JPH01195992A - Moving blade of turbo molecular pump - Google Patents

Moving blade of turbo molecular pump

Info

Publication number
JPH01195992A
JPH01195992A JP63019990A JP1999088A JPH01195992A JP H01195992 A JPH01195992 A JP H01195992A JP 63019990 A JP63019990 A JP 63019990A JP 1999088 A JP1999088 A JP 1999088A JP H01195992 A JPH01195992 A JP H01195992A
Authority
JP
Japan
Prior art keywords
blades
blade
rotor blade
molecular pump
moving blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63019990A
Other languages
Japanese (ja)
Inventor
Naoto Ibarada
茨田 直人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP63019990A priority Critical patent/JPH01195992A/en
Publication of JPH01195992A publication Critical patent/JPH01195992A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/044Holweck-type pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

PURPOSE:To simplify the fixing means of blades in a moving blade wherein the blades radially projecting from a turning shaft are arranged in multiple stages by cutting both the turning shaft and the blades out of an integral object. CONSTITUTION:An aluminum alloy object or the like is formed cylindrically and measured to take the specified dimensions and a blade forming part 3 is processed. In this processing, a cutting machine is used to form each groove between blades 3 and the blades 3 are individually processed. After the processing of the blades 3, the cutting work is executed to form a compressor part 2. The entire moving blade formed by such procedures is integral.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ターボ分子ポンプの動翼に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a rotor blade for a turbomolecular pump.

[従来の技衛] 従来のターボ分子ポンプの動χは、−段ごとに例えば放
電加工した羽根環を同軸上に多段に積み重ねて連結する
ことにより、一体止し、更に各羽根はその付根の部分か
ら傾胴かつけである。又、この動翼の圧縮部における螺
旋状のリブ(螺旋通路)は始め(上流)から糾り(下流
)まて同一の厚み(巾)で構成されている。
[Conventional technology] The dynamic χ of a conventional turbo-molecular pump is achieved by stacking and connecting, for example, electrical discharge machined vane rings in multiple stages on the same axis for each stage, and furthermore, each vane is fixed at its base. The body is tilted from the beginning. Further, the spiral rib (spiral passage) in the compression section of the rotor blade has the same thickness (width) from the beginning (upstream) to the end (downstream).

[解決されるべき課題] かかる構造のターボ分子ポンプの動翼においては、次の
ような問題があった。
[Problems to be Solved] The rotor blades of turbomolecular pumps having such a structure have the following problems.

a、一つ一つ羽根環を加工し、これを例えば10段以上
に積み重ねて同軸上に一体化するため、加工に手間がか
かる。
a. The blade rings are processed one by one and then stacked, for example, in 10 or more stages and integrated on the same axis, which takes time and effort.

b、−・体止のために固定手段か複雑化すると共に全体
の重量か増し、更にバランスをとるのか難しい。
b.--The fixing means for the body becomes complicated, the overall weight increases, and it is difficult to maintain balance.

C0羽根は薄く、又傾斜をつけであるため、急激な圧力
変化時に曲ったり折損することかある。
Since the C0 blades are thin and sloped, they may bend or break during sudden pressure changes.

d6羽根の加工を放電により行った場合、加工表面に微
小な凹凸面か出来て粗くなり、分子の飛散が大きい。
When d6 blades are machined by electric discharge, the machined surface has minute irregularities, making it rough and causing large scattering of molecules.

C6従来の動翼における圧縮部の螺旋流路は入側から出
側にかけて同−巾であるため、ここでは気体の圧縮効果
が無く、性能向上に限界がある。
C6 Since the spiral flow path of the compression section in the conventional rotor blade has the same width from the inlet side to the outlet side, there is no gas compression effect here, and there is a limit to performance improvement.

本発明は、上記a〜eに記した問題を有しないターボ分
子ポンプの動翼及び羽根並びに圧縮部の構造を提案する
のか目的である。
An object of the present invention is to propose a structure for a rotor blade, a vane, and a compression section of a turbomolecular pump that does not have the problems described in a to e above.

[課題を解決するための手段] 本発明は、上記目的を達成する手段として、次の如き構
成のターボ分子ポンプの動翼を提案する。
[Means for Solving the Problems] As a means for achieving the above object, the present invention proposes a rotor blade for a turbomolecular pump having the following configuration.

1、回転軸から放射状に羽根を突出させると共にこの羽
根を多段に構成して成る動翼において、回転軸と羽根を
一体物から切削加工して構成したことを特徴とするター
ボ分子ポンプの動翼。
1. A rotor blade for a turbo-molecular pump, characterized in that the rotor blade has blades protruding radially from the rotary shaft and the blades are arranged in multiple stages, the rotor blade being constructed by cutting the rotary shaft and the blades from a single piece. .

2、動翼部に続く圧縮部に形成した螺旋状のリブを出側
に向けて徐々に厚みを増して螺旋流路を徐々に狭く形成
したことを特徴とするターボ分子ポンプの動翼における
圧縮部の構造。
2. Compression in the rotor blade of a turbo-molecular pump characterized by a spiral rib formed in the compression section following the rotor blade, which gradually increases in thickness toward the outlet side to form a spiral flow path that gradually becomes narrower. Department structure.

3、付根の部分は回転軸に対して平行に近く、先端に行
くに従って角度をつけて成るターボ分子ポンプの動翼に
おける羽根の構造。
3. The structure of the blades in the rotor blades of turbomolecular pumps, with the root part being nearly parallel to the rotation axis and increasing the angle towards the tip.

4、  FT面を円弧状に形成して成るターボ分子ポン
プの動翼における羽根の構造。
4. The structure of the blade in the rotor blade of a turbomolecular pump, in which the FT surface is formed into an arc shape.

上記動翼は、素材としてアルミ合金或いはチタン等か主
として使用される。この素材は円柱状に先ず形成され、
所定の寸法設定を行ったのち、羽根部の加工が行われる
。この加工には切削加工機か使用され、先ず各羽根の列
(段)ごとに溝加工を行い、次に各羽根が1本ごとに加
工される。この羽根の加工が終了したなら、次に圧縮部
の切削加工が行われる。このようにして製作された動翼
は全体が一体物である。
The moving blades are mainly made of aluminum alloy, titanium, or the like. This material is first formed into a cylindrical shape,
After setting the predetermined dimensions, the blade portion is processed. A cutting machine is used for this process, and first a groove is machined for each row (stage) of each blade, and then each blade is machined one by one. Once this blade machining is completed, the compression section is then cut. The rotor blade manufactured in this manner is entirely one piece.

[作用] 上記動翼は、真空装置において、シリンダー(ケーシン
グ)内に組み込まれ、駆動装置により超高速で回転され
、本体内から気体(空気)を吸引する。
[Operation] In a vacuum device, the rotor blade is incorporated into a cylinder (casing) and rotated at an extremely high speed by a drive device to suck gas (air) from within the main body.

[実施例] 第1〜3図は本発明に係る動翼を示し、lは動翼部、2
は圧縮部にして、全体は一体物である。
[Example] Figures 1 to 3 show rotor blades according to the present invention, l is the rotor blade portion, 2
is the compressed part, and the whole is a single piece.

動翼部lにおける各羽根3の基本的な構造は第3図に示
されている。羽根3は付根4の部分は動翼の回転軸方向
に平行に(又は平行に近く)そして、先端5側約1/3
に0〜90″の範囲内の傾斜(ひねり)6がつけである
。なお、羽根3において傾斜6は約l/3であるがもっ
と付根4側からつけてもよい。但し、この傾斜6の効果
は、遠心力から173位で十分であり、これ以上つけて
もあまり効果がない。又、羽根3における傾斜6の部分
は、第3図に示されているように円弧状に形成されてい
る。
The basic structure of each blade 3 in the moving blade portion l is shown in FIG. The root 4 of the blade 3 is parallel (or nearly parallel) to the rotating axis direction of the rotor blade, and about 1/3 of the blade 3 is on the tip 5 side.
An inclination (twist) 6 within the range of 0 to 90'' is applied to the blade 3. Although the inclination 6 is approximately 1/3 on the blade 3, it may be applied from the root 4 side. However, if this inclination 6 is The effect is sufficient at 173rd position from the centrifugal force, and adding more will not have much effect.Also, the slope 6 part of the blade 3 is formed in an arc shape as shown in Fig. 3. There is.

なお、動翼部lにおける羽根3の傾斜6は入側から出側
に向けて徐々に急になるように形成されている。
Incidentally, the slope 6 of the blade 3 in the rotor blade portion l is formed so as to become gradually steeper from the inlet side to the outlet side.

圧縮部2は螺旋状のリブ7によって同一ピッチの螺旋流
路8が形成されており、リブ7゛は第1.2図に示され
ているように入側から出側に向けてその肉厚が徐々に増
している。この結果、螺旋流路8の巾は入側から出側に
向けて徐々に狭くなる。
In the compression part 2, a spiral flow path 8 with the same pitch is formed by spiral ribs 7, and the ribs 7' have a wall thickness that increases from the inlet side to the outlet side as shown in Fig. 1.2. is gradually increasing. As a result, the width of the spiral flow path 8 becomes gradually narrower from the inlet side to the outlet side.

上記構成の動翼は、シリンダー内に組み込まれ、駆動装
置により超高速で回転され、気体を動翼部l及び圧縮部
2て本体内から吸引し、本体内を超真空へと導く。
The rotor blades configured as described above are built into a cylinder and rotated at an ultra-high speed by a drive device, and gas is sucked from within the main body by the rotor blade portion 1 and the compressor portion 2, leading the inside of the main body to an ultra-vacuum.

[本発明の効果] 本発明は以上の如き構成と作用から成り、次の如き効果
を奏するものである。
[Effects of the present invention] The present invention has the above-described structure and operation, and provides the following effects.

a、動翼は、全体が切削加工により一体に構成されてい
るため、従来のように羽根環を重ね合せたり、固定した
りする必要がなく、よって固定手段により動翼が複雑化
したりその分重峻が増したりすることがない。
a. Since the entire rotor blade is constructed as one piece by cutting, there is no need to overlap or fix the blade rings as in the past, and this eliminates the need for fixing means to complicate the rotor blade. There is no increase in severity.

この結果、更に回転数のアップが可能であると共にバラ
ンスが良いので振動、騒音も小さくなる。
As a result, it is possible to further increase the rotational speed, and since the balance is good, vibration and noise are also reduced.

b、刃物で切削加工したため、羽根の表面は平滑となり
、分子の飛散か少なく、性能アップか図れる。
b. Because the blades are cut with a knife, the surface of the blades is smooth and there is less scattering of molecules, which improves performance.

七 羽根は付根側を回転軸に対して平行又は平行に近く
形成し、先に行くに従って0〜90″の範囲で傾斜(ひ
ねり)をつけたので、回転軸方向における強度が増し、
操作ミス等により急激な圧力変動を受けた場合でも曲っ
たり折損等の事故を招く率が低下する。
7. The base side of the blade is formed parallel or nearly parallel to the rotation axis, and the blades are tilted (twisted) in the range of 0 to 90'' as they go forward, increasing the strength in the rotation axis direction.
Even when sudden pressure fluctuations occur due to operational errors, the chances of accidents such as bending or breakage are reduced.

この点は、羽根の断面を円弧状に形成することにより更
に期待てきる。
This point can be further improved by forming the cross section of the blade into an arcuate shape.

d、螺旋流路を徐々に狭く形成したことにより、圧縮効
果が高まり、この分動率が向上する。
d. By gradually narrowing the spiral flow path, the compression effect is enhanced and the division ratio is improved.

00以上の効果により、従来の動翼に比較して20〜3
0%の性情アップが期待できると共に従来例と同等の効
果を発揮させる場合には、羽根の段数を減じて小型化が
可能である。
With an effect of more than 00, it is 20 to 3 times smaller than conventional rotor blades.
If a 0% increase in sexiness can be expected and the same effect as the conventional example can be achieved, the number of stages of the blades can be reduced and the size can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る動翼の正面図、第2図は羽根と螺
旋リブ(螺旋流路)の一部を示す断面図、第3図は羽根
の形状を示す斜視図である。 l・・・・・・動完部     2・・・・・・圧縮部
3・・・・・・羽根      6・・・・・・傾斜(
ひねり)7・・・・・・螺旋リブ    8・・・・・
・螺旋流路実用新案登録出願人 茨 1) 直 大筒2
図 第3図
FIG. 1 is a front view of a rotor blade according to the present invention, FIG. 2 is a sectional view showing a part of the blade and a spiral rib (spiral flow path), and FIG. 3 is a perspective view showing the shape of the blade. l...Moving part 2...Compression part 3...Blade 6...Incline (
Twist) 7...Spiral rib 8...
・Spiral channel utility model registration applicant Ibara 1) Straight large tube 2
Figure 3

Claims (1)

【特許請求の範囲】 1、回転軸から放射状に羽根を突出させると共にこの羽
根を多段に構成して成る動翼において、回転軸と羽根を
一体物から切削加工して構成したことを特徴とするター
ボ分子ポンプの動翼。 2、動翼部に続く圧縮部に形成した螺旋状のリブを出側
に向けて徐々に厚みを増して螺旋流路を徐々に狭く構成
したことを特徴とするターボ分子ポンプの動翼における
圧縮部の構造。 3、付根の部分は回転軸に対して平行又は平行に近く、
先端側に角度をつけて成るターボ分子ポンプの動翼にお
ける羽根の構造。 4、断面を円弧状に形成して成るターボ分子ポンプの動
翼における羽根の構造。
[Claims] 1. A rotor blade having blades protruding radially from a rotating shaft and configured in multiple stages, characterized in that the rotating shaft and the blades are constructed by cutting from a single piece. Moving blades of a turbomolecular pump. 2. Compression in the rotor blade of a turbo-molecular pump, characterized in that a spiral rib formed in the compression section following the rotor blade gradually increases in thickness toward the outlet side to gradually narrow the spiral flow path. Department structure. 3. The root part is parallel or close to parallel to the rotation axis,
The structure of the blade in the rotor blade of a turbomolecular pump, which has an angle on the tip side. 4. The structure of a blade in a rotor blade of a turbo-molecular pump having an arc-shaped cross section.
JP63019990A 1988-01-30 1988-01-30 Moving blade of turbo molecular pump Pending JPH01195992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63019990A JPH01195992A (en) 1988-01-30 1988-01-30 Moving blade of turbo molecular pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63019990A JPH01195992A (en) 1988-01-30 1988-01-30 Moving blade of turbo molecular pump

Publications (1)

Publication Number Publication Date
JPH01195992A true JPH01195992A (en) 1989-08-07

Family

ID=12014609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63019990A Pending JPH01195992A (en) 1988-01-30 1988-01-30 Moving blade of turbo molecular pump

Country Status (1)

Country Link
JP (1) JPH01195992A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248587A (en) * 1999-12-28 2001-09-14 Kashiyama Kogyo Kk Composite vacuum pump
WO2003076809A1 (en) * 2002-03-08 2003-09-18 Leybold Vakuum Gmbh Method for producing the rotor of a drag vacuum pump and a rotor produced according to this method
WO2008136084A1 (en) * 2007-04-23 2008-11-13 Shimadzu Corporation Turbo-molecular pump
WO2023214169A1 (en) * 2022-05-04 2023-11-09 Edwards Limited Rotor blade for a turbomolecular vacuum pump

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56593A (en) * 1979-06-11 1981-01-07 Leybold Heraeus Verwaltung Rotor of turbomolecule pump and its manufacture
JPS58202396A (en) * 1982-05-21 1983-11-25 Hitachi Ltd Turbo molecular pump
JPS61210293A (en) * 1985-03-01 1986-09-18 バルツェルスープファイファー・ゲーエムベーハー Disc having blade, method and apparatus for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56593A (en) * 1979-06-11 1981-01-07 Leybold Heraeus Verwaltung Rotor of turbomolecule pump and its manufacture
JPS58202396A (en) * 1982-05-21 1983-11-25 Hitachi Ltd Turbo molecular pump
JPS61210293A (en) * 1985-03-01 1986-09-18 バルツェルスープファイファー・ゲーエムベーハー Disc having blade, method and apparatus for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248587A (en) * 1999-12-28 2001-09-14 Kashiyama Kogyo Kk Composite vacuum pump
WO2003076809A1 (en) * 2002-03-08 2003-09-18 Leybold Vakuum Gmbh Method for producing the rotor of a drag vacuum pump and a rotor produced according to this method
WO2008136084A1 (en) * 2007-04-23 2008-11-13 Shimadzu Corporation Turbo-molecular pump
WO2023214169A1 (en) * 2022-05-04 2023-11-09 Edwards Limited Rotor blade for a turbomolecular vacuum pump

Similar Documents

Publication Publication Date Title
US8016557B2 (en) Airfoil diffuser for a centrifugal compressor
JP3876195B2 (en) Centrifugal compressor impeller
US7771170B2 (en) Turbine wheel
US3644051A (en) Turbomolecular and stator pump having improved rotor construction
CN102341602B (en) Axial centrifugal compressor with scalable rake angle
US5810557A (en) Fan wheel for an inline centrifugal fan
JP2017193982A (en) compressor
KR20150079892A (en) Compressor
EP0201318B1 (en) High efficiency transonic mixed-flow compressor method and apparatus
US20170198712A1 (en) Impeller blade morphology
JP5445143B2 (en) Turbo molecular pump
US11035380B2 (en) Diffuser vane and centrifugal compressor
JP3957761B2 (en) Friction vacuum pump
US3477381A (en) Turbo-molecular pump
JPH01195992A (en) Moving blade of turbo molecular pump
JP2004044473A (en) Impeller and centrifugal compressor
JP6737839B2 (en) Impeller, centrifugal fluid machine, and fluid device
JPH0553955B2 (en)
JPS61283794A (en) Turbo molecular pump
US2861738A (en) Blades, guide vanes, and the like for fans, turbines and the like
JPS6245999A (en) Impeller of turbocompressor
CN214424762U (en) Impeller for air compressor and air compressor
JP2013019380A (en) Centrifugal compressor
CA2260998C (en) Fan wheel for an inline centrifugal fan
JPH0689758B2 (en) Vortex type turbomachine