JPS645462B2 - - Google Patents

Info

Publication number
JPS645462B2
JPS645462B2 JP57098069A JP9806982A JPS645462B2 JP S645462 B2 JPS645462 B2 JP S645462B2 JP 57098069 A JP57098069 A JP 57098069A JP 9806982 A JP9806982 A JP 9806982A JP S645462 B2 JPS645462 B2 JP S645462B2
Authority
JP
Japan
Prior art keywords
trench
oxide film
silicon oxide
film
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57098069A
Other languages
Japanese (ja)
Other versions
JPS58215053A (en
Inventor
Osamu Kudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP57098069A priority Critical patent/JPS58215053A/en
Publication of JPS58215053A publication Critical patent/JPS58215053A/en
Publication of JPS645462B2 publication Critical patent/JPS645462B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/763Polycrystalline semiconductor regions

Description

【発明の詳細な説明】 この発明は、半導体集積回路装置に関する。[Detailed description of the invention] The present invention relates to a semiconductor integrated circuit device.

近年、半導体集積回路装置の集積度の向上を図
るため分離領域に溝を堀る所謂「溝堀り素子分離
法」が注目されている。第1図に示す方式は、シ
リコン基板101にシリコン酸化膜103、シリ
コン窒化膜104を成長した後、溝102を堀つ
た後、再びシリコン窒化膜を成長し、異方性ドラ
イエツチング法を用いて溝の側面部に窒化膜10
4を残し(第1図A)、選択酸化法により横方向
の食い込み、即ち、パターン変換差が小さくかつ
高いフイールド反転電圧を実現している(第1図
B)。しかしながら、この方式では、酸化中に基
板にストレスを与えるため結晶欠陥を導入し、特
性劣化を誘起するという欠点があつた。また第2
図の方式では、シリコン基板201の溝202の
埋め込みにシリコン酸化膜203に被着せる多結
晶シリコン膜202を十分な厚さに成長し(第2
図A)、フオトレジスト塗布後の全面ドライエツ
チング法の併用等による平滑法を用いることによ
り、第2図Bに示すように導入欠陥の少い平坦な
素子分離法を実現している。しかしながら、この
方法では、高いフイールド反転電圧を得ることが
難しいという欠点があつた。
In recent years, in order to improve the degree of integration of semiconductor integrated circuit devices, a so-called "groove element isolation method" in which a groove is dug in an isolation region has been attracting attention. The method shown in FIG. 1 involves growing a silicon oxide film 103 and a silicon nitride film 104 on a silicon substrate 101, digging a trench 102, growing a silicon nitride film again, and using an anisotropic dry etching method. Nitride film 10 on the side surface of the groove
4 (FIG. 1A), the selective oxidation method realizes a small lateral encroachment, that is, a small pattern conversion difference, and a high field reversal voltage (FIG. 1B). However, this method has the disadvantage that stress is applied to the substrate during oxidation, thereby introducing crystal defects and inducing deterioration of characteristics. Also the second
In the method shown in the figure, a polycrystalline silicon film 202 is grown to a sufficient thickness (second
By using a smoothing method in combination with a dry etching method on the entire surface after applying a photoresist as shown in FIG. A), a flat element isolation method with fewer introduced defects is realized as shown in FIG. 2B. However, this method has the disadvantage that it is difficult to obtain a high field inversion voltage.

この発明の目的は、溝堀り素子分離法を用い
て、高いフイールド反転電圧をもつ、かつ結晶欠
陥の少い、したがつて特性の優れた信頼性の高い
半導体集積回路装置を提供することにある。
An object of the present invention is to provide a highly reliable semiconductor integrated circuit device that has a high field reversal voltage, has few crystal defects, and has excellent characteristics by using a trench isolation method. be.

この発明による半導体集積回路装置は、溝堀り
素子分離法を用いた半導体集積回路装置におい
て、溝の底部に成長させた第1のシリコン酸化膜
が溝の側面部に成長させた第2のシリコン酸化膜
より厚く、かつ溝の段差を埋めるには不充分な膜
厚をもち、残された段差は多結晶シリコン膜で埋
められており、溝の底部の半導体基体に前記第1
のシリコン酸化膜を介してフイールド反転防止用
拡散層を具備する素子分離領域を有し、前記溝の
側面部の前記半導体基体に前記第2のシリコン酸
化膜を介して前記半導体基体と逆導電型の不純物
拡散層が設けられ、溝埋め用の前記多結晶シリコ
ンは、電極を形成するのに十分な不純物が導入さ
れており、かつ一定電位に結線され、前記溝埋め
用多結晶シリコン膜と、前記不純物拡散層とが相
対向する前記溝の側面部をメモリ素子の容量部の
一部として利用することを特徴としている。
A semiconductor integrated circuit device according to the present invention is a semiconductor integrated circuit device using a trench digging element isolation method, in which a first silicon oxide film grown on the bottom of a trench forms a second silicon oxide film grown on a side surface of the trench. It is thicker than the oxide film and insufficiently thick to fill the steps in the trench, and the remaining steps are filled with a polycrystalline silicon film.
an element isolation region provided with a diffusion layer for preventing field inversion through a silicon oxide film, and an element isolation region having a conductivity type opposite to that of the semiconductor base through a second silicon oxide film to the semiconductor base on the side surface of the trench. an impurity diffusion layer is provided, the polycrystalline silicon for trench filling has sufficient impurities introduced to form an electrode, and is connected to a constant potential, and the polycrystalline silicon for trench filling is The present invention is characterized in that a side surface of the trench facing the impurity diffusion layer is used as a part of a capacitor of the memory element.

この発明による装置は、溝の一部をシリコン酸
化膜で埋めるだけであるため、半導体基板に過大
なストレスを加えられることがなく、結晶欠陥の
導入を最小にできる。また、溝の底部のシリコン
酸化膜厚を最適化し、フイールド反転防止用不純
物拡散層を形成することにより十分高いフイール
ド反転電圧を実現できる。シリコン酸化膜で埋め
られていない段差部については、多結晶シリコン
膜で埋められており、十分な平滑化ができるた
め、配線の断線等の信頼性の問題を実質上皆無に
できる。
Since the device according to the present invention only partially fills the trench with a silicon oxide film, excessive stress is not applied to the semiconductor substrate, and the introduction of crystal defects can be minimized. Furthermore, by optimizing the thickness of the silicon oxide film at the bottom of the trench and forming an impurity diffusion layer for preventing field inversion, a sufficiently high field inversion voltage can be achieved. The stepped portions that are not filled with the silicon oxide film are filled with the polycrystalline silicon film and can be sufficiently smoothed, so that reliability problems such as wiring breaks can be virtually eliminated.

また、多結晶シリコン膜を一定電位に結線され
た電極として用い、溝の底部と側面部に成長され
るシリコン酸化膜厚の違いを利用して、1トラン
ジスタ/セル型の容量部の面積の増大を図ること
ができ、ダイナミツクMOSメモリの高集積化を
実現できる。
In addition, by using a polycrystalline silicon film as an electrode connected to a constant potential and utilizing the difference in the thickness of the silicon oxide film grown on the bottom and side surfaces of the trench, the area of the capacitor part of the 1-transistor/cell type is increased. This makes it possible to achieve high integration of dynamic MOS memory.

次に図面を用いてこの発明の実施例について説
明する。
Next, embodiments of the present invention will be described using the drawings.

第3図は、この発明に関する第1の参考例の素
子間分離部分の断面図で、シリコン基板301上
に2ミクロンの深さに堀られた溝の底部には0.5
ミクロンのシリコン酸化膜303が形成されてお
り、溝の側面および溝部以外の領域には500Åの
シリコン酸化膜302が成長されている。溝によ
る残された1.7ミクロンの段差は多結晶シリコン
膜304で埋められ、段差のほとんど無視できる
素子間分離が基板への欠陥導入なしに実現でき
る。
FIG. 3 is a cross-sectional view of the element isolation part of the first reference example of the present invention, in which the bottom of a groove dug to a depth of 2 microns on a silicon substrate 301 has a depth of 0.5 microns.
A micron silicon oxide film 303 is formed, and a 500 Å silicon oxide film 302 is grown on the sides of the trench and in areas other than the trench portion. The 1.7 micron step difference left by the groove is filled with the polycrystalline silicon film 304, and isolation between elements with almost negligible step difference can be achieved without introducing defects into the substrate.

また第4図に示すこの発明に関連する第2の参
考例では、溝の底部の厚いシリコン酸化膜403
に接するシリコン基板部には、P型シリコンを用
いた場合にはp型不純物拡散層404が形成され
ており、高いフイールド反転電圧を実現し、さら
に埋め込み用に用いられている多結晶シリコン膜
405には、リンが添加されて0v電位に結線さ
れるためきわめて安定な素子間分離を実現でき
る。
Further, in a second reference example related to the present invention shown in FIG. 4, a thick silicon oxide film 403 at the bottom of the trench is
When P-type silicon is used, a p-type impurity diffusion layer 404 is formed in the silicon substrate portion in contact with the polycrystalline silicon film 405 used for embedding. Since phosphorus is added to the wires and the wires are connected to 0V potential, extremely stable isolation between elements can be achieved.

第5図は、この発明の一実施例で、この発明に
よる素子間分離法を用いて1トランジスタ/セル
型のダイナミツクMOSメモリを構成した例であ
る。P型シリコン基板501上に溝を形成し、溝
の底部では0.5ミクロンのフイールド酸化膜50
3およびフイールド反転防止用p型不純物拡散層
504が形成されているため、フイールド反転電
圧は30v以上あり安定な素子間分離ができる。ま
た溝の側面部は200Åのシリコン酸化膜502が
成長されており、セル容量の一部を形成してい
る。セル容量の対向電極はn型不純物拡散層50
5と溝埋め用多結晶シリコン膜506で形成され
ている。他のセル構成は、通常の1トランジス
タ/セル型と同一であり、第2の多結晶シリコン
膜508でトランスフアー・ゲートを形成し、ア
ルミニウム配線511でビツト線を形成してい
る。この発明によれば、溝側面部をセル容量の一
部として利用できるため、三次元的な容量部構成
が可能となり、256Kビツトあるいは1Mビツト等
の実現が可能となる。
FIG. 5 shows an embodiment of the present invention, in which a one-transistor/cell type dynamic MOS memory is constructed using the element isolation method according to the present invention. A trench is formed on a P-type silicon substrate 501, and a 0.5 micron field oxide film 50 is formed at the bottom of the trench.
3 and a p-type impurity diffusion layer 504 for preventing field inversion, the field inversion voltage is 30 V or more, allowing stable isolation between elements. A silicon oxide film 502 with a thickness of 200 Å is grown on the side surfaces of the trench, forming part of the cell capacitance. The counter electrode of the cell capacitor is an n-type impurity diffusion layer 50
5 and a trench-filling polycrystalline silicon film 506. The other cell configurations are the same as the normal one-transistor/cell type, with the second polycrystalline silicon film 508 forming the transfer gate, and the aluminum wiring 511 forming the bit line. According to this invention, since the groove side surface can be used as a part of the cell capacity, a three-dimensional capacitor configuration is possible, and 256K bits or 1M bits can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は従来の溝堀り素子間分離法の
説明図であり、101はシリコン基板、102は
溝、103はシリコン酸化膜、104はシリコン
窒化膜、105は溝埋め用シリコン酸化膜、20
1はシリコン基板、202は溝、203はシリコ
ン酸化膜、204は溝埋め用多結晶シリコン膜、
である。 第3図および第4図はそれぞれこの発明に関連
する素子間分離法の参考例であり、301はシリ
コン基板、302は溝側面部薄いシリコン酸化
膜、303は溝底部厚いシリコン酸化膜、304
は溝埋め用多結晶シリコン膜、401はシリコン
基板、402は溝側面部薄いシリコン酸化膜、4
03は溝底面部厚いシリコン酸化膜、404はフ
イールド反転防止用不純物拡散層、405は溝埋
め用多結晶シリコン膜である。 第5図はこの発明を1トランジスタ/セル型の
ダイナミツクMOSメモリに適用した実施例であ
り、501はp型シリコン基板、502は溝側面
部容量ゲートシリコン酸化膜、503は溝底部フ
イールドシリコン酸化膜、504はフイールド反
転防止用p型拡散層、506は容量電極となる溝
埋め用多結晶シリコン膜、508はトランスフア
ー・ゲート第2多結晶シリコン電極、511はア
ルミニウムビツト線である。
FIG. 1 and FIG. 2 are explanatory diagrams of the conventional trench isolation method, in which 101 is a silicon substrate, 102 is a trench, 103 is a silicon oxide film, 104 is a silicon nitride film, and 105 is silicon for filling the trench. Oxide film, 20
1 is a silicon substrate, 202 is a groove, 203 is a silicon oxide film, 204 is a polycrystalline silicon film for filling the groove,
It is. 3 and 4 are reference examples of the device isolation method related to the present invention, respectively, in which 301 is a silicon substrate, 302 is a thin silicon oxide film on the side surfaces of the trench, 303 is a thick silicon oxide film on the bottom of the trench, and 304
4 is a polycrystalline silicon film for filling the trench, 401 is a silicon substrate, 402 is a thin silicon oxide film on the side surface of the trench, 4
03 is a thick silicon oxide film at the bottom of the trench, 404 is an impurity diffusion layer for preventing field inversion, and 405 is a polycrystalline silicon film for filling the trench. FIG. 5 shows an embodiment in which the present invention is applied to a one-transistor/cell type dynamic MOS memory, in which 501 is a p-type silicon substrate, 502 is a capacitance gate silicon oxide film on the side surface of the trench, and 503 is a field silicon oxide film on the bottom of the trench. , 504 is a p-type diffusion layer for preventing field inversion, 506 is a trench-filling polycrystalline silicon film serving as a capacitor electrode, 508 is a transfer gate second polycrystalline silicon electrode, and 511 is an aluminum bit line.

Claims (1)

【特許請求の範囲】[Claims] 1 溝堀り素子分離法を用いた半導体集積回路装
置において、溝の底部に成長させた第1のシリコ
ン酸化膜が溝の側面部に成長させた第2のシリコ
ン酸化膜より厚く、かつ溝の段差を埋めるには不
充分な膜厚をもち、残された段差は多結晶シリコ
ン膜で埋められており、溝の底部の半導体基体に
前記第1のシリコン酸化膜を介してフイールド反
転防止用拡散層を具備する素子分離領域を有し、
前記溝の側面部の前記半導体基体に前記第2のシ
リコン酸化膜を介して前記半導体基体と逆導電型
の不純物拡散層が設けられ、溝埋め用の前記多結
晶シリコンは、電極を形成するのに十分な不純物
が導入されており、かつ一定電位に結線され、前
記溝埋め用多結晶シリコン膜と、前記不純物拡散
層とが相対向する前記溝の側面部をメモリ素子の
容量部の一部として利用することを特徴とする半
導体集積回路装置。
1 In a semiconductor integrated circuit device using the trench trench isolation method, the first silicon oxide film grown on the bottom of the trench is thicker than the second silicon oxide film grown on the side surfaces of the trench, and The film thickness is insufficient to fill the step, and the remaining step is filled with a polycrystalline silicon film, and the semiconductor substrate at the bottom of the trench is diffused to prevent field reversal through the first silicon oxide film. an element isolation region comprising a layer;
An impurity diffusion layer of a conductivity type opposite to that of the semiconductor substrate is provided on the semiconductor substrate on the side surface of the groove via the second silicon oxide film, and the polycrystalline silicon for filling the groove is used to form an electrode. A portion of the capacitive portion of the memory element is connected to a side surface of the trench in which sufficient impurities are introduced and connected to a constant potential, and the trench-filling polycrystalline silicon film and the impurity diffusion layer face each other. A semiconductor integrated circuit device characterized in that it is used as a semiconductor integrated circuit device.
JP57098069A 1982-06-08 1982-06-08 Semiconductor integrated circuit device Granted JPS58215053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57098069A JPS58215053A (en) 1982-06-08 1982-06-08 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57098069A JPS58215053A (en) 1982-06-08 1982-06-08 Semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPS58215053A JPS58215053A (en) 1983-12-14
JPS645462B2 true JPS645462B2 (en) 1989-01-30

Family

ID=14210045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57098069A Granted JPS58215053A (en) 1982-06-08 1982-06-08 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS58215053A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012752A (en) * 1983-07-01 1985-01-23 Nippon Telegr & Teleph Corp <Ntt> Semiconductor memory device and manufacture thereof
JPH079943B2 (en) * 1984-02-22 1995-02-01 日本電気株式会社 Semiconductor memory device and manufacturing method thereof
JPS60250645A (en) * 1984-05-25 1985-12-11 Nec Corp Semiconductor device
JPS6151868A (en) * 1984-08-21 1986-03-14 Nec Corp Semiconductor device
JPS6182458A (en) * 1984-09-29 1986-04-26 Toshiba Corp Semiconductor memory device
JPH0680804B2 (en) * 1984-12-18 1994-10-12 株式会社東芝 Method for manufacturing semiconductor device
JPS61270863A (en) * 1985-05-25 1986-12-01 Mitsubishi Electric Corp Semiconductor memory device
JPH0719847B2 (en) * 1985-12-28 1995-03-06 株式会社東芝 Method of manufacturing dynamic memory cell
US6603173B1 (en) 1991-07-26 2003-08-05 Denso Corporation Vertical type MOSFET
US6015737A (en) * 1991-07-26 2000-01-18 Denso Corporation Production method of a vertical type MOSFET

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53108322A (en) * 1977-01-31 1978-09-21 Texas Instruments Inc Mos nntype channel silicon gate random access memory cell and method of producing same
US4249194A (en) * 1977-08-29 1981-02-03 Texas Instruments Incorporated Integrated circuit MOS capacitor using implanted region to change threshold
JPS5478990A (en) * 1977-12-07 1979-06-23 Cho Lsi Gijutsu Kenkyu Kumiai Compound dynamic memory cell
JPS5643171U (en) * 1979-09-10 1981-04-20
JPS5760851A (en) * 1980-09-17 1982-04-13 Hitachi Ltd Dielectric isolation of semiconductor integrated circuit
JPH0612804B2 (en) * 1982-06-02 1994-02-16 株式会社東芝 Semiconductor memory device

Also Published As

Publication number Publication date
JPS58215053A (en) 1983-12-14

Similar Documents

Publication Publication Date Title
KR920006260B1 (en) Dynamic type semiconductor device and its manufacturing method
KR0142575B1 (en) Semiconductor memory and its manufacturing method
KR100286094B1 (en) Semiconductor device with bonding layer and manufacturing method thereof
JP2655859B2 (en) Semiconductor storage device
JP2994110B2 (en) Semiconductor storage device
JPH11163329A (en) Semiconductor device and manufacture thereof
JPS61280654A (en) Vertical dram cell and making thereof
JPH0423832B2 (en)
JPH0616549B2 (en) Semiconductor integrated circuit device
US5804478A (en) Method of forming a trench-type semiconductor memory device
JPS645462B2 (en)
JPS62140456A (en) Semiconductor storage
JPH07161936A (en) Semiconductor storage device and its manufacture
US6181014B1 (en) Integrated circuit memory devices having highly integrated SOI memory cells therein
JP2969865B2 (en) Dynamic semiconductor memory device and method of manufacturing the same
KR910009617B1 (en) Semiconductor memory device and manufacture there of
JPH0654801B2 (en) Semiconductor memory cell and manufacturing method thereof
JP2969876B2 (en) Semiconductor device and manufacturing method thereof
JPH04306875A (en) Structure of semiconductor memory device
JP3018017B2 (en) Semiconductor device and manufacturing method thereof
JPS6054472A (en) Semiconductor memory and manufacture thereof
JPS6362370A (en) Manufacture of semiconductor device
JP3000738B2 (en) Semiconductor memory cell and method of manufacturing the same
JP2668873B2 (en) Semiconductor storage device
JPH0480540B2 (en)