JPS62114263A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPS62114263A
JPS62114263A JP60255292A JP25529285A JPS62114263A JP S62114263 A JPS62114263 A JP S62114263A JP 60255292 A JP60255292 A JP 60255292A JP 25529285 A JP25529285 A JP 25529285A JP S62114263 A JPS62114263 A JP S62114263A
Authority
JP
Japan
Prior art keywords
capacitor
region
semiconductor
substrate
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60255292A
Other languages
Japanese (ja)
Other versions
JPH0685425B2 (en
Inventor
Masamizu Konaka
小中 雅水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60255292A priority Critical patent/JPH0685425B2/en
Publication of JPS62114263A publication Critical patent/JPS62114263A/en
Publication of JPH0685425B2 publication Critical patent/JPH0685425B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To highly integrate a semiconductor memory without decreasing its reliability by stepwisely forming a sidewall opposed to the capacitor electrode of an insular semiconductor region. CONSTITUTION:Grooves are dug by RIE on the element separating region of a P-type Si substrate 1, and a plurality of insular semiconductor regions of rectangular pattern having a stepwise sidewall 2 are formed. Since an MOS capacitor is formed by utilizing parts of three stepwise sidewalls and upper surface of the ends of the insular region, a large capacitor capacity can be performed with smaller occupying area than the conventional structure which utilizes only vertical wall. The separation between the capacitors of the adjacent memory cell is effectively achieved by an insulating film 32 buried in the deepest portion of the groove and a P<+> type layer 4 disposed under the groove, and a punch-through hardly occurs as compared with the deeper groove from the boundary of the substrate of the element separating region in the capacitor region. Accordingly, a highly integrated (d) RAM having high reliability can be obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、−個のMOSトランジスタと一個のキャパシ
タによりメモリセルを構成する半導体記憶装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor memory device in which a memory cell is constituted by - MOS transistors and one capacitor.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

−個のMOS トランジスタと一個のキャパシタにより
メモリセルを構成するダイナミック型半導体記憶装置(
dRAM)が近年、ますます高集積化されている。dR
AMは、高集積化に伴ってメモリセル面積が減少し、キ
ャパシタ面積も減少して、情報電荷蓄積層が非常に小さ
いものとなっている。この結果、メモリセルの記憶情報
が誤読されたり、α線等により半導体基板内に発生する
電荷で情報内容が消失する、といった問題が現われてい
る。
- A dynamic semiconductor memory device in which a memory cell is composed of MOS transistors and one capacitor (
dRAM) has become increasingly highly integrated in recent years. dR
In AM, the area of the memory cell and the area of the capacitor are reduced as the integration becomes higher, and the information charge storage layer has become extremely small. As a result, problems have arisen, such as erroneous reading of information stored in memory cells or loss of information content due to charges generated in the semiconductor substrate due to alpha rays or the like.

この様な問題を解決する方法として、メモリセル占有面
積を増大することなくキャパシタ面積を実質的に増大す
る構造がいくつか提案されている。
As a method for solving such problems, several structures have been proposed that substantially increase the capacitor area without increasing the area occupied by the memory cell.

一つは、半導体基板のキャパシタ形成領域内に細溝を堀
り、その溝の1lIIWを利用してキャパシタ面積増大
を図るものである。これにより、キャパシタ容量を溝を
掘らない場合の2〜3倍に増加することができる。しか
しこの構造では、dRAMを更に高集積化する場合、隣
接するメモリセルのキャパシタ間でバンチスルー等によ
り電荷の漏れが生じるという問題が生じる。この対策と
しては、隣接するメモリセル間の距離を大きくすればよ
いが、これはメモリセルの高集積化、高密度化を妨げる
。またキャパシタ溝を浅くすることも考えられるが、溝
側壁からは空乏層が伸び易いために充分に浅くしなけれ
ば効果がなく、これではキャパシタ容量の増大が図れな
い 他の方法として、素子分離領域の溝を利用してキャパシ
タ面積の増大を図る構造が、本出願人により先に提案さ
れている。その構造を第5図により説明する。p型Si
基板21の素子分離領域に溝22が形成され、この溝2
2で囲まれた島状半導体領域の側壁にキャパシタ絶縁膜
23を介してキャパシタ電極24を対向させてMOSキ
ャパシタ、が形成されている。より詳しく言えば、キャ
パシタ電極24は、島状半導体領域の端部の3つの側壁
と上面の一部に対向させている。キャパシタ電極24が
対向する島状半導体領域表面には容量を増大させるため
にn型層25が形成されている。
One is to dig a narrow groove in a capacitor formation region of a semiconductor substrate and use the 1lIIW of the groove to increase the capacitor area. Thereby, the capacitor capacity can be increased two to three times as much as when no trench is dug. However, with this structure, when the dRAM is further integrated, a problem arises in that charge leakage occurs between capacitors of adjacent memory cells due to bunch through or the like. A countermeasure against this problem is to increase the distance between adjacent memory cells, but this hinders higher integration and higher density of memory cells. It is also possible to make the capacitor trench shallower, but since the depletion layer tends to extend from the trench sidewalls, it is ineffective unless it is made sufficiently shallow. The present applicant has previously proposed a structure in which the area of the capacitor is increased using the groove. Its structure will be explained with reference to FIG. p-type Si
A groove 22 is formed in the element isolation region of the substrate 21.
A MOS capacitor is formed on the side wall of the island-shaped semiconductor region surrounded by 2, with a capacitor electrode 24 facing each other with a capacitor insulating film 23 interposed therebetween. More specifically, the capacitor electrode 24 is opposed to three side walls and a part of the top surface of the end portion of the island-shaped semiconductor region. An n-type layer 25 is formed on the surface of the island-shaped semiconductor region facing the capacitor electrode 24 in order to increase the capacitance.

溝22の底部には、素子分離用の厚い絶縁膜26が埋め
込まれ、その下の基板には反転防止用のp+型@27が
形成されている。島状半導体領域の中はどに、ゲート絶
縁l1I28を介してゲート電極29が形成され、ソー
ス、ドレインとなるn+型層30.31が形成されて、
MOSトランジスタが構成されている。
A thick insulating film 26 for element isolation is buried in the bottom of the trench 22, and a p+ type @27 for preventing inversion is formed in the substrate below. Inside the island-shaped semiconductor region, a gate electrode 29 is formed via a gate insulator I1I28, and an n+ type layer 30.31 that becomes a source and a drain is formed.
A MOS transistor is configured.

この構造では、素子分離fIi域の溝を有効利用して大
きいキャパシタ面積を実現することができる。
With this structure, a large capacitor area can be realized by effectively utilizing the trench in the element isolation region fIi.

しかしこの構造でdRAMを高集積化する場合、技術的
に可能な最小の幅で溝を形成することになるが、これで
は溝の深さに限界が生じ、また狭く且つ深く形成された
溝底部に素子分離用絶縁膜を埋込むことも難しい。従っ
である値以上のキャパシタ容量を得るためには溝の幅を
ある程度以上広くしなければならない。
However, when dRAM is highly integrated with this structure, the trench is formed with the minimum width technically possible, but this places a limit on the depth of the trench, and the bottom of the trench is narrow and deep. It is also difficult to embed an insulating film for element isolation in the semiconductor device. Therefore, in order to obtain a capacitor capacitance above a certain value, the groove width must be increased to a certain extent.

〔発明の目的〕[Purpose of the invention]

本発明は上記した点に鑑みなされたもので、より小さい
占有面積でより大きいキャパシタ容量を実現し、信頼性
を低下させることなく高集積化を図った半導体記憶装置
を提供することを目的とする。
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide a semiconductor memory device that realizes a larger capacitor capacity with a smaller occupied area and achieves higher integration without reducing reliability. .

〔発明の概要) 本発明にかかる半導体記憶装置は、第5図の構造を基本
とし、その島状半導体領域のキャパシタ電極が対向する
側壁を階段状にしたことを特徴とする。
[Summary of the Invention] A semiconductor memory device according to the present invention is based on the structure shown in FIG. 5, and is characterized in that the sidewalls of the island-shaped semiconductor region facing the capacitor electrodes are stepped.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、キャパシタを構成する島状半導体領域
の側壁を階段状に形成することにより、大きい占有面積
を要することなく大きいキャパシタ面積を実現すること
ができる。また、階段状をなして次第に深く且つ狭くな
る素子分離溝の最深部に厚い分離用絶縁膜を設けること
により、隣接するメモリセルのキャパシタ間の分離は確
実に行なわれる。従って本発明によれば、信頼性が高く
且つ高集積化したdRAMが得られる。
According to the present invention, by forming the sidewalls of the island-shaped semiconductor regions constituting the capacitor in a stepped manner, a large capacitor area can be realized without requiring a large occupied area. In addition, by providing a thick isolation insulating film at the deepest part of the element isolation groove that gradually becomes deeper and narrower in a stepped manner, capacitors of adjacent memory cells can be reliably isolated. Therefore, according to the present invention, a highly reliable and highly integrated dRAM can be obtained.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の詳細な説明する。 The present invention will be explained in detail below.

第1図(a)〜(d)は一実施例のd RA Mを示す
。(a)は平面図であり、(b)、(C)および(d)
はそれぞれ(a)のA−A′。
FIGS. 1(a)-(d) show one embodiment of the dRAM. (a) is a plan view, (b), (C) and (d)
are A-A' in (a), respectively.

B−8−およびC−C′断面図である。これを製造工程
に従って説明すると、p型S+基板1の素子分離領域に
RIEにより溝を堀り、階段状の側壁2を有する長方形
パターンの複数の島状半導体領域を形成する。階段状溝
掘りの具体的な工程例は後述する。素子分離溝には、反
転防止のためのp+型層4を形成し、素子分離用絶縁膜
3を埋込む。p+型層4は、キャパシタa[以外の全て
のn出している階段状溝部に(第1図(C))、またキ
ャパシタ領域には清の最深部にのみ(第1図(d))形
成される。また素子分離用絶縁I’ll 3としては、
MoSトランジスタのゲート電極が走る部分には溝が完
全に平坦になるように厚い絶縁膜31が埋め込まれ(第
1図(C))、キャパシタが形成される部分では階段状
側壁2を露出させるよう最深部にのみ選択的に絶縁膜3
2が埋め込まれる(第1図(b)(d))。これは、一
旦素子分離溝に完全に絶縁膜を埋込み、その後キャパシ
タ領域の絶縁膜を一部エッチングして最深部にのみ所定
厚みの絶縁膜32を残すようにすればよい。
They are B-8- and CC' sectional views. To explain this according to the manufacturing process, grooves are dug in the element isolation region of the p-type S+ substrate 1 by RIE, and a plurality of island-shaped semiconductor regions having a rectangular pattern having stepped sidewalls 2 are formed. A specific example of the step-shaped groove digging process will be described later. A p+ type layer 4 for preventing inversion is formed in the element isolation trench, and an element isolation insulating film 3 is buried therein. The p+ type layer 4 is formed in all the stepped grooves except for the capacitor a (FIG. 1(C)), and only in the deepest part of the capacitor region (FIG. 1(d)). be done. In addition, as the element isolation insulation I'll 3,
A thick insulating film 31 is buried in the part where the gate electrode of the MoS transistor runs so that the groove is completely flat (FIG. 1(C)), and the stepped sidewall 2 is exposed in the part where the capacitor will be formed. Insulating film 3 selectively applied only to the deepest part
2 is embedded (FIGS. 1(b) and (d)). This can be done by once completely burying the insulating film in the element isolation trench, and then partially etching the insulating film in the capacitor region so that the insulating film 32 of a predetermined thickness remains only in the deepest part.

そしてキャパシタ領域となる各島状半導体1域の端部の
3つの側壁と上面に例えば固相拡散を利用してn型11
5を形成し、その表面に熱酸化によりキャパシタ絶縁膜
5を形成して、第1層多結晶シリコン膜の堆積、パター
ニングによりキャパシタ電極7を形成する。この後、M
oSトランジスタを形成する。即ち、熱酸化によりゲー
ト絶縁118を形成し、この上に第2!多結晶シリコン
膜の堆積、パターニングによりゲート電極9を形成し、
ASのイオン注入によりソース、ドレインとなるn1型
110.11を形成する。この後は図では省略したが、
通常の工程に従い全面をCVDII化膜で覆い、コンタ
クト孔を開けてAR配線を形成してdRAMが完成する
。ゲート電極9は一方向のメモリセルに共通に配設され
てこれがワード線となり、またワード線と直交する方向
のメモリセルについてドレインがA2配線により共通接
続されて、これがビット線となる。
Then, by using, for example, solid phase diffusion, the n-type 11
A capacitor insulating film 5 is formed on the surface thereof by thermal oxidation, and a capacitor electrode 7 is formed by depositing and patterning a first layer polycrystalline silicon film. After this, M
Form an oS transistor. That is, the gate insulator 118 is formed by thermal oxidation, and the second! A gate electrode 9 is formed by depositing and patterning a polycrystalline silicon film,
N1 type 110.11 which will become the source and drain are formed by ion implantation of AS. After this, it is omitted in the diagram, but
The entire surface is covered with a CVDII film according to the usual process, contact holes are made, and AR wiring is formed to complete the dRAM. The gate electrode 9 is commonly provided to memory cells in one direction and serves as a word line, and the drains of memory cells in a direction perpendicular to the word line are commonly connected by an A2 wiring, which serves as a bit line.

第2図(a)〜(f)は、階段状側壁をもつ素子分離溝
の形成工程例を、第1図(b)の断面について示す。先
ず<aンに示すように、基板1に素子領域を覆う第1の
フォトレジスト・マスク121を形成し、RIEにより
基板表面をエツチングして浅い溝を形成する。この溝に
は、次のPEP工程を容易にするために(b)に示すよ
うに、CVDによる酸化l11131を埋め込んで平坦
化する。そして(C)に示すように、第1のマスク12
xより優かに周辺を拡張した第2のフォトレジストマス
ク122を形成し、再度RIEを行って先に形成した溝
より深い溝を形成する。この溝は再び(d)に示すよう
にCVDによる酸化膜132を埋め込んで平坦化する。
FIGS. 2(a) to 2(f) show an example of a process for forming an isolation trench having stepped sidewalls, with reference to the cross section of FIG. 1(b). First, as shown in <a>, a first photoresist mask 121 covering the element region is formed on the substrate 1, and the surface of the substrate is etched by RIE to form a shallow groove. In order to facilitate the next PEP process, this trench is filled with oxidized l11131 by CVD and planarized, as shown in FIG. 3(b). Then, as shown in (C), the first mask 12
A second photoresist mask 122 whose periphery is expanded more than x is formed, and RIE is performed again to form a groove deeper than the previously formed groove. This trench is again filled with an oxide film 132 by CVD and planarized, as shown in FIG.

そして(e)に示すように、第2のマスク122より更
に周辺を拡張した第3のフォトレジスト・マスク123
を形成し、再度R1,Eを行って2回目の溝より深い溝
を形成する。こうして既に埋め込んだ酸化膜131.1
32を除去すると、(f)に示すように階段状側壁2を
もつ素子分離溝が形成される。
As shown in (e), a third photoresist mask 123 whose periphery is further expanded than that of the second mask 122
, and perform R1 and E again to form a groove deeper than the second groove. The oxide film 131.1 already buried in this way
When 32 is removed, an element isolation trench having stepped sidewalls 2 is formed as shown in FIG. 3(f).

なお、反転防止用p+型層4は、第2図(a)(C)お
よび(f)の段階でキャパシタ領域およびトランジスタ
領域以外には例えば斜めイオン注入を用いて形成される
。イオン注入の代わりに固相拡散を利用することもでき
る。そして第2図(f)のように素子分離溝が形成され
た後、溝をCvD絶縁絶縁率坦に埋め込み、キャパシタ
電極形成領域についてこの絶縁膜を選択エツチングして
溝の最深部に所定厚みの絶縁膜を残すようにする。
Note that the p+ type layer 4 for preventing inversion is formed using, for example, oblique ion implantation in areas other than the capacitor region and the transistor region in the steps shown in FIGS. 2(a), 2(c), and 2(f). Solid phase diffusion can also be used instead of ion implantation. After the element isolation trenches are formed as shown in FIG. 2(f), the trenches are filled with a CvD insulation layer with a flat dielectric constant, and the insulating film is selectively etched in the capacitor electrode formation region to form a predetermined thickness in the deepest part of the trenches. Make sure to leave an insulating film.

この実施例によれば、島状半導体fRj4の端部の3つ
の階段状側壁と上面の一部を利用してMOSキャパシタ
が形成されるから、垂直壁のみを利用する従来の構造に
比べて小さい占有面積で大きいキャパシタ容量を実現す
ることができる。また隣接するメモリセルのキャパシタ
間の分離は、溝の最深部に埋め込まれた絶縁膜32とそ
の下のp+型M4により確実に行なわれ、キャパシタ領
域に素子弁+m領域の基板界面より深い溝を形成する構
造に比べてバンチスルーなどが生じ難くなっている。従
って信頼性の高い、高集積化d RA M 、?l<得
られる。
According to this embodiment, the MOS capacitor is formed using the three stepped side walls and part of the top surface of the end of the island semiconductor fRj4, so it is smaller than the conventional structure that uses only the vertical walls. A large capacitor capacity can be realized with a small occupied area. In addition, the isolation between the capacitors of adjacent memory cells is reliably achieved by the insulating film 32 buried in the deepest part of the trench and the p+ type M4 underneath. Bunch-through etc. are less likely to occur compared to the structure to be formed. Therefore, highly reliable and highly integrated dRAM,? l<obtained.

第3図は本発明の他の実施例のdRAMを第1図(1)
)の断面に対応させて示したものである。
Figure 3 shows a dRAM according to another embodiment of the present invention as shown in Figure 1 (1).
).

この実施例では、キャパシタ電極7にMoSトランジス
タのゲート電極9を一部重ねるようにして、ソース領域
のn+型層を省略している。それ以外は先の実施例と同
様である。この実施例によっても先の実施例と同様の効
果が得られる他、電極を重ねることでビット当りの占有
面積がより小さくなり、dRAMの一層の高密度化が図
られるという効果が得られる。
In this embodiment, the gate electrode 9 of the MoS transistor is partially overlapped with the capacitor electrode 7, and the n+ type layer in the source region is omitted. The rest is the same as the previous embodiment. This embodiment also provides the same effects as the previous embodiment, and also has the effect that by overlapping the electrodes, the occupied area per bit becomes smaller, and the density of the dRAM can be further increased.

第4図は更に他の実施例のdRAMを第1図(b)の断
面に対応させて示したものである。この実施例では基板
1を高濃度のp+型S1基板11とこれと同じ導電型の
低濃度p型層12との積層構造としている。そして素子
分離溝の最深部がp1型基板11に達するように形成さ
れている。
FIG. 4 shows a dRAM of still another embodiment, corresponding to the cross section of FIG. 1(b). In this embodiment, the substrate 1 has a laminated structure consisting of a highly doped p+ type S1 substrate 11 and a lightly doped p-type layer 12 of the same conductivity type. The element isolation trench is formed so that the deepest part thereof reaches the p1 type substrate 11.

この実施例の場合は、溝底部に反転防止用のp+型層を
形成する工程が不要となる。
In the case of this embodiment, the step of forming a p+ type layer for preventing inversion at the bottom of the groove is not necessary.

本発明は上記した実施例に限られるものではない。例え
ば、キャパシタ領域に形成されるnR:!層5は、若干
キャパシタ容量が小さくなるが、省略することが可能で
ある。また各部の導電型を実施例と逆にすることも可能
である。更に実施例では素子分III溝を形成する工程
例として浅い溝部分から順次深い溝を形成していく例を
挙げたが、これと逆に先ず小さい窓のマスクを用いてR
IEを行い、順次マスクの窓を大きくして複数回のRI
Eを行うことにより、実施例と同様に階段状側壁を形成
することができる。この場合には、各RIE工程の後に
溝を平坦化する工程が不要となる。その池水発明は、そ
の趣旨を透設しない範囲で更に種々変形して実施するこ
とができる。
The present invention is not limited to the embodiments described above. For example, nR formed in the capacitor region:! Layer 5 can be omitted, although the capacitor capacity becomes slightly smaller. It is also possible to reverse the conductivity type of each part to that in the embodiment. Furthermore, in the embodiment, as an example of the process for forming element III grooves, an example was given in which deep grooves are sequentially formed from a shallow groove portion, but in contrast to this, first R is formed using a mask with a small window.
Perform IE, sequentially enlarge the mask window, and perform multiple RIs.
By performing step E, a stepped side wall can be formed in the same manner as in the example. In this case, the step of flattening the trench after each RIE step is not necessary. The pond water invention can be further modified and implemented in various ways without overcoming the spirit thereof.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は本発明の一実施例のdRAMを
示す図、第2図(a)〜<f)はその素子分離溝の形成
工程を示す図、第3図および第4図は他の実施例のdR
AMを示す図、第5図は従来のdRAMを示す図である
。 1・・・p型5i基板、2・・・階段状側壁、31゜3
2・・・素子分離用絶縁膜、4・・・反転防止用p+型
層、5・・・n型層、6・・・キャパシタ絶縁膜、7・
・・キャパシタ電極、8・・・ゲート絶縁膜、9・・・
ゲート電極、10.11・・・n+型層。 出願人代理人 弁理士 鈴江武彦 ノ1−4ζ+rツア1 第1図 第3図 第4図 第5図
FIGS. 1(a) to (d) are diagrams showing a dRAM according to an embodiment of the present invention, FIGS. Figure 4 shows dR of another example.
FIG. 5 is a diagram showing the AM, and FIG. 5 is a diagram showing the conventional dRAM. 1...p-type 5i substrate, 2...stepped side wall, 31°3
2... Insulating film for element isolation, 4... P+ type layer for preventing inversion, 5... N type layer, 6... Capacitor insulating film, 7...
... Capacitor electrode, 8... Gate insulating film, 9...
Gate electrode, 10.11...n+ type layer. Applicant's agent Patent attorney Takehiko Suzue 1-4ζ+r Tour 1 Figure 1 Figure 3 Figure 4 Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)基板の素子分離領域に溝を堀り、溝で囲まれた複
数の島状半導体領域に一個のMOSトランジスタと一個
のキャパシタからなるメモリセルを集積形成して構成さ
れ、かつ前記キャパシタは前記島状半導体領域の側壁に
絶縁膜を介してキャパシタ電極を対向させて構成された
半導体記憶装置において、前記島状半導体領域の前記キ
ャパシタ電極が対向する側壁を階段状としたことを特徴
とする半導体記憶装置。
(1) A trench is dug in an element isolation region of a substrate, and a memory cell consisting of one MOS transistor and one capacitor is integrated and formed in a plurality of island-shaped semiconductor regions surrounded by the trench, and the capacitor is A semiconductor memory device configured with a capacitor electrode facing the side wall of the island-shaped semiconductor region with an insulating film interposed therebetween, characterized in that the side wall of the island-shaped semiconductor region facing the capacitor electrode has a stepped shape. Semiconductor storage device.
(2)前記島状半導体領域は長方形パターンに形成され
、前記キャパシタはその長手方向端部の3つの側壁と上
面に絶縁膜を介してキャパシタ電極を対向させて構成さ
れている特許請求の範囲第1項記載の半導体記憶装置。
(2) The island-shaped semiconductor region is formed in a rectangular pattern, and the capacitor is configured with capacitor electrodes facing each other with an insulating film interposed between three side walls and a top surface of the capacitor at its longitudinal end. The semiconductor memory device according to item 1.
(3)前記基板は高濃度半導体基板にこれと同導電型の
低濃度半導体層が積層されて構成され、階段状側壁をも
つて形成される溝の最深部が前記高濃度半導体基板に達
する深さに形成されている特許請求の範囲第1項記載の
半導体記憶装置。
(3) The substrate is constructed by stacking a low concentration semiconductor layer of the same conductivity type on a high concentration semiconductor substrate, and the deepest part of the groove formed with stepped sidewalls is deep enough to reach the high concentration semiconductor substrate. A semiconductor memory device according to claim 1, which is formed in a semiconductor memory device.
JP60255292A 1985-11-14 1985-11-14 Semiconductor memory device Expired - Fee Related JPH0685425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60255292A JPH0685425B2 (en) 1985-11-14 1985-11-14 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60255292A JPH0685425B2 (en) 1985-11-14 1985-11-14 Semiconductor memory device

Publications (2)

Publication Number Publication Date
JPS62114263A true JPS62114263A (en) 1987-05-26
JPH0685425B2 JPH0685425B2 (en) 1994-10-26

Family

ID=17276734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60255292A Expired - Fee Related JPH0685425B2 (en) 1985-11-14 1985-11-14 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPH0685425B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162566A (en) * 1990-10-25 1992-06-08 Nec Corp Semiconductor memory device
US5155059A (en) * 1988-03-15 1992-10-13 Kabushiki Kaisha Toshiba Method of manufacturing dynamic RAM

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155059A (en) * 1988-03-15 1992-10-13 Kabushiki Kaisha Toshiba Method of manufacturing dynamic RAM
JPH04162566A (en) * 1990-10-25 1992-06-08 Nec Corp Semiconductor memory device

Also Published As

Publication number Publication date
JPH0685425B2 (en) 1994-10-26

Similar Documents

Publication Publication Date Title
US6906372B2 (en) Semiconductor device with vertical transistor formed in a silicon-on-insulator substrate
US4920389A (en) Memory call array structure and process for producing the same
JPH07130871A (en) Semiconductor memory device
KR860001469A (en) Semiconductor Memory and Manufacturing Method
JPS63122162A (en) Semiconductor device and manufacture of the same
KR930006930A (en) DRAM cell having vertical transistor and method of manufacturing same
US5428236A (en) Semiconductor memory device having trenched capicitor
US6015731A (en) Method of manufacturing a semiconductor memory device
KR100517219B1 (en) Dram cell arrangement with dynamic gain memory cells, and method for the production thereof
JPH0793372B2 (en) Semiconductor memory device
JPS62257763A (en) Semiconductor memory device
JPS62114263A (en) Semiconductor memory device
EP0266572A1 (en) Semiconductor memory device having a plurality of memory cells of single transistor type
JPS6362370A (en) Manufacture of semiconductor device
JPS6156449A (en) Semiconductor memory device
JPH0783058B2 (en) DRAM cell, memory cell array thereof, and manufacturing method thereof
JPS62249473A (en) Semiconductor memory
JPS61234067A (en) High density dram cell
JPH0536930A (en) Semiconductor storage device
JP2615731B2 (en) Semiconductor memory device
JPH06342887A (en) Mist-type dynamic random-access memory cell and its manufacture
JPS62120067A (en) Dynamic random access memory cell
JPS63252467A (en) Semiconductor memory device
JPS63207173A (en) Manufacture of semiconductor device
JP2526649B2 (en) Semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees