JPS6362370A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6362370A
JPS6362370A JP61208145A JP20814586A JPS6362370A JP S6362370 A JPS6362370 A JP S6362370A JP 61208145 A JP61208145 A JP 61208145A JP 20814586 A JP20814586 A JP 20814586A JP S6362370 A JPS6362370 A JP S6362370A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
capacitor
drain
area
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61208145A
Other languages
Japanese (ja)
Other versions
JPH0734451B2 (en
Inventor
Kazuo Kunimasa
国政 一男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61208145A priority Critical patent/JPH0734451B2/en
Publication of JPS6362370A publication Critical patent/JPS6362370A/en
Publication of JPH0734451B2 publication Critical patent/JPH0734451B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor

Abstract

PURPOSE:To reduce the area of a cell, by digging a deep groove, which does not reach a drain, in a drain hole region, and increasing the area of the side wall of a lower electrode. CONSTITUTION:A hole is provided for a drain contact region in an interlayer insulating film 7. A polycrystalline silicon layer 8 is grown. The unnecessary area of the polycrystalline silicon 8 other than the lower electrode of a capacitor is removed by anisotropic dry etching. Etching is also performed so that the polycrystalline silicon layer 8 in the drain hole part remains. As a dielectric material for the capacitor, the surface of the polycrystalline silicon 8 is oxidized, a thermal oxide film 10 is formed, a polycrystalline silicon layer 11 as the upper electrode of the capacitor and an interlayer insulating film 12 are formed, and a bit line 13 is formed so as to contact with a source diffused layer 5. Thus, the capacitance value of the capacitor is increased, the area of a cell can be reduced and miniaturization becomes easy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特にMIS形ダ
イナミックRAMのメモリーセルの製造に適用する半導
体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device applied to manufacturing a memory cell of an MIS type dynamic RAM.

〔従来の技術〕[Conventional technology]

従来、ダイナミックR/4M(以下DRAMと記す)の
セル構造は、熱酸化膜を誘電体材料としてシリコン基板
と多結晶シリコンで平面的にキャバシIk作るブレーナ
形セル、シリコン基板に溝を堀夛、溝の側壁および底面
に不純物をドープし、埋め込みポリシリコンと溝の側壁
との間でキャパシタを作る溝形セル、あるいは、ドレイ
ンへ直接多結晶シリコンを成長させ、熱酸化を行ったあ
と第二膚の多結晶シリコン層を形成し、多結晶シリコン
間でキャパシタを作るスタックドキャパシタ形セルがあ
る。
Conventionally, the cell structure of Dynamic R/4M (hereinafter referred to as DRAM) has been a brainer type cell in which a two-dimensional cavity Ik is made of a silicon substrate and polycrystalline silicon using a thermal oxide film as a dielectric material, a groove is dug in the silicon substrate, A trench cell is created by doping the sidewalls and bottom of the trench with impurities to create a capacitor between the buried polysilicon and the trench sidewall, or by growing polycrystalline silicon directly onto the drain and thermally oxidizing it. There is a stacked capacitor type cell that forms a polycrystalline silicon layer and creates a capacitor between the polycrystalline silicon layers.

スタックドキャパシタ形セルについて、第2図を用いて
従来の製造方法を説明する。
A conventional manufacturing method for a stacked capacitor type cell will be explained with reference to FIG.

P型シリコン基板10表面に、フィールド酸化膜2とゲ
ート酸化膜3とを形成し、ゲート電極としてポリサイド
ゲートを極4を配列させ、N型不純物(たとえばAs)
をポリサイドゲート電極4にドレインコンタクト領域を
開孔した後、不純物(たとえばP)をドープした多結晶
シリコン8の層を成長する(第2図(a))。さらに、
キャパシタの電極領域をドライエツチングにて形成し、
キャパシタの誘電体材料として、多結晶シリコン8t−
酸化することによ勺熱酸化膜10を形成する(第2図(
b) )。さらに、キャパシタの上部1!極として不純
物(たとえばP)をドープした多結晶シリコン層11を
形成し、層間絶縁膜12を形成し、ソース拡散層5にコ
ンタクトをとりビット線13を形成する(第2図(C)
)。
A field oxide film 2 and a gate oxide film 3 are formed on the surface of a P-type silicon substrate 10, polycide gate poles 4 are arranged as gate electrodes, and an N-type impurity (for example, As) is formed.
After opening a drain contact region in the polycide gate electrode 4, a layer of polycrystalline silicon 8 doped with an impurity (for example, P) is grown (FIG. 2(a)). moreover,
The electrode area of the capacitor is formed by dry etching,
Polycrystalline silicon 8T- is used as the dielectric material of the capacitor.
A thermal oxide film 10 is formed by oxidation (see FIG. 2).
b) ). Furthermore, the upper part of the capacitor 1! A polycrystalline silicon layer 11 doped with an impurity (for example, P) is formed as a pole, an interlayer insulating film 12 is formed, and a bit line 13 is formed by contacting the source diffusion layer 5 (FIG. 2(C)).
).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の半導体装置の製造方法を適用したDRA
Mのセル構造では、キャパシタの下部電極である多結晶
シリコン8が薄いため多結晶シリコン8の側壁の容量が
少なく、キャパシタとしての総面積を増やし容:tt−
増加するためには、多結晶シリコン80面積を広くとる
必要があり、微細化が困難であるという欠点がある。
DRA using the conventional semiconductor device manufacturing method described above
In the cell structure of M, since the polycrystalline silicon 8, which is the lower electrode of the capacitor, is thin, the capacitance of the sidewalls of the polycrystalline silicon 8 is small, increasing the total area as a capacitor and increasing the capacity: tt-
In order to increase the size, it is necessary to increase the area of the polycrystalline silicon 80, which has the disadvantage that miniaturization is difficult.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置の製造方法は、第1の導電形の半導
体基板上に第2の導電形の不純物全導入しソースおよび
ドレインを形成する工程と、このドレインの表面に接し
て第1の多結晶半導体の層を前記ドレインの開孔領域上
に平坦に成長させ、異方性エッチングにより前記ドレイ
ンの領域上の前記第1の多結晶半導体に前記ドレインに
達しないような溝を形成し、かつ、不要な前記第1の多
結晶半導体を除去する工程と、残された前記第1の多結
晶半導体の表面を薄く酸化して酸化膜を形成する工程と
、この酸化膜上に第2の多結晶半導体層を形成し、容量
素子を形成する工程とを有している。
The method for manufacturing a semiconductor device of the present invention includes a step of completely introducing impurities of a second conductivity type onto a semiconductor substrate of a first conductivity type to form a source and a drain, and a step of forming a source and a drain in contact with the surface of the drain. a layer of crystalline semiconductor is grown flat on the opening region of the drain, a groove is formed in the first polycrystalline semiconductor over the region of the drain by anisotropic etching, and does not reach the drain; , a step of removing unnecessary first polycrystalline semiconductor, a step of thinly oxidizing the surface of the remaining first polycrystalline semiconductor to form an oxide film, and a step of forming a second polycrystalline semiconductor on this oxide film. The method includes steps of forming a crystalline semiconductor layer and forming a capacitive element.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例を適用したDRAMのセル構
造の縦断面図?工程順に示した図面である。
FIG. 1 is a vertical cross-sectional view of a DRAM cell structure to which an embodiment of the present invention is applied. It is a drawing shown in the order of steps.

層間絶縁膜7のドレインコンタクト領域を開孔する(第
1図(a))。ドレイン開孔部の深さは約5oooXで
あり、多結晶シリコン8ONを3μmの厚さに、LPG
VDにより成長すると、多結晶シリコン80表面は平坦
になる(第1図(b))。さらに、レジスミf塗布し、
キャパシタの下部電極領域のドレイン開孔部の内側と不
要領域とのレジストをフォトリソグラフィによシ除去す
る(第1図(C))。この後、異方性ドライエッチング
により多結晶シリコン8のキャパシタ下部t&以外の不
要部分を除去し、またドレイン開孔部の内側の多結晶シ
リコン80層を残すようにエツチングする。
A drain contact region of the interlayer insulating film 7 is opened (FIG. 1(a)). The depth of the drain hole is about 5oooX, and the polycrystalline silicon 8ON is 3μm thick,
When grown by VD, the surface of polycrystalline silicon 80 becomes flat (FIG. 1(b)). Furthermore, apply Regismi f,
The resist on the inside of the drain opening in the lower electrode region of the capacitor and on unnecessary regions is removed by photolithography (FIG. 1(C)). Thereafter, unnecessary portions of the polycrystalline silicon 8 other than the capacitor lower part t& are removed by anisotropic dry etching, and etching is performed so as to leave the polycrystalline silicon 80 layer inside the drain opening.

ドレイン開孔領域の多結晶シリコン8の層の膜厚が大で
あるため、1度のドライエツチングによ多形成できる。
Since the layer of polycrystalline silicon 8 in the drain opening region has a large thickness, a polycrystalline silicon layer 8 can be formed by one dry etching.

さらに、キャパシタの誘電体材料として、多結晶シリコ
ン80表面を酸化し、熱酸化膜10を形成する(第1図
(d))。さらに、キャパシタの上部電極として多結晶
シリコン層11・層間絶縁膜12’i形放し、ソース拡
散j*5にコンタクトをとυビット線13を形成する(
第1図(e))。
Furthermore, the surface of the polycrystalline silicon 80 is oxidized to form a thermal oxide film 10 as a dielectric material for the capacitor (FIG. 1(d)). Furthermore, the polycrystalline silicon layer 11 and interlayer insulating film 12'i type are left as the upper electrode of the capacitor, and a contact is made to the source diffusion j*5 to form the υ bit line 13 (
Figure 1(e)).

第1図(e) において、多結晶シリコン8の大きさを
5μm角、ドレイン開孔領域内部の溝の大きさ′ft1
μm角、多結晶シリコン8の厚さを3μ扉とし、誘電体
とする熱酸化膜10の厚さを2001とすると、コンデ
ンサの容量値は、172fF となる。従来のDRAM
の容量形成方法では、下部電極の大きさt−5μm角と
し、熱酸化膜の厚さを200Xとすると89 fFであ
シ、本発明を適用したキャパシタの容量値は、従来のも
のに比べ93%増となる。このためセル面itRを小さ
くでき微細化が容易となる。
In FIG. 1(e), the size of the polycrystalline silicon 8 is 5 μm square, and the size of the groove inside the drain opening region is ′ft1.
Assuming that the thickness of the polycrystalline silicon 8 is 3 μm square and the thickness of the thermal oxide film 10 serving as a dielectric is 200 μm, the capacitance value of the capacitor is 172 fF. Conventional DRAM
In the capacitor forming method, if the size of the lower electrode is t-5 μm square and the thickness of the thermal oxide film is 200X, the capacitance value of the capacitor to which the present invention is applied is 93 fF compared to the conventional one. % increase. Therefore, the cell surface itR can be made smaller and miniaturization becomes easier.

なお、キャパシタの誘電体としては、酸化膜と肪電率の
高い窒化族の二層構造によシ容量値を大きくすることが
できる。
Note that the capacitance value can be increased by using a two-layer structure of an oxide film and a nitride group having a high fat charge as the dielectric material of the capacitor.

さらに、1つの溝だけでなく、微細加工技術の限界範囲
内で複数個の溝をキャパシタの下部電極内に形成するこ
とによシ、容量をさらに太きくすることかできる。
Furthermore, by forming not only one groove but a plurality of grooves in the lower electrode of the capacitor within the limits of microfabrication technology, the capacitance can be further increased.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、キャパシタの下部電極で
ある多結晶シリコンをドレイン開孔領域の段差に比べ厚
く成長することによシ平坦にし、さらに異方性ドライエ
ッチングによりトレイン開孔領域の内部にドレインに達
しない溝を深<mp、下部電極の側壁面積を増加できる
ので、DRAMのセル面積を小さくできる効果があり、
また、本発明はスタックドキャパシタ構造であるので、
パッケージ材料などから出るα線によってセル情報を破
壊するソフトエラーに対し、ドレインの面積が小さいた
め有利であるという効果もある。
As explained above, in the present invention, polycrystalline silicon, which is the lower electrode of a capacitor, is grown thicker than the step in the drain hole region to make it flat, and then anisotropic dry etching is performed to form the inside of the train hole region. Since the depth of the groove that does not reach the drain can be increased, the side wall area of the lower electrode can be increased, which has the effect of reducing the DRAM cell area.
Furthermore, since the present invention has a stacked capacitor structure,
Another advantage is that the drain area is small, which is advantageous against soft errors that destroy cell information due to alpha rays emitted from package materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(e) it、本発明の一実施例全適用
したDRAMセル構造の製造工程を示す縦断面図、第2
図(a)〜(e)は、従来の半導体装置の製造方法によ
るDRAMセル構造の製造工程を示す縦断面図である。 1・・・・・・Piシリコン基板、2・・・・・・フィ
ールド酸化膜、3・・・・・・ゲート酸化膜、4・・・
・・・ポリサイドゲート電極、5・・・・・・ソース拡
散層、6・・・・・・ドレイン拡散層、7・・・・・・
層間絶縁膜、8・・・・・・多結晶シリコン 9・・・
・・・7オトVシスト、10・・・・・・熱酸化膜、1
1・・・・・・多結晶シリコン層、12・・・・・・層
間絶縁膜、13・・・・・・ビット線。 代理人 弁理士  内 原   晋(,1,jj胃もゝ
 5− 肩1回 7:屑関絶跋腫   笠1 回
FIGS. 1(a) to 1(e) are longitudinal sectional views showing the manufacturing process of a DRAM cell structure to which all embodiments of the present invention are applied;
Figures (a) to (e) are longitudinal cross-sectional views showing the manufacturing process of a DRAM cell structure by a conventional semiconductor device manufacturing method. 1... Pi silicon substrate, 2... Field oxide film, 3... Gate oxide film, 4...
...Polycide gate electrode, 5...Source diffusion layer, 6...Drain diffusion layer, 7...
Interlayer insulating film, 8...polycrystalline silicon 9...
...7 Oto V cyst, 10...Thermal oxide film, 1
1... Polycrystalline silicon layer, 12... Interlayer insulating film, 13... Bit line. Agent Patent Attorney Susumu Uchihara (,1,jj Stomach also ゝ 5- Shoulder 1 time 7: Kuzukanzetsu Gonomas Kasa 1 time

Claims (1)

【特許請求の範囲】[Claims] 第1の導電形の半導体基板上に第2の導電形の不純物を
導入しソースおよびドレインを形成する工程と、このド
レインの表面に接して第1の多結晶半導体の層を前記ド
レインの開孔領域上に平坦に成長させ、異方性エッチン
グにより前記ドレインの領域上の前記第1の多結晶半導
体に前記ドレインに達しないような溝を形成し、かつ、
不要な前記第1の多結晶半導体を除去する工程と、残さ
れた前記第1の多結晶半導体の表面を薄く酸化して酸化
膜を形成する工程と、この酸化膜上に第2の多結晶半導
体層を形成し、容量素子を形成する工程とを有すること
を特徴とする半導体装置の製造方法。
a step of introducing impurities of a second conductivity type onto a semiconductor substrate of a first conductivity type to form a source and a drain; grow flat on the region, and form a groove in the first polycrystalline semiconductor on the drain region by anisotropic etching so as not to reach the drain, and
a step of removing unnecessary first polycrystalline semiconductor; a step of thinly oxidizing the surface of the remaining first polycrystalline semiconductor to form an oxide film; and a step of forming a second polycrystalline semiconductor on this oxide film. 1. A method for manufacturing a semiconductor device, comprising the steps of forming a semiconductor layer and forming a capacitive element.
JP61208145A 1986-09-03 1986-09-03 Method for manufacturing semiconductor device Expired - Lifetime JPH0734451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61208145A JPH0734451B2 (en) 1986-09-03 1986-09-03 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61208145A JPH0734451B2 (en) 1986-09-03 1986-09-03 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS6362370A true JPS6362370A (en) 1988-03-18
JPH0734451B2 JPH0734451B2 (en) 1995-04-12

Family

ID=16551380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61208145A Expired - Lifetime JPH0734451B2 (en) 1986-09-03 1986-09-03 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0734451B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226065A (en) * 1988-06-07 1990-01-29 Samsung Electron Co Ltd Stacked capacitor dram cell and its manufacture
JPH02134866A (en) * 1988-11-15 1990-05-23 Nec Corp Semiconductor storage device
US5227322A (en) * 1991-08-23 1993-07-13 Samsung Electronics Co., Ltd. Method for manufacturing a highly integrated semiconductor device having a capacitor of large capacitance
KR100276955B1 (en) * 1989-09-08 2000-12-15 니시무로 타이죠 Semiconductor memory device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123687A (en) * 1977-04-04 1978-10-28 Nec Corp Binary memory element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123687A (en) * 1977-04-04 1978-10-28 Nec Corp Binary memory element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226065A (en) * 1988-06-07 1990-01-29 Samsung Electron Co Ltd Stacked capacitor dram cell and its manufacture
JPH02134866A (en) * 1988-11-15 1990-05-23 Nec Corp Semiconductor storage device
KR100276955B1 (en) * 1989-09-08 2000-12-15 니시무로 타이죠 Semiconductor memory device
US5227322A (en) * 1991-08-23 1993-07-13 Samsung Electronics Co., Ltd. Method for manufacturing a highly integrated semiconductor device having a capacitor of large capacitance

Also Published As

Publication number Publication date
JPH0734451B2 (en) 1995-04-12

Similar Documents

Publication Publication Date Title
JPH0682800B2 (en) Semiconductor memory device
KR960043227A (en) DRAM (DRAM) cell and manufacturing method thereof
JPH0793371B2 (en) Semiconductor device and manufacturing method thereof
TW200406040A (en) Floating gate memory fabrication methods comprising a field dielectric etch with a horizontal etch component
JP2002222873A (en) Improved vertical mosfet
JP2885540B2 (en) Manufacturing method of memory cell
JPS62140456A (en) Semiconductor storage
JPS6362370A (en) Manufacture of semiconductor device
JPH04287366A (en) Semiconductor integrated circuit device and its manufacture
JPH06120446A (en) Semiconductor storage device and manufacture thereof
JPH05291528A (en) Semiconductor memory device and manufacture thereof
JPS63260166A (en) Semiconductor memory device and manufacture thereof
JPS63227050A (en) Semiconductor memory device and manufacture thereof
JPS6156449A (en) Semiconductor memory device
JPH1174475A (en) Semiconductor integrated circuit device and its manufacture
JP2827377B2 (en) Semiconductor integrated circuit
JPS639965A (en) Manufacture of semiconductor storage device
JP3000738B2 (en) Semiconductor memory cell and method of manufacturing the same
JP2633577B2 (en) Dynamic memory cell and method of manufacturing the same
JP2583123B2 (en) Method of forming memory cell
JPS62114263A (en) Semiconductor memory device
JPH06342887A (en) Mist-type dynamic random-access memory cell and its manufacture
JPH0621388A (en) Semiconductor memory and manufacture thereof
JP2794750B2 (en) Semiconductor memory cell and manufacturing method thereof
JPS63207173A (en) Manufacture of semiconductor device