JPH0423832B2 - - Google Patents

Info

Publication number
JPH0423832B2
JPH0423832B2 JP58015661A JP1566183A JPH0423832B2 JP H0423832 B2 JPH0423832 B2 JP H0423832B2 JP 58015661 A JP58015661 A JP 58015661A JP 1566183 A JP1566183 A JP 1566183A JP H0423832 B2 JPH0423832 B2 JP H0423832B2
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
silicon
memory cell
silicon dioxide
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58015661A
Other languages
Japanese (ja)
Other versions
JPS59141262A (en
Inventor
Toshuki Ishijima
Masaaki Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP58015661A priority Critical patent/JPS59141262A/en
Publication of JPS59141262A publication Critical patent/JPS59141262A/en
Publication of JPH0423832B2 publication Critical patent/JPH0423832B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Description

【発明の詳細な説明】 本発明は半導体メモリセルの構造に関し、さら
に詳しくはより大きな記憶容量を実現する半導体
メモリセルの構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a structure of a semiconductor memory cell, and more particularly to a structure of a semiconductor memory cell that achieves a larger storage capacity.

電荷の形で2進情報を貯蔵する半導体メモリセ
ルはセル面積が小さいため、高集積、大容量メモ
リセルとして秀れている。特にメモリセルとして
1つのトランジスタと1つのコンデンサからなる
メモリセル(以下1T1Cセルと略す)は、構成要
素も少なく、セル面積も小さいため高集積メモリ
用メモリセルとして重要である。
Semiconductor memory cells that store binary information in the form of charges have a small cell area, making them excellent as highly integrated and large-capacity memory cells. In particular, a memory cell (hereinafter abbreviated as 1T1C cell) consisting of one transistor and one capacitor is important as a memory cell for highly integrated memory because it has few constituent elements and has a small cell area.

第1図に従来よく用いられている1T1Cセルの
1例を示す。第1図に於て、3がキヤバシタ電荷
で6の反転層との間に記憶容量を形成する。2は
スイツチングトランジスタのゲート電極でワード
線に接続されており、ビツト線に接続されている
拡散層4と反転層6の間の電荷の移動を制御す
る。又、7は隣接メモリセルとの分離領域であ
る。従来例において記憶容量は3のキヤパシタ電
極の面積と、5の絶縁膜の誘電率及び膜厚によつ
て決定される。すなわち、大きな記憶容量を確保
する手段として以下の3つの方法がある。
Figure 1 shows an example of a 1T1C cell that has been commonly used in the past. In FIG. 1, a capacitor charge 3 forms a storage capacitor between it and an inversion layer 6. In FIG. Reference numeral 2 denotes a gate electrode of a switching transistor, which is connected to a word line and controls the movement of charges between a diffusion layer 4 and an inversion layer 6, which are connected to a bit line. Further, 7 is an isolation region from an adjacent memory cell. In the conventional example, the storage capacity is determined by the area of the capacitor electrode (3) and the dielectric constant and film thickness of the insulating film (5). That is, there are the following three methods for securing a large storage capacity.

(1) キヤパシタ電極の面積を大きくする。(1) Increase the area of the capacitor electrode.

(2) 絶縁膜の膜厚を薄くする。(2) Reduce the thickness of the insulating film.

(3) 高誘電率の絶縁膜を用いる。(3) Use an insulating film with a high dielectric constant.

ところで一般にメモリの高集積化は微細加工技
術の進展に伴うメモリセルサイズの縮小によつて
達成されており、従来例で示した1T1Cセル構造
ではキヤパシタ電極の面積は減少する。それ故従
来例の1T1Cセルでは絶縁膜の膜厚を薄くするこ
とにより記憶容量の大幅な減少を防いでいた。し
かし絶縁膜の膜厚はもはや限界に近づいており、
一方セルの微細化は進展するばかりで従来の構造
の1T1Cセルでは高誘電率の絶縁膜を採用しない
限り記憶容量は減少する一方である。高誘電率の
絶縁膜は膜索階段で近いうちに実用化される目途
はない。
Incidentally, high integration of memory is generally achieved by reducing memory cell size as microfabrication technology advances, and in the 1T1C cell structure shown in the conventional example, the area of the capacitor electrode is reduced. Therefore, in conventional 1T1C cells, a significant decrease in storage capacity was prevented by reducing the thickness of the insulating film. However, the thickness of the insulating film is approaching its limit.
On the other hand, cell miniaturization continues to progress, and the storage capacity of conventional 1T1C cells will continue to decrease unless an insulating film with a high dielectric constant is used. There is no prospect that high dielectric constant insulating films will be put to practical use in membrane cable staircases in the near future.

以上述べた様に従来型の1T1Cセルは今後増々
記憶容量が減少するという問題点を有している。
しかも耐α粒子問題、センスアンプの感度等から
大きな記憶容量が望まれており、(例えば耐α粒
子問題からは50fF以上の記憶容量)従来型の
1T1Cではもはや対処出来ない。
As mentioned above, the conventional 1T1C cell has the problem that its storage capacity will decrease more and more in the future.
Moreover, a large memory capacity is desired due to the alpha particle resistance problem, the sensitivity of the sense amplifier, etc. (for example, a memory capacity of 50 fF or more due to the alpha particle resistance problem).
1T1C can no longer deal with it.

本発明の目的は、微小な面積のメモリセルに於
てもキヤパシタ電極の面積を大きく取ることを可
能にすることにより従来型より大きな記憶容量を
得ることができる構造の半導体メモリセルを提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor memory cell having a structure that allows a larger storage capacity than conventional types by making it possible to increase the area of a capacitor electrode even in a memory cell with a small area. It is in.

本発明によれば、第1導電型半導体基板表面に
形成された凹部の少なくとも一部を覆う第1の絶
縁性物質、該第1の絶縁性物質の少なくとも側壁
に接し、しかも互いに隔離している第1及び第2
の導電性物質、該第1及び第2の導電性物質の少
なくとも側面を覆う第2の絶縁性物質、前記第1
及び第2の導電性物質とは絶縁され前記凹部の残
りの部分を埋め基準電位を与えられた第3の導電
性物質、前記第1導電型半導体基板表面に設けら
れ、前記第1の絶縁性物質に接し、前記第1又は
第2の導電性物質に電気的に接続し形成された
MISトランジスタのソース電極である第2導電型
の拡散領域を備えたことを特徴とする半導体メモ
リセルが得られる。
According to the present invention, the first insulating material covers at least a portion of the recess formed on the surface of the first conductivity type semiconductor substrate, and the first insulating material is in contact with at least a sidewall of the first insulating material and is isolated from each other. 1st and 2nd
a second insulating material covering at least the side surfaces of the first and second conductive materials;
a third conductive material that is insulated from the second conductive material and fills the remaining portion of the recess and is provided with a reference potential; formed in contact with a substance and electrically connected to the first or second conductive substance
A semiconductor memory cell characterized in that it includes a second conductivity type diffusion region that is a source electrode of an MIS transistor is obtained.

以下本発明の典型的な一実施例として第2図を
用いて詳述する。第2図は本発明におけるメモ
リ・セルを製造プロセスの順を追つて示した模式
的断面図である。
A typical embodiment of the present invention will be described in detail below with reference to FIG. FIG. 2 is a schematic cross-sectional view showing the manufacturing process of the memory cell according to the present invention in sequence.

第2図aは、P型シリコン単結晶基板11の表
面上に熱酸化法により二酸化珪素膜12を形成
し、次にその上に窒化珪素膜13を形成した後、
溝部を除いた全面をホトレジスト14で被つた状
態を示す。
FIG. 2a shows that a silicon dioxide film 12 is formed on the surface of a P-type silicon single crystal substrate 11 by a thermal oxidation method, and then a silicon nitride film 13 is formed thereon.
A state in which the entire surface except the groove portion is covered with photoresist 14 is shown.

第2図bは、前記ホトレジスト14を耐エツチ
ングマスクとして前記窒化珪素膜13、二酸化珪
素膜12を除去しさらに前記シリコン基板11を
エツチング除去して溝を設けた後、熱酸化法によ
り溝のシリコン基板表面に二酸化珪素膜15を形
成し、次にこの溝を不純物を高濃度にドープした
多結晶シリコン16で完全に埋めてしまつた状態
を示す。
FIG. 2b shows that after removing the silicon nitride film 13 and silicon dioxide film 12 using the photoresist 14 as an etching-resistant mask and etching the silicon substrate 11 to form a groove, silicon in the groove is removed by thermal oxidation. A silicon dioxide film 15 is formed on the surface of the substrate, and then the trench is completely filled with polycrystalline silicon 16 doped with impurities at a high concentration.

第2図cは、前記多結晶シリコン16を表面よ
りエツチング除去してゆき、溝部の底部のみに多
結晶シリコン16′を残し、その後、熱酸化法に
より前記多結晶シリコン16′の表面上に二酸化
珪素膜17を形成した状態を示す。
In FIG. 2c, the polycrystalline silicon 16 is etched away from the surface, leaving the polycrystalline silicon 16' only at the bottom of the groove, and then the surface of the polycrystalline silicon 16' is covered with dioxide by thermal oxidation. A state in which a silicon film 17 is formed is shown.

第2図dは、ウエハー全面にn型不純物を高濃
度にドープした多結晶シリコン18を成長し、さ
らにその表面を熱酸化膜19で被つた状態を示
す。
FIG. 2d shows a state in which polycrystalline silicon 18 heavily doped with n-type impurities is grown over the entire surface of the wafer, and its surface is further covered with a thermal oxide film 19.

第2図eは、前記二酸化珪素膜19を異方性エ
ツチング技術例えば反応性スパツタエツチング技
術等を用いて表面よりエツチング除去してゆき溝
部側面にのみ前記二酸化珪素膜19′を残し、さ
らにこの二酸化珪素膜19′を耐エツチングマス
クとして前記多結晶シリコン18を前記同様に反
応性スパツタエツチングにより表面よりエツチン
グ除去し溝の側面にのみ多結晶シリコン18A,
18Bを残した状態を示したものである。
FIG. 2e shows that the silicon dioxide film 19 is etched away from the surface using an anisotropic etching technique, such as a reactive sputter etching technique, leaving the silicon dioxide film 19' only on the side surfaces of the groove. Using the silicon dioxide film 19' as an etching-resistant mask, the polycrystalline silicon 18 is etched away from the surface by reactive sputter etching in the same manner as described above.
This shows the state with 18B remaining.

第2図fは、前記二酸化珪素膜19′および溝
の底面の二酸化珪素膜17′をエツチング除去し
た後、熱酸化法により二酸化珪素膜20および
CVD法により窒化珪素膜21を各々形成した状
態を示したものである。
FIG. 2f shows that after the silicon dioxide film 19' and the silicon dioxide film 17' on the bottom of the trench are etched away, the silicon dioxide film 20 and
This figure shows the silicon nitride films 21 formed by the CVD method.

第2図gは、前記窒化珪素膜21を異方性エツ
チング技術例えば反応性スパツタエツチングによ
り表面よりエツチング除去してゆき溝の側面にの
みこの窒化珪素膜を残し、次にこの窒化珪素膜を
耐エツチングマスクとして前記二酸化珪素膜20
をエツチング除去し溝の側壁にのみ二酸化珪素膜
20′を残した後、溝の側面に残した前記窒化珪
素膜を除去しさらにウエハー全体に前記多結晶シ
リコン16′と同型の不純物を高濃度にドープし
た厚い多結晶シリコン22を形成し溝を完全に埋
めかつ表面を平坦化した状態を示したものであ
る。
FIG. 2g shows that the silicon nitride film 21 is etched away from the surface by an anisotropic etching technique such as reactive sputter etching, leaving the silicon nitride film only on the side surfaces of the groove, and then the silicon nitride film is etched away. The silicon dioxide film 20 serves as an etching-resistant mask.
After removing the silicon dioxide film 20' by etching and leaving the silicon dioxide film 20' only on the sidewalls of the trench, the silicon nitride film left on the sidewalls of the trench is removed and impurities of the same type as the polycrystalline silicon 16' are added to a high concentration over the entire wafer. This figure shows a state in which thick doped polycrystalline silicon 22 is formed to completely fill the trench and flatten the surface.

第2図hは、前記多結晶シリコン22を異方性
エツチング技術例えば反応性スパツタエツチング
により表面からエツチングしてゆき溝部に多結晶
シリコン22′を残した後、熱酸化法により表面
に二酸化珪素23を形成した状態を示したもので
ある。
FIG. 2h shows that the polycrystalline silicon 22 is etched from the surface by an anisotropic etching technique such as reactive sputter etching, leaving the polycrystalline silicon 22' in the grooves, and then thermal oxidation is applied to the surface to form silicon dioxide. 23 is shown.

第2図iは、前記窒化珪素膜13および二酸化
珪素膜12を除去した後、熱酸化法により二酸化
珪素膜24を形成し、さらにスイツチングトラン
ジスタのゲート電極25を形成しこのゲート電極
をイオン注入のマスクとして砒素のイオン注入を
行ないn型拡散層26,27,27′を形成した
状態を示したものである。
FIG. 2i shows that after removing the silicon nitride film 13 and silicon dioxide film 12, a silicon dioxide film 24 is formed by thermal oxidation, a gate electrode 25 of a switching transistor is formed, and this gate electrode is ion-implanted. This figure shows a state in which n-type diffusion layers 26, 27, and 27' are formed by implanting arsenic ions as a mask.

第2図jは、前記拡散層27上の一部と前記多
結晶ポリシリコン18A,18B上の一部の領域
以外をホトレジスト28で被い、その後前記ホト
レジスト28を耐エツチングマスクとして二酸化
珪素膜23,24の一部をエツチング除去した状
態を示す。
In FIG. 2J, areas other than a part on the diffusion layer 27 and a part on the polycrystalline silicon 18A, 18B are covered with a photoresist 28, and then a silicon dioxide film 23 is formed using the photoresist 28 as an etching-resistant mask. , 24 are partially etched away.

第2図kは、前記ホトレジスト28を除去した
後、前記溝に埋め込んだ多結晶シリコン18A又
は18Bと前記n型拡散層27,27′をn型不
純物を高濃度にドープした多結晶シリコン29,
29′を用いて電気的に接続した状態を示す。
FIG. 2k shows that after the photoresist 28 has been removed, the polycrystalline silicon 18A or 18B buried in the groove and the n-type diffusion layers 27, 27' are replaced by a polycrystalline silicon 29 doped with n-type impurities at a high concentration.
29' is used to show electrical connection.

第2図lは、熱酸化法により前記多結晶シリコ
ン25,29,29′の表面を二酸化珪素膜30
を被い、その後前記多結晶シリコン22′の上部
を除くすべての領域をホトレジスト31で被つた
状態を示す。
FIG. 2l shows that the surfaces of the polycrystalline silicon 25, 29, 29' are coated with a silicon dioxide film 30 by thermal oxidation.
The photoresist 31 is shown covering all regions except the upper part of the polycrystalline silicon 22'.

第2図mは、前記ホトレジスト31を耐エツチ
ングマスクとして前記二酸化珪素膜23をエツチ
ングした後、前記ホトレジストを除去し、さらに
前記多結晶シリコン22′と同型の不純物を高濃
度にドープした多結晶シリコン32を形成して前
記多結晶シリコン22′と電気的に接続し、続い
て熱酸化法により前記多結晶シリコン32の表面
に二酸化珪素膜33を形成した状態を示す。この
ようにして2ビツト分のメモリセルが形成され
る。
FIG. 2m shows a polycrystalline silicon film doped with the same type of impurity as the polycrystalline silicon 22' at a high concentration after etching the silicon dioxide film 23 using the photoresist 31 as an etching-resistant mask and then removing the photoresist. 32 is formed and electrically connected to the polycrystalline silicon 22', and then a silicon dioxide film 33 is formed on the surface of the polycrystalline silicon 32 by thermal oxidation. In this way, a memory cell for 2 bits is formed.

第2図mの断面図と従来の1T1Cセルの第1図
を比較して見ると、第1図のワード線に接続され
ているスイツチングトランジスタのゲート電極2
は第2図mでは多結晶シリコン25に相当し、第
1図のビツト線に接続されている拡散層4は第2
図mでは拡散層26に相当している。電荷を記憶
する場合、ワード線に接続されたスイツチングト
ランジスタをONにすることにより、ビツト線に
接続された拡散層より基板内に形成された多結晶
シリコン18A,18Bに電荷が蓄積されて記憶
状態となる。ただしこの時、溝の中央に形成した
多結晶シリコン22′は接地状態にしておく。こ
のことにより蓄積容量は、多結晶シリコン間に形
成された二酸化珪素膜20′の容量により形成さ
れる。このため蓄積容量は、多結晶シリコン18
A,18Bを基板内に深く形成することにより、
つまり深い溝を形成することにより表面から見た
メモリセルの占有面積を増加させることなく蓄積
容量のみを大幅に増加できる。記憶した電荷を読
み出す場合、ワード線に接続されたスイツチング
トランジスタをONにしてビツト線に接続された
拡散層26に基板内に形成された多結晶シリコン
18A,18Bに蓄積された電荷を移動させて読
み出しを行う。
Comparing the cross-sectional view in Figure 2m with Figure 1 of the conventional 1T1C cell, we see that the gate electrode 2 of the switching transistor connected to the word line in Figure 1.
corresponds to the polycrystalline silicon 25 in FIG. 2m, and the diffusion layer 4 connected to the bit line in FIG.
In Figure m, this corresponds to the diffusion layer 26. When storing electric charge, by turning on the switching transistor connected to the word line, the electric charge is accumulated in the polycrystalline silicon 18A and 18B formed in the substrate from the diffusion layer connected to the bit line, and is stored. state. However, at this time, the polycrystalline silicon 22' formed in the center of the groove is kept in a grounded state. As a result, the storage capacitance is formed by the capacitance of the silicon dioxide film 20' formed between the polycrystalline silicon. Therefore, the storage capacitance is polycrystalline silicon 18
By forming A and 18B deep within the substrate,
In other words, by forming deep trenches, only the storage capacity can be significantly increased without increasing the area occupied by the memory cell as viewed from the surface. When reading the stored charges, the switching transistor connected to the word line is turned on to move the charges accumulated in the polycrystalline silicon 18A and 18B formed in the substrate to the diffusion layer 26 connected to the bit line. to read.

現在までのところダイナミツクメモリセルの記
憶容量は、α線が1個入射してもソフトエラーを
発生しないだけの大きさを有することが必要とさ
れている。記憶容量部を平面的に形成している従
来の1T1Cメモリセルを用いる場合、1Mbitクラ
スの高集積大容量メモリセルでは、セル面積にお
ける記憶容量部の占める割合は50%程度にも及ぶ
が、本発明によれば記憶容量部は基板内部に形成
されるためその溝の深さを深く取ることにより記
憶容量は簡単に増加することができその上この部
分の占める面積は非常に小さくてすみ高集積化に
適している。
Up to now, the storage capacity of a dynamic memory cell is required to be large enough not to cause a soft error even if one alpha ray is incident. When using a conventional 1T1C memory cell in which the storage capacity section is formed in a planar manner, in a 1Mbit class highly integrated large capacity memory cell, the storage capacity section accounts for approximately 50% of the cell area. According to the invention, since the storage capacitor section is formed inside the substrate, the storage capacity can be easily increased by increasing the depth of the groove, and in addition, the area occupied by this section is extremely small, allowing for high integration. suitable for

また本発明では、溝部内に容量部を形成するた
めに多結晶シリコン22′を接地しているが、こ
のことは素子間の分離も同時に行うことができる
という特長を有している。さらにその形状である
が素子間の分離領域に形成される寄生MOSトラ
ンジスタのチヤネル長をできる限り長く取ろうと
いう配慮から容量形成部のポリシリコン18A,
18Bを直接溝の底部まで形成することなく溝の
途中で止め、溝の底部は接地された多結晶シリコ
ン22′で埋めて一段と素子分離効果上げている。
このため多結晶シリコン22′は溝部内では凸型
の形状をしている。さらにこのような形状を取る
ことにより、溝の幅が狭くなつた場合でも十分な
分離特性が得られる。
Furthermore, in the present invention, the polycrystalline silicon 22' is grounded in order to form a capacitance within the groove, which has the advantage that isolation between elements can be achieved at the same time. Furthermore, considering the shape of the polysilicon 18A in the capacitor forming part, in order to make the channel length of the parasitic MOS transistor formed in the isolation region between elements as long as possible,
18B is not formed directly to the bottom of the trench, but is stopped in the middle of the trench, and the bottom of the trench is filled with grounded polycrystalline silicon 22' to further improve the element isolation effect.
Therefore, the polycrystalline silicon 22' has a convex shape within the groove. Furthermore, by adopting such a shape, sufficient separation characteristics can be obtained even when the width of the groove is narrowed.

なお前記実施例では、特に溝内に凸形のポリシ
リコン18A,18Bを設けて素子分離特性の向
上をも計つたものについて述べたが、このポリシ
リコン形状は第3図に示すような形であつてもよ
い。これは前記実施例で示したプロセスより容易
にできる。ただし、この形状は溝の分離領域幅が
前述のものに比べて広くなる。
In the above embodiment, a convex polysilicon layer 18A, 18B was provided in the groove to improve element isolation characteristics, but the polysilicon shape was as shown in FIG. It's okay to be hot. This can be done more easily than the process shown in the previous example. However, in this shape, the width of the groove isolation region is wider than that of the above-described one.

また本発明における溝に埋め込まれたポリシリ
コン22′(第2図)、42(第3図)への基準電
位の与え方であるが、実施例ではポリシリコン2
2′,42と半導体基板とを二酸化珪素膜15に
より絶縁分離し表面より基準電位を与えるように
している。しかしこの他にポリシリコン22′に
基準電位を与える方法として基板より与える方法
が考えられる。この構造については第4図に示
す。第4図でもわかるように溝に埋めたポリシリ
コン52は直接半導体基板と電気的に接続してい
る。このような構造は前述したプロセスより容易
にでき又、前述した構造と比較した場合新たに基
準電位線を設ける必要がなくなるという利点があ
る。
Furthermore, in the present invention, the reference potential is applied to the polysilicon 22' (FIG. 2) and 42 (FIG. 3) buried in the trench.
2', 42 and the semiconductor substrate are insulated and separated by a silicon dioxide film 15, and a reference potential is applied from the surface. However, another possible method for applying the reference potential to the polysilicon 22' is to apply it from the substrate. This structure is shown in FIG. As can be seen in FIG. 4, the polysilicon 52 buried in the trench is directly electrically connected to the semiconductor substrate. Such a structure can be made more easily than the process described above, and has the advantage that there is no need to provide a new reference potential line when compared with the structure described above.

以上述べたように本発明によれば、微細なメモ
リ・セル面積においても記憶容量を大きく取るこ
とができるため、高集積化に適したメモリセルが
容易に得られる。
As described above, according to the present invention, a large memory capacity can be obtained even in a small memory cell area, so that a memory cell suitable for high integration can be easily obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の1T1Cメモリセルの概略断面図、
第2図は本発明によるメモリセルを製造するプロ
セスを示す概略断面図、第3、第4図は本発明に
よるメモリセルの概略断面図である。 1……シリコン基板、2……ワード線に接続さ
れたゲート電極、3……キヤパシタ電極、4……
ビツト線に接続された拡散層、5……二酸化珪素
膜、6……反転層、7……分離領域に形成された
二酸化珪素膜、12,15,17,17′,19,
19′,20,20′,23,24,30,33…
…二酸化珪素膜、13,13′,21……窒化珪
素膜、14,28,31……ホトレジスト、1
6,16′,18,18A,18B,22,2
2′,29,29′,32……多結晶シリコン、2
5……ワード線に接続されたゲート電極、26…
…ビツト線に接続された拡散層、27,27′…
…拡散層、42……多結晶シリコン、52……多
結晶シリコン、53……二酸化珪素膜。
Figure 1 is a schematic cross-sectional view of a conventional 1T1C memory cell.
FIG. 2 is a schematic cross-sectional view showing a process for manufacturing a memory cell according to the present invention, and FIGS. 3 and 4 are schematic cross-sectional views of the memory cell according to the present invention. 1...Silicon substrate, 2...Gate electrode connected to the word line, 3...Capacitor electrode, 4...
Diffusion layer connected to bit line, 5...Silicon dioxide film, 6...Inversion layer, 7...Silicon dioxide film formed in isolation region, 12, 15, 17, 17', 19,
19', 20, 20', 23, 24, 30, 33...
...Silicon dioxide film, 13,13',21...Silicon nitride film, 14,28,31...Photoresist, 1
6, 16', 18, 18A, 18B, 22, 2
2', 29, 29', 32...polycrystalline silicon, 2
5... Gate electrode connected to the word line, 26...
...diffusion layer connected to the bit line, 27, 27'...
...Diffusion layer, 42...Polycrystalline silicon, 52...Polycrystalline silicon, 53...Silicon dioxide film.

Claims (1)

【特許請求の範囲】[Claims] 1 第1導電型半導体基板表面に形成された凹部
の少なくとも一部を覆う第1の絶縁性物質、該第
1の絶縁性物質の少なくとも側壁に接し、しかも
互いに隔離している第1及び第2の導電性物質、
該第1及び第2の導電性物質の少なくとも側面を
覆う第2の絶縁性物質、前記第1及び第2の導電
性物質とは絶縁され前記凹部の残りの部分を埋め
基準電位を与えられた第3の導電性物質、前記第
1導電型半導体基板表面に設けられ、前記第1の
絶縁性物質に接し、前記第1又は第2の導電性物
質に電気的に接続し形成されたMISトランジスタ
のソース電極である第2導電型の拡散領域を備え
たことを特徴とする半導体メモリセル。
1. A first insulating material that covers at least a portion of a recess formed on the surface of a first conductivity type semiconductor substrate; a first and a second insulating material that are in contact with at least a side wall of the first insulating material and are separated from each other; conductive material,
a second insulating material covering at least the side surfaces of the first and second conductive materials, the second insulating material being insulated from the first and second conductive materials and filling the remaining portion of the recess and provided with a reference potential; a third conductive substance, an MIS transistor provided on the surface of the first conductivity type semiconductor substrate, in contact with the first insulating substance, and electrically connected to the first or second conductive substance; A semiconductor memory cell comprising a second conductivity type diffusion region serving as a source electrode.
JP58015661A 1983-02-02 1983-02-02 Semiconductor memory cell Granted JPS59141262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58015661A JPS59141262A (en) 1983-02-02 1983-02-02 Semiconductor memory cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58015661A JPS59141262A (en) 1983-02-02 1983-02-02 Semiconductor memory cell

Publications (2)

Publication Number Publication Date
JPS59141262A JPS59141262A (en) 1984-08-13
JPH0423832B2 true JPH0423832B2 (en) 1992-04-23

Family

ID=11894920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58015661A Granted JPS59141262A (en) 1983-02-02 1983-02-02 Semiconductor memory cell

Country Status (1)

Country Link
JP (1) JPS59141262A (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666436B2 (en) * 1983-04-15 1994-08-24 株式会社日立製作所 Semiconductor integrated circuit device
JPS59191374A (en) * 1983-04-15 1984-10-30 Hitachi Ltd Semiconductor integrated circuit device
JPH0793366B2 (en) * 1984-10-08 1995-10-09 日本電信電話株式会社 Semiconductor memory and manufacturing method thereof
USRE33261E (en) * 1984-07-03 1990-07-10 Texas Instruments, Incorporated Trench capacitor for high density dynamic RAM
JPS6155957A (en) * 1984-08-27 1986-03-20 Toshiba Corp Semiconductor memory device
JPS6187359A (en) * 1984-10-05 1986-05-02 Nec Corp Semiconductor memory cell
JPS6187358A (en) * 1984-10-05 1986-05-02 Nec Corp Semiconductor memory and manufacture thereof
JPS6188555A (en) * 1984-10-08 1986-05-06 Nec Corp Semiconductor memory cell
JPS61150366A (en) * 1984-12-25 1986-07-09 Nec Corp Mis type memory cell
US4673962A (en) * 1985-03-21 1987-06-16 Texas Instruments Incorporated Vertical DRAM cell and method
US5102817A (en) * 1985-03-21 1992-04-07 Texas Instruments Incorporated Vertical DRAM cell and method
JP2615541B2 (en) * 1985-03-22 1997-05-28 富士通株式会社 Method for manufacturing semiconductor device
JPS61288460A (en) * 1985-06-17 1986-12-18 Nippon Telegr & Teleph Corp <Ntt> Semiconductor memory device and manufacture thereof
JPS61288461A (en) * 1985-06-17 1986-12-18 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor device
US5164917A (en) * 1985-06-26 1992-11-17 Texas Instruments Incorporated Vertical one-transistor DRAM with enhanced capacitance and process for fabricating
JPS6221266A (en) * 1985-07-19 1987-01-29 Sanyo Electric Co Ltd Semiconductor memory cell
JPS6239053A (en) * 1985-08-14 1987-02-20 Nec Corp Semiconductor memory cell and manufacture thereof
JPH0750745B2 (en) * 1985-10-03 1995-05-31 株式会社日立製作所 Semiconductor device
JPH0642533B2 (en) * 1985-10-16 1994-06-01 三菱電機株式会社 Semiconductor memory device
JPH0824164B2 (en) * 1985-11-18 1996-03-06 テキサス インスツルメンツ インコ−ポレイテツド Method of forming interconnects
JP2574231B2 (en) * 1985-12-03 1997-01-22 松下電子工業株式会社 Semiconductor memory device
JPH0797621B2 (en) * 1986-03-03 1995-10-18 富士通株式会社 Dynamic random access memory
JPS62208658A (en) * 1986-02-20 1987-09-12 Fujitsu Ltd Dynamic random access memory
US4801989A (en) * 1986-02-20 1989-01-31 Fujitsu Limited Dynamic random access memory having trench capacitor with polysilicon lined lower electrode
JPH0685426B2 (en) * 1986-03-03 1994-10-26 富士通株式会社 Dynamic random access memory
JPH0685428B2 (en) * 1986-03-14 1994-10-26 富士通株式会社 Dynamic random access memory
EP0236089B1 (en) * 1986-03-03 1992-08-05 Fujitsu Limited Dynamic random access memory having trench capacitor
JPH0797622B2 (en) * 1986-03-03 1995-10-18 富士通株式会社 Semiconductor memory
US4785337A (en) * 1986-10-17 1988-11-15 International Business Machines Corporation Dynamic ram cell having shared trench storage capacitor with sidewall-defined bridge contacts and gate electrodes
US4916524A (en) * 1987-03-16 1990-04-10 Texas Instruments Incorporated Dram cell and method
JPH0795568B2 (en) * 1987-04-27 1995-10-11 日本電気株式会社 Semiconductor memory device
US5109259A (en) * 1987-09-22 1992-04-28 Texas Instruments Incorporated Multiple DRAM cells in a trench
JPH01154551A (en) * 1987-12-11 1989-06-16 Oki Electric Ind Co Ltd Semiconductor storage integrated circuit device and manufacture thereof
US5105245A (en) * 1988-06-28 1992-04-14 Texas Instruments Incorporated Trench capacitor DRAM cell with diffused bit lines adjacent to a trench
US5225363A (en) * 1988-06-28 1993-07-06 Texas Instruments Incorporated Trench capacitor DRAM cell and method of manufacture
US4958206A (en) * 1988-06-28 1990-09-18 Texas Instruments Incorporated Diffused bit line trench capacitor dram cell
WO1990011619A1 (en) * 1989-03-23 1990-10-04 Grumman Aerospace Corporation Single trench mosfet-capacitor cell for analog signal processing
US5275974A (en) * 1992-07-30 1994-01-04 Northern Telecom Limited Method of forming electrodes for trench capacitors

Also Published As

Publication number Publication date
JPS59141262A (en) 1984-08-13

Similar Documents

Publication Publication Date Title
JPH0423832B2 (en)
US6906372B2 (en) Semiconductor device with vertical transistor formed in a silicon-on-insulator substrate
US6350635B1 (en) Memory cell having a vertical transistor with buried source/drain and dual gates
EP0337436A2 (en) Semiconductor memory device having improved dynamic memory cell structure
JPH0682800B2 (en) Semiconductor memory device
US5034787A (en) Structure and fabrication method for a double trench memory cell device
JPH0682793B2 (en) Semiconductor memory
JPS6187358A (en) Semiconductor memory and manufacture thereof
US5914510A (en) Semiconductor memory device and method of manufacturing the same
JPS63310162A (en) Mis type semiconductor memory device
JPH0673368B2 (en) Semiconductor memory device and manufacturing method thereof
JP3421230B2 (en) Semiconductor storage device and method of manufacturing the same
US7208799B2 (en) Floating body cell dynamic random access memory with optimized body geometry
US6054345A (en) Method for forming deep depletion mode dynamic random access memory (DRAM) cell
JPS61274355A (en) Mis type semiconductor memory device
JP2574231B2 (en) Semiconductor memory device
JPH0795585B2 (en) Semiconductor memory device and manufacturing method thereof
JPH0370381B2 (en)
JP3070537B2 (en) Semiconductor device and manufacturing method thereof
KR20020058011A (en) Circuit arrangement comprising at least one capacitor and at least one transistor connected thereto
JPH0370382B2 (en)
JPS61234557A (en) Semiconductor memory device and manufacture thereof
JPH079943B2 (en) Semiconductor memory device and manufacturing method thereof
JP3000738B2 (en) Semiconductor memory cell and method of manufacturing the same
JPS6187359A (en) Semiconductor memory cell