定すること
によつてターボ分子ポンプのためのロータを構成
できるように選ばれている。
The vane disk 1 shown in FIG. 1 has a thickness that decreases continuously in the edge region 2. The blade disk 1 shown in FIG. The thickness of the boss 3 with the axis 4 is chosen in such a way that a rotor for a turbomolecular pump can be constructed by superimposing the vane disks 1 and fixing them to each other.

第2図の羽根円板1においては、羽根円板の厚
さが連続的にではなく、段階的に3つの段部5,
6および7で半径方向外側に向かつて減少させら
れている。
In the blade disk 1 shown in FIG.
6 and 7, the radially outward direction is reduced.

第3図には羽根円板1の一部の平面が示されて
いる。さらに第3図には、のこ引きによつて形成
された若干の半径方向のスリツト9が図示されて
いる。スリツト9間に残された区間10は、区分
10の半径方向の中心軸線を中心としてねじられ
て所望の羽根を形成する。羽根は、高真空側に対
する羽根円板の位置に応じて、種々異なつた長
さ、入射角又は幅を有していると有利である。羽
根の長さおよび幅は、スリツト9の長さ若しくは
深さおよび間隔によつて規定される。種々異なつ
た入射角は羽根のねじりのねじり量を種々異なら
せることによつて規定される。殊にロータの高真
空側で羽根の相互間隔をできるだけ大きくするこ
とが望ましい。羽根の相互間隔を大きくすること
は、スリツト9を形成するためのこの幅を広くす
ることによつて可能である。
FIG. 3 shows a plan view of a part of the vane disk 1. As shown in FIG. Also shown in FIG. 3 are some radial slits 9 formed by sawing. The sections 10 left between the slits 9 are twisted about the radial central axis of the sections 10 to form the desired vane. Advantageously, the vanes have different lengths, angles of incidence or widths, depending on the position of the vane disk relative to the high vacuum side. The length and width of the blades are determined by the length or depth and spacing of the slits 9. Different angles of incidence are defined by varying the amount of twist in the blade twist. In particular, it is desirable to make the mutual spacing of the blades as large as possible on the high vacuum side of the rotor. An increase in the mutual spacing of the vanes is possible by widening this width for forming the slits 9.

第4図は、一体の構成部材から製作されるまだ
完成していないロータ11を示している。ロータ
を一体の構成部材から製作するためには円筒形の
アルミニウムブロツクに半径方向の切り欠き12
を設けてあり、これらの切り欠きは、切り欠き間
に残された部分13から羽根を形成であるような
幅および深さを有している。そのために、切り欠
き12間に残される部分13は、旋削によつて切
り欠き12を形成する際に直接に若しくはあとか
ら旋削バイトを用いた特別の加工段階によつて厚
さを半径方向外側に向かつて減少させられる。第
4図の実施例の場合には、切り欠き12間の部分
13は段階的に減少させられている。次いで既に
第2図および第3図に示した形式で部分13の外
側範囲がのこ引きされて、ねじられ、その結果一
体のロータ11が形成される。
FIG. 4 shows an as yet unfinished rotor 11 manufactured from one-piece component. In order to manufacture the rotor from a one-piece component, a radial cutout 12 is made in the cylindrical aluminum block.
are provided, and these cutouts have a width and depth such that the blades are formed from the portions 13 left between the cutouts. For this purpose, the portions 13 remaining between the notches 12 are reduced in thickness radially outwards, either directly when forming the notches 12 by turning or later in a special machining step using a turning tool. Direction rate is reduced. In the embodiment of FIG. 4, the portions 13 between the cutouts 12 are reduced in stages. The outer region of the part 13 is then sawed out and twisted in the manner already shown in FIGS. 2 and 3, so that the integral rotor 11 is formed.

ターボ分子ポンプのために本発明に基づき製作
されたロータは、公知技術に基づくロータ、すな
わち厚さの変わらない羽根を有するロータに比べ
て40%までの高い回転数で運転可能である。例え
ばアルミニウム製ロータが公知技術においては毎
分42000回転数に設計される場合、アルミニウム
製ロータを本発明に基づき製作すると、本発明に
基づくアルミ製ロータはほぼ毎分59000回転数で
運転可能である。従つて、圧縮値が著しく高めら
れ、特に軽いガスのための吸込能力が高められ
る。
A rotor manufactured according to the invention for a turbomolecular pump can be operated at up to 40% higher rotational speeds than rotors according to the prior art, ie with blades of constant thickness. For example, if an aluminum rotor is designed in the prior art for a speed of 42,000 revolutions per minute, if the aluminum rotor is manufactured according to the invention, the aluminum rotor according to the invention can be operated at approximately 59,000 revolutions per minute. . The compression values are therefore significantly increased and the suction capacity, especially for light gases, is increased.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の複数の実施例を示すものであつ
て、第1図は第1実施例の羽根円板の断面図、第
2図は第2実施例の羽根円板の断面図、第3図は
第2図の実施例の羽根円板の一部の平面図、第4
図は第3実施例のロータの縦断面図である。 1…羽根円板、2…縁範囲、3…ボス、4…軸
線、5,6,7…段部、9…スリツト、10…区
分、11…ロータ、12…切り欠き、13…部
分。
The drawings show a plurality of embodiments of the present invention, in which FIG. 1 is a cross-sectional view of the blade disk of the first embodiment, FIG. 2 is a cross-sectional view of the blade disk of the second embodiment, and FIG. The figure is a plan view of a part of the blade disk of the embodiment shown in FIG.
The figure is a longitudinal sectional view of a rotor according to a third embodiment. DESCRIPTION OF SYMBOLS 1... Vane disk, 2... Edge range, 3... Boss, 4... Axis line, 5, 6, 7... Step part, 9... Slit, 10... Division, 11... Rotor, 12... Notch, 13... Part.

Claims (1)

【特許請求の範囲】 1 ターボ分子ポンプのロータの環状に配置され
た羽根を製作するための製法であつて、羽根円板
の縁範囲に半径方向のスリツトを付けて、スリツ
ト間に残された区分を該区分の半径方向の中心軸
線を中心としてねじることによつて所望の羽根を
形成する形式のものにおいて、環状の羽根の製作
に用いられる羽根円板1,13を該羽根円板の厚
さが半径方向外側に向かつて連続的に若しくは段
階的に減少するように加工し、次いで羽根円板を
半径方向にのこ引きしてスリツトを付けることを
特徴とする、ターボ分子ポンプのロータの製法。 2 羽根円板1を個別に加工して1つのロータに
まとめる特許請求の範囲第1項記載のターボ分子
ポンプのロータの製法。 3 環状の羽根の製作に用いられる複数の羽根円
板を一体の構成部材から旋削によつて削り出す特
許請求の範囲第1項記載のターボ分子ポンプのロ
ータの製法。 4 ターボ分子ポンプのロータにおいて、ロータ
の環状に配置された羽根の厚さが半径方向外側に
向かつて連続的に若しくは段階的に減少している
ことを特徴とする、ターボ分子ポンプのロータ。 5 羽根のボス範囲の厚さが縁範囲の厚さよりも
係数5ないし15だけ大きくなつている特許請求の
範囲第4項記載のターボ分子ポンプのロータ。 6 ロータが一体の構成部材から形成されている
特許請求の範囲第4項記載のターボ分子ポンプの
ロータ。 7 各羽根円板の環状の羽根の間隔、幅、長さ及
び入射角が羽根円板間で互いに異なつている特許
請求の範囲第4項記載のターボ分子ポンプのロー
タ。
[Claims] 1. A manufacturing method for manufacturing annularly arranged vanes of a rotor of a turbomolecular pump, which comprises providing radial slits in the edge area of the vane disc and leaving a gap between the slits. In those types in which the desired blade is formed by twisting the sections about the central radial axis of the section, the blade disks 1, 13 used for making the annular blade are A rotor of a turbo-molecular pump characterized in that the blade diameter is machined so that the blade diameter decreases continuously or stepwise toward the outside in the radial direction, and then the blade disk is sawed in the radial direction to form slits. Manufacturing method. 2. A method for manufacturing a rotor for a turbo-molecular pump according to claim 1, wherein the blade disks 1 are individually processed and assembled into one rotor. 3. The method for manufacturing a rotor for a turbo-molecular pump according to claim 1, wherein a plurality of blade disks used for manufacturing the annular blades are cut out from an integral component by turning. 4. A rotor for a turbo-molecular pump, characterized in that the thickness of the annularly arranged blades of the rotor decreases radially outward in a continuous or stepwise manner. 5. The rotor of a turbomolecular pump according to claim 4, wherein the thickness of the boss region of the vane is greater by a factor of 5 to 15 than the thickness of the edge region. 6. The rotor of a turbomolecular pump according to claim 4, wherein the rotor is formed from an integral component. 7. The rotor of a turbo-molecular pump according to claim 4, wherein the interval, width, length, and angle of incidence of the annular vanes of each vane disc are different from each other among the vane discs.
JP7725380A 1979-06-11 1980-06-10 Rotor of turbomolecule pump and its manufacture Granted JPS56593A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19792923632 DE2923632A1 (en) 1979-06-11 1979-06-11 METHOD FOR PRODUCING A VAN RING FOR THE ROTOR OF A TUBOMOLECULAR PUMP AND A ROTOR EQUIPPED WITH VAN RINGS OF THIS TYPE

Publications (2)

Publication Number Publication Date
JPS56593A JPS56593A (en) 1981-01-07
JPS649475B2 true JPS649475B2 (en) 1989-02-17

Family

ID=6072988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7725380A Granted JPS56593A (en) 1979-06-11 1980-06-10 Rotor of turbomolecule pump and its manufacture

Country Status (5)

Country Link
JP (1) JPS56593A (en)
CH (1) CH646229A5 (en)
DE (1) DE2923632A1 (en)
FR (1) FR2458351B1 (en)
GB (1) GB2052317B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190590U (en) * 1982-06-14 1983-12-17 東京ブラインド工業株式会社 partition
JPS6136479A (en) * 1983-11-30 1986-02-21 八木 清行 Drive apparatus of foldable type automatic door
DE3507274A1 (en) * 1985-03-01 1986-09-04 Arthur Pfeiffer Vakuumtechnik Wetzlar Gmbh, 6334 Asslar DISC WITH SHOVELS HIGH STABILITY FOR TURBOMOLECULAR PUMPS
JPH01195992A (en) * 1988-01-30 1989-08-07 Naoto Ibarada Moving blade of turbo molecular pump
IT1238201B (en) * 1989-11-03 1993-07-09 Varian Spa METHOD OF MANUFACTURE BY ELECTROEROSION OF A IMPELLER OR A ROTOR TO ONE OR MORE IMPELLERS OF A TURBO PUMP, PARTICULARLY OF A TURBOMOLECULAR PUMP, AND PRODUCTS SO OBTAINED.
IT1293907B1 (en) * 1997-05-28 1999-03-11 Varian Spa MILLING PROCEDURE OF TURBOMOLECULAR PUMPS ROTORS WITH RESIN EMBOSSING OF THE PARTS TO BE MILLED.
JP3092063B2 (en) * 1998-06-17 2000-09-25 セイコー精機株式会社 Turbo molecular pump
DE10053664A1 (en) * 2000-10-28 2002-05-08 Leybold Vakuum Gmbh Mechanical kinetic vacuum pump
EP1249612B1 (en) 2001-03-15 2004-01-28 VARIAN S.p.A. Method of manufacturing a stator stage for a turbine pump
RU2435076C2 (en) * 2006-04-29 2011-11-27 Ёрликон Лайбольд Вакуум Гмбх Manufacturing method of rotors and stators of turbomolecular pump
DE102009015652A1 (en) * 2009-03-31 2010-10-07 Light Style Gmbh Method for manufacturing usage product made of aluminum, method involves manufacturing usage product by material-machining, particularly removing processing
DE102011117920B4 (en) * 2011-11-09 2013-08-01 Voith Patent Gmbh Method for producing a paddle wheel, and paddle wheel produced thereafter
DE102014114326A1 (en) * 2014-10-02 2016-04-07 Pfeiffer Vacuum Gmbh Method for producing a rotor or stator disk for a vacuum pump and rotor or stator disk for a vacuum pump
EP3091235B1 (en) * 2015-05-04 2020-03-11 Pfeiffer Vacuum Gmbh Rotor disc
GB2592618A (en) * 2020-03-03 2021-09-08 Edwards Ltd Turbine blades and methods of manufacture of turbine blades

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH159747A (en) * 1930-01-11 1933-01-31 Westinghouse Electric Corp Propeller and process for its manufacture.
FR81075E (en) * 1962-01-23 1963-07-26 Snecma Advanced Turbomolecular Vacuum Pump
BE757354A (en) * 1969-10-27 1971-03-16 Sargent Welch Scientific Co TURBOMOLECULAR PUMP WITH ADVANCED STATORS AND ROTORS
US3623826A (en) * 1969-10-27 1971-11-30 Sargent Welch Scientific Co Turbine pump with improved rotor and seal constructions
JPS5227367Y1 (en) * 1975-09-30 1977-06-22
DE2627309A1 (en) * 1976-06-18 1977-12-22 Daimler Benz Ag Ceramic turbine wheel production process - uses profiled rotating tool for spark erosion or supersonic machining
DE2654055B2 (en) * 1976-11-29 1979-11-08 Kernforschungsanlage Juelich Gmbh, 5170 Juelich Rotor and stator disks for turbo molecular pumps
DE2717366B2 (en) * 1977-04-20 1979-10-11 Arthur Pfeiffer-Vakuumtechnik-Wetzlar Gmbh, 6334 Asslar Impeller for a turbo molecular pump

Also Published As

Publication number Publication date
FR2458351A1 (en) 1981-01-02
FR2458351B1 (en) 1985-07-12
JPS56593A (en) 1981-01-07
GB2052317A (en) 1981-01-28
DE2923632A1 (en) 1980-12-18
GB2052317B (en) 1982-12-01
CH646229A5 (en) 1984-11-15

Similar Documents

Publication Publication Date Title
JPS649475B2 (en)
US3644051A (en) Turbomolecular and stator pump having improved rotor construction
JPS60145499A (en) Diffuser for centrifugal compressor and method of constituting said diffuser
JPH03184726A (en) Method for manufacturing impeller or rotor having not less than one vanes for turbine pump application using electrical discharge machining and device manufactured thereby
JPS6341695A (en) Turbo-molecular pump
US3826588A (en) Turbomolecular vacuum pump
US4770574A (en) Discs with blades
JP2625157B2 (en) pump
JP5445143B2 (en) Turbo molecular pump
KR101277380B1 (en) Vacuum pump
JPH0261387A (en) Turbomolecular pump
KR100743115B1 (en) Turbo-molecular pump
KR20010053279A (en) Turbo-molecular pump
US6890146B2 (en) Compound friction vacuum pump
JP4056725B2 (en) Turbo molecular pump disc
JP6153579B2 (en) Method of manufacturing rotor disk or stator disk for vacuum pump and rotor disk or stator disk for vacuum pump
US4017212A (en) Bladed rotor
SU1152308A1 (en) Method of manufacturing blade disc of turbomolecular pump
JPH0227194A (en) Vacuum pump
JP3026217B1 (en) Vacuum pump
US4305698A (en) Radial-flow turbine wheel
JPS6361798A (en) Multiple stage monoblock impeller
JP4691788B2 (en) Axial fan blades
SU629797A1 (en) Method of manufacturing blade disk of turbomolecular vacuum pump
SU1204805A1 (en) Process for manufacturing turbo-molecular pump