JPS6239053A - Semiconductor memory cell and manufacture thereof - Google Patents

Semiconductor memory cell and manufacture thereof

Info

Publication number
JPS6239053A
JPS6239053A JP60179614A JP17961485A JPS6239053A JP S6239053 A JPS6239053 A JP S6239053A JP 60179614 A JP60179614 A JP 60179614A JP 17961485 A JP17961485 A JP 17961485A JP S6239053 A JPS6239053 A JP S6239053A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
groove
forming
etching
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60179614A
Other languages
Japanese (ja)
Other versions
JPH0588550B2 (en
Inventor
Masaaki Yoshida
正昭 吉田
Toshiyuki Ishijima
石嶋 俊之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60179614A priority Critical patent/JPS6239053A/en
Publication of JPS6239053A publication Critical patent/JPS6239053A/en
Publication of JPH0588550B2 publication Critical patent/JPH0588550B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate

Abstract

PURPOSE:To obtain an increased storage capacity with a memory cell having an extremely small area, by forming an isolation region for isolating two memory cells within a groove formed in a semiconductor substrate. CONSTITUTION:Polycrystalline silicon 9 having a reference potential provides a common capacitor electrode for two memory cells and also serves as an isolation region therefor. Electric charges are stored in the polycrystalline silicon 6 buried in a groove (h) of a semiconductor substrate 1. Therefore, if the groove is formed deeper, an increased storing capacity can be obtained without increasing the area of the memory cell as viewed from the surface. Further, a field effect transistor having N channels is formed by utilizing polycrystalline silicon 3 connected to a word line as a gate electrode, an N-type diffused layer 4 connected to a bit line as a drain electrode, and an N-type diffusion layer 6 connected to the polycrystalline silicon charge storing region 6 as a source electrode. Silicon dioxide films 7 and 8 are formed and a P-type impurity layer 2 is formed beneath the N-type diffused layer 4.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明ii:、半導体メモリセル及びその製造方法に関
し、さらに詳t、<は溝型の記憶容量部を有する半導体
メモリセル及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention ii: relates to a semiconductor memory cell and a method for manufacturing the same, and more specifically relates to a semiconductor memory cell having a trench-type storage capacitor portion and a method for manufacturing the same. .

(従来技術) 現在、大容量ダイナミックI’i、 A、 Mにおいで
は、セル構成要素が少なくセル面積の小さい1つのトラ
ンジスタと1つのキャパシタとからなるメモリ士A・(
以下lTiCセルと略す)が広く用いられている9、?
ころが従来のlTiCセル:づ半導体基板表面に平面的
にトランジスタとキャパシタを形成しているために、素
子の微細化に伴い、キャパシタ部の面積が減少してきた
。これまでキャパシタを構成する誘電体の膜厚を薄くす
ることにより、キャパシタ面積の減少による蓄積電荷量
の減少を防いでき之が、もはや誘電体の膜厚も限界に近
づいてかり今後微細化が更に進展した時に、蓄積電荷量
の大幅な減少は避けられないゆ (発明が解決しようとする問題点) この従来型の1 ’1’ 1 eセルの欠点を改善する
ために、最近中ヤバシタ部を半導体基板に埋め込んだ溝
型のlTiCセルが提案された。
(Prior art) At present, in large capacity dynamic I'i, A, and M, there are a few cell components, one transistor and one capacitor, and a small cell area.
Hereinafter abbreviated as lTiC cells) are widely used9,?
However, since a conventional TiC cell has a transistor and a capacitor formed on a plane on the surface of a semiconductor substrate, the area of the capacitor part has been reduced as elements become smaller. Until now, by reducing the thickness of the dielectric material that makes up the capacitor, we have been able to prevent a decrease in the amount of stored charge due to a reduction in the capacitor area, but the thickness of the dielectric material is now approaching its limit, and further miniaturization is expected in the future. In order to improve this drawback of the conventional 1 '1' 1 e cell, a significant decrease in the amount of stored charge is inevitable. A trench-type lTiC cell embedded in a semiconductor substrate has been proposed.

第4図にこの溝型lTiCセルの1例を示す。FIG. 4 shows an example of this trench type lTiC cell.

これは国際固体回路会議(昭和59年)予稿集283頁
に伊藤清男らによって発表され友ものである。第4図に
おいて、キャパシタ電極43は、反転層46との間にキ
ャノ(シタを形成し、電荷は反転層46に蓄積される。
This was published by Kiyoo Ito and others in the proceedings of the International Solid State Circuits Conference (1983), page 283, and is a companion piece. In FIG. 4, the capacitor electrode 43 forms a capacitor between it and the inversion layer 46, and charges are accumulated in the inversion layer 46.

42はワード線に接続されたスイッチングトランジスタ
のゲート電極で、ビット線に接続された拡散Ji+44
と、反転M46に接続さコ1.た拡散層45との間の電
荷の移動を制御する。又、47は隣接するメモリセルと
の分離領域である。この第4図に示した溝型ITICセ
ルハ、従来のlTiCセルのキャパシタ部t4導体基板
1に形成した溝の側壁を利用して実現しているために、
溝の深さを充分にとること【より、大きな記憶容量を確
保することが可能となっている。ところが、第4図に示
した公知例の雛型ITICセルは、従来のlTiCセル
で半導体基板41に平面的に形成していたキャパシタ部
を深さ方向に形成しただけで素子分離領域47は別に存
在する。そわ、故、最小特徴寸法が与えられた時にメモ
リセル部に占めるキャパシタ部と分離領域の面積は従来
型のlTiCセルと同程度の大きさに女り、メモリセル
の面積の減少には殆んど寄与しない。
42 is the gate electrode of the switching transistor connected to the word line, and the diffusion Ji+44 connected to the bit line
1. is connected to the inverted M46. The transfer of charges between the diffusion layer 45 and the diffusion layer 45 is controlled. Further, 47 is an isolation region from adjacent memory cells. The groove-type ITIC cell shown in FIG. 4 is realized by using the sidewall of the groove formed in the conductor substrate 1 of the capacitor part t4 of the conventional lTiC cell.
By making the grooves sufficiently deep, it is possible to secure a larger storage capacity. However, in the known prototype ITIC cell shown in FIG. 4, the capacitor portion, which was formed planarly on the semiconductor substrate 41 in the conventional lTiC cell, is only formed in the depth direction, and the element isolation region 47 is separately formed. exist. Therefore, when the minimum feature size is given, the area occupied by the capacitor part and the isolation region in the memory cell part is about the same size as that of a conventional lTiC cell, and there is almost no reduction in the area of the memory cell. I don't contribute anything.

また、溝側壁部に反転層を形成し、そこに電荷を蓄積す
るため、α粒子の実効的な衝突断面積が増加し、ソフト
エラーが生じ易くなる。
Furthermore, since an inversion layer is formed on the side wall of the groove and charges are accumulated there, the effective collision cross section of α particles increases, making soft errors more likely to occur.

この様に公知例の溝型lTiCセルは、多くの問題点を
有しており、これらの問題点は、今後のメモリの大容量
化を考えた時に致命的な問題と々る。
As described above, the known trench-type lTiC cell has many problems, and these problems will become fatal when considering future increases in memory capacity.

(発明の目的) 本発明の目的は、上記公知の溝型lTiCセルの問題点
を解決し、大きな記憶容量を小さなセル面積で確保出来
る新規な構造の半導体メモリセル及びその製造方法を提
供することにある。
(Objective of the Invention) An object of the present invention is to provide a semiconductor memory cell with a novel structure that solves the problems of the above-mentioned well-known trench type TiC cell and can ensure a large storage capacity with a small cell area, and a method for manufacturing the same. It is in.

(問題点を解決するための手段) 本発明の第1の発明の半導体メモリセルは、第1導電型
半導体基板表面に形成された凹部の少なくとも一部を覆
う第1の絶縁性物質と、該第1の絶縁性物質の少なくと
も側壁に接し、しかも互いに隔離している第1及び第2
の導電性物質と、該第1及び第2の導電性物質の少なく
とも側面を覆う第2の絶縁性物質と、前記第1及び第2
の導電性物質とは絶縁され前記凹部の残りの部分を埋め
基準電位を与えられた第3の導電性物質と、前記第1導
電型半導体基板表面に設けられ、前記第1の絶縁性物質
に接し、前記第1又b:第2の嗜9電性物質に電気的に
接続し形成されたM I S )ランジスタのソース電
極である第2導電型の拡散領域と、核拡散領域と隔離し
、前記凹部側壁に接L2て形成された第1導電型拡散領
域とを備えて構成さノする。
(Means for Solving the Problems) A semiconductor memory cell according to a first aspect of the present invention includes a first insulating material that covers at least a part of a recess formed on a surface of a first conductivity type semiconductor substrate; The first and second insulating materials are in contact with at least a side wall of the first insulating material and are separated from each other.
a second insulating material covering at least side surfaces of the first and second conductive materials;
a third conductive material which is insulated from the conductive material and which fills the remaining portion of the recess and is provided with a reference potential; A diffusion region of a second conductivity type, which is a source electrode of an M I S transistor, is in contact with and electrically connected to the first or second electrically conductive material, and is isolated from the nuclear diffusion region. , and a first conductivity type diffusion region L2 formed in contact with the side wall of the recess.

また、本発明の第2の発明の半導体メモリセルの製造方
法は、第1導電型半導体基板表面の溝形成領域に異方性
エツチングにより浅い溝を形成する工程と、イオン注入
して前記溝底部に第1導電型不純物領域を形成する工程
と、熱処理を施し半導体基板中に前記不純物を押し込む
工程と、前記浅い溝に更に異方性エツチングし深い溝を
形成する工程と、前記溝の内壁に二酸化珪素膜を形成す
る工程と、全面に有機物及び絶縁性物質を11次塗布し
次いで前記溝開孔部及びその周辺部以外を有機物で覆う
工程と、前記有機物をマスクどして絶V性物質をエツチ
ング除去し次いで絶縁性物質をマスクとし°[前記有機
物をエツチング1.2その表面を半導体基板の表面よυ
下げる工程と、前記有機物をマスクとして溝開孔部付近
の二酸化珪素膜をエツチング除去する工程と、前記有機
物を除去し第2導電型不純物を含んだ多結晶シV=ンを
溝幅の、!/3以下の厚さに全面に形成・する工程と、
前記多結晶シリコンを1ツチングし前記溝側壁にのみ残
す工程と、熱酸化し前記多結晶シリ;フン表面に二酸化
珪素膜を形成する工程と、C’V’D法にょル表面に窒
化珪素膜を形成し引続ム半導体基板と異なる第2導電型
不純物を含んだ多結晶シリコンを形成し、前記宥を完全
に埋める工程と、該多結晶シリコンを表面からエツチン
グし前記溝内にのみ多結晶シリコンを・残す工程と、溝
内の多結晶シリコン表面に厚い二酸化珪素膜を形成する
工程ど、第1導電型半導体基板の表面にMIS型トラン
ジスタのソース電極である第2導電型の拡散領域を形成
する工程とを含んで構成される。
Further, the method for manufacturing a semiconductor memory cell according to the second aspect of the present invention includes a step of forming a shallow groove by anisotropic etching in a groove forming region on a surface of a first conductivity type semiconductor substrate, and implanting ions to form a shallow groove at the bottom of the groove. a step of forming a first conductivity type impurity region in the semiconductor substrate; a step of applying heat treatment to push the impurity into the semiconductor substrate; a step of further anisotropically etching the shallow trench to form a deep trench; a step of forming a silicon dioxide film, a step of applying an organic material and an insulating material to the entire surface for 11 times, and then a step of covering the area other than the groove opening and its surrounding area with an organic material, and a step of masking the organic material and applying an insulating material. Then, using an insulating material as a mask, etching the organic material 1.2.
a step of etching and removing the silicon dioxide film near the trench opening using the organic material as a mask; and a step of removing the organic material and etching the polycrystalline silicon containing the second conductivity type impurity to the width of the trench. A process of forming/forming the entire surface to a thickness of /3 or less,
A step of chipping the polycrystalline silicon and leaving it only on the side wall of the trench, a step of thermally oxidizing the polycrystalline silicon to form a silicon dioxide film on the surface of the polycrystalline silicon, and a step of forming a silicon nitride film on the surface of the polycrystalline silicon using a C'V'D method. A step of forming polycrystalline silicon containing impurities of a second conductivity type different from that of the semiconductor substrate and completely filling the gap, and etching the polycrystalline silicon from the surface to form polycrystalline silicon only in the grooves. A second conductivity type diffusion region, which is the source electrode of the MIS transistor, is formed on the surface of the first conductivity type semiconductor substrate, such as a step of leaving a . The process includes the steps of:

(作用) 本発明は、上述の構成をとることにょシ、公知技術の問
題点を解決した。
(Function) The present invention solves the problems of the known techniques by adopting the above-described configuration.

つまり、隣接する2つのメそリセルのキャパシタ部と、
この2つのメモリセルの分離領域を半導体基板に形成し
た1つの溝の内部に形成することにより、公知例よりも
小さな面積でキャパシタ部と分離領域を形成することが
可能どなり、極めで小さい匍積で大きな記憶容量を確保
てきる。メモリセル構造となっている。
In other words, the capacitor parts of two adjacent mesoricells,
By forming the isolation region of these two memory cells inside one trench formed in the semiconductor substrate, it is possible to form the capacitor part and the isolation region in a smaller area than the known example, resulting in an extremely small volume. You can secure a large storage capacity. It has a memory cell structure.

甘た溝側壁に接して形成されたM I 8 )ランジス
タの拡散層の下部にこの拡散層と隔Mして溝側壁に接し
た異なる導電型の不純物層を形成することにより、溝側
壁に接[7た半導体基板の空i層と、拡散)@を分離し
、α粒子によるソフトニジ゛・−を生じに<<シている
By forming an impurity layer of a different conductivity type under the diffusion layer of the transistor formed in contact with the trench sidewall with a distance M from this diffusion layer, it is possible to make contact with the trench sidewall. [7] The vacant i-layer of the semiconductor substrate and the diffusion) are separated, and soft ni-layers caused by α particles are generated.

(実施例) 次に、本発明について図面を参照しで説明する。(Example) Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の析略断面図である。FIG. 1 is a schematic cross-sectional view of an embodiment of the present invention.

第1図では2ビット分のメモリセJ、−を示し、てふ・
シ、基準電位を与えられた多結晶シリコン9υ1.2つ
のメモリセルの共通のキャパシタ電極になっており、同
時に、この2つのメモリセルの分離額縁にもなりている
。以下第1図の右半分のメモリセルについて説明する。
In Figure 1, a 2-bit memory cell J,- is shown.
The polycrystalline silicon 9υ1 to which a reference potential is applied serves as a common capacitor electrode for the two memory cells, and at the same time serves as a frame for separating the two memory cells. The memory cells in the right half of FIG. 1 will be explained below.

第1図において、電荷は半導体基板1の溝りの内部に埋
め込゛まれた多結晶シリコン6に貯えられ、る。従って
深い溝を形成するとkにより、表面から見tニメモリ七
ルの面積を増加さ一亡ることなく大きな蓄積容Rt得7
.)?′lどが出来る。またワ・−ド線に接続された多
結晶シリコン3をゲ・−ト電極どし、ビット線に接続さ
−1しカニti型拡散層4をトドイン電極、電荷の(種
領域である多&Y晶シリ;76に接続されたi’i型拡
散拡散層5−ス電極とするnチャンネルの電昇効果型ト
ランジスタが形成さiている。7.8は二酸化珪素膜で
ある。オた前記のn型拡散層の下部にp型の不純物層2
が形成されている。
In FIG. 1, charges are stored in polycrystalline silicon 6 embedded within a groove in semiconductor substrate 1. In FIG. Therefore, when deep grooves are formed, a large storage capacity can be obtained without increasing the area of the memory 7 when viewed from the surface.
.. )? 'l can be done. In addition, the polycrystalline silicon 3 connected to the word line is used as a gate electrode, the crab Ti-type diffusion layer 4 is used as a gate electrode, and the crab type diffusion layer 4 is used as a gate electrode, which is a seed region of charge. An n-channel charge effect transistor is formed using the i'i type diffusion layer 5 as a source electrode connected to the crystalline silicon layer 76. 7.8 is a silicon dioxide film. P-type impurity layer 2 under the n-type diffusion layer
is formed.

第1[F]に示した実施例において、メそり動作は従来
のlTiCセルと全く同様で、前記の電界効果型トラン
ジスタを導通状態にすることにより、ビット線の情報が
ビット線に接続された拡散層4から基板1内に形成され
た多結晶7リコン6に伝達され、電荷の蓄積が行なわれ
る。
In the embodiment shown in No. 1 [F], the mesori operation is exactly the same as that of the conventional lTiC cell, and the information on the bit line is connected to the bit line by making the field effect transistor conductive. The charge is transmitted from the diffusion layer 4 to the polycrystalline silicon 6 formed in the substrate 1, and the charge is accumulated therein.

第1図に示した実施例と、第4図に示した公知例を比較
して見ると、本発明においては、電荷蓄積領域を溝りの
内部に設けているところに特徴があり、キャパシタ電極
である多結晶シリコン9が隣接する2つのメモリセルの
分離領域も兼ねている。従って、公知例と比較して、同
一の最小特徴寸法の場合よp小さい面積のメモリセルが
実現出来ることが明白であろう、但し、本発明において
は多結晶シリコン9に分離機能を持たせるために、この
多結晶シリコン9の電位を接地レベルにしておく。これ
によりキャパシタ電極が接地レベルになるので、電源変
動の影響が少なくノイズに強いメモリが実現できるとい
う利点がある。
Comparing the embodiment shown in FIG. 1 with the known example shown in FIG. 4, the present invention is characterized in that the charge storage region is provided inside the groove, and the capacitor electrode The polycrystalline silicon 9 also serves as an isolation region between two adjacent memory cells. Therefore, it is clear that a memory cell with p smaller area can be realized with the same minimum feature size compared to the known example.However, in the present invention, since the polycrystalline silicon 9 has a separation function, First, the potential of this polycrystalline silicon 9 is set to the ground level. This brings the capacitor electrode to the ground level, which has the advantage of being less affected by power fluctuations and making it possible to realize a memory that is resistant to noise.

ま念、本発明においてはn型拡散層5の下部にp型不純
物層2を形成しているが、このp型不純物層2により電
荷蓄積領域である多結晶シリコン6のポテンシャルによ
り半導体基板1に形成される空乏層とn型拡散層5から
のびる空乏層とが分離されることになる。従って、蓄積
電荷に影響を与える領域は、公知例と比較して大幅に小
さくなる。即ち本発明によるメモリセルは公知のメモリ
セルと比較して、α粒子等によるンフトエラーに対して
も有効であるといえる。さらにこのp型不純物層2は、
隣接するメモリセル間の拡散層の分離にもなるので、微
細化が進展し、溝の幅が小さくなり、多結晶シリコン9
による分離だけでは不十分となった場合に素子分離機能
も果たすという効果も有する。またp型不純物層2は拡
散層5と隔離して形成されるので拡散層2の耐圧の観点
からも劣化は生じない。
By the way, in the present invention, a p-type impurity layer 2 is formed under the n-type diffusion layer 5, and this p-type impurity layer 2 causes the potential of the polycrystalline silicon 6, which is a charge storage region, to be applied to the semiconductor substrate 1. The formed depletion layer and the depletion layer extending from the n-type diffusion layer 5 are separated. Therefore, the area that affects the accumulated charge is significantly smaller than in the known example. That is, it can be said that the memory cell according to the present invention is more effective against phantom errors caused by α particles, etc., than known memory cells. Furthermore, this p-type impurity layer 2 is
Since it also separates the diffusion layer between adjacent memory cells, miniaturization progresses, the groove width becomes smaller, and polycrystalline silicon 9
It also has the effect of fulfilling the element isolation function when isolation alone becomes insufficient. Further, since the p-type impurity layer 2 is formed separately from the diffusion layer 5, no deterioration occurs from the viewpoint of breakdown voltage of the diffusion layer 2.

なお、本発明における溝に埋め込まれた多結晶シリコン
9への基準電位(本実施例においては接地レベル)の与
え方であるが、本実施例では多結晶シリコン9と半導体
基板1とを二酸化珪素膜8により絶縁分離し、表面から
基準電位を与える様にしている。多結晶シリコン9に基
準電位を与える方法としては、この他に基板から与える
方法が考えられる。この場合の構造については第2図に
示す。第2図でもわかる様に溝に埋めた多結晶シリコン
31は直接半導体基板と電気的に接続しており、第1図
の実施例と比較すると、基準電位線を別個に設ける必要
が無いという利点がある。なお第2図において32は二
酸化珪素膜を示している。
Note that in the present invention, the reference potential (ground level in this embodiment) is applied to the polycrystalline silicon 9 embedded in the groove, but in this embodiment, the polycrystalline silicon 9 and the semiconductor substrate 1 are It is insulated and separated by a film 8, and a reference potential is applied from the surface. Another possible method for applying the reference potential to the polycrystalline silicon 9 is to apply it from the substrate. The structure in this case is shown in FIG. As can be seen in Fig. 2, the polycrystalline silicon 31 buried in the groove is directly electrically connected to the semiconductor substrate, and compared to the embodiment shown in Fig. 1, there is no need to provide a separate reference potential line. There is. Note that in FIG. 2, 32 indicates a silicon dioxide film.

第3図(a)〜(j)は本発明の第2の発明を説明する
ために工程順に示した模式的断面図である。
FIGS. 3(a) to 3(j) are schematic cross-sectional views shown in order of steps to explain the second invention of the present invention.

第2の発明の一実施例は次の工程により祷成される。ま
ず、第3図(a)に示すように、P型シリコン単結晶基
板11上に薄い二酸化珪素膜12、窒化珪素膜13、お
よび二酸化珪素膜14を順次形成した後、溝形成領域以
外をレジスト15で被う。
An embodiment of the second invention is accomplished through the following steps. First, as shown in FIG. 3(a), after sequentially forming a thin silicon dioxide film 12, a silicon nitride film 13, and a silicon dioxide film 14 on a P-type silicon single crystal substrate 11, resist is applied to the area other than the groove formation area. Cover with 15.

次に、第3図(b)に示すように、レジスト15ti+
エツチングマスクとして二酸化珪素膜14.窒化珪素膜
13および二酸化珪素膜12を異方性エツチング除去に
よりエツチング除去し、さらにレジスト15および二酸
化珪素膜14を耐エツチングマスクとしてシリコン基板
11を異方性エツチング技術によりエツチング除去し浅
い溝Aを形成した後、ホトレジスト15をマスクとし7
てイオン注入法により溝底部にホウ素を打込みホウ素注
入領域16を形成する。
Next, as shown in FIG. 3(b), resist 15ti+
Silicon dioxide film 14 as an etching mask. The silicon nitride film 13 and the silicon dioxide film 12 are etched away by anisotropic etching removal, and the silicon substrate 11 is further etched away by anisotropic etching technology using the resist 15 and the silicon dioxide film 14 as an etching-resistant mask to form a shallow groove A. After forming, the photoresist 15 is used as a mask and 7
Then, boron is implanted into the bottom of the groove by ion implantation to form a boron implanted region 16.

次に、第3図(C)に示すように、熱処理を行うことに
より注入したホウ素をシリコン基板11中に押し込んだ
後、ホトレジスト15および二酸化珪素膜14を耐エツ
チングマスクとして再度シリコン基板11を異方性エツ
チング技術によりエツチング除去し深い溝Bを形成し、
しかる後ホトレジスト15および二酸化珪素膜14をエ
ツチング除去し、次に窒化珪素膜13を耐酸化マスクと
して溝Bの内壁に二酸化 素膜17を形成する。
Next, as shown in FIG. 3(C), the implanted boron is forced into the silicon substrate 11 by heat treatment, and then the silicon substrate 11 is removed again using the photoresist 15 and the silicon dioxide film 14 as an etching-resistant mask. Etching is removed using directional etching technology to form deep grooves B.
Thereafter, photoresist 15 and silicon dioxide film 14 are removed by etching, and then silicon dioxide film 17 is formed on the inner wall of groove B using silicon nitride film 13 as an oxidation-resistant mask.

次に、第3図(d)に示すように、全面にレジスト18
および絶縁性物質19を順次塗布し、次に前記溝開口部
およびその周辺部以外をレジスト20で被う。
Next, as shown in FIG. 3(d), resist 18 is applied to the entire surface.
and an insulating material 19 are sequentially applied, and then a resist 20 is applied to cover the area other than the groove opening and its surrounding area.

次に、第3図(e)に示すようにレジスト20をエツチ
ングマスクとして絶縁性物質19をエツチング除去し、
その後、絶縁性物質19をエツチングマスクとしてレジ
スト18をエツチング除去しその表面をシリコン基板1
1の表面より下げる。
Next, as shown in FIG. 3(e), the insulating material 19 is removed by etching using the resist 20 as an etching mask.
Thereafter, the resist 18 is etched away using the insulating material 19 as an etching mask, and its surface is etched onto the silicon substrate 1.
lower than the surface of 1.

ここで絶縁性物質19およびレジスト1Bをエツチング
する技術としては選択性エツチングが可能な反応性スパ
ッタエツチング技術が適当である。
Here, as a technique for etching the insulating material 19 and the resist 1B, a reactive sputter etching technique capable of selective etching is suitable.

次に、第3図(f)に示すように、レジスト18をエツ
チングマスクとして前記溝開口部端付近に形成されてい
る二酸化珪素膜17をエツチング除去し、その後レジス
ト18を除去し、次に前記シリコン基板と異なる導電型
不純物例えばリン又はA幅のゴ/3以下とし、溝Aを完
全に埋めないようにする。不純物を含んだ多結晶シリコ
ン21の形成方法とし7ては、CVD法により不純物を
含んだ状態で多結晶シリコンを成長するか又はCVD法
により多結晶シリコンを成長させた後、熱拡散法により
不純物を多結晶シリコン中に拡散する方法がある。
Next, as shown in FIG. 3(f), the silicon dioxide film 17 formed near the end of the trench opening is etched away using the resist 18 as an etching mask, and then the resist 18 is removed, and then the The impurity is of a conductivity type different from that of the silicon substrate, such as phosphorus, or less than Go/3 of the width A, so that the trench A is not completely filled. As a method 7 for forming polycrystalline silicon 21 containing impurities, polycrystalline silicon is grown in a state containing impurities by a CVD method, or polycrystalline silicon is grown by a CVD method and then impurities are grown by a thermal diffusion method. There is a method of diffusing polycrystalline silicon into polycrystalline silicon.

次に、第3図(g)に示すように、反応性スパッタエツ
チング技術により多結晶シリコン21をエツチング除去
して前記溝側壁にのみ多結晶シリコン21を残してこれ
を第1電極とした後、熱酸化法により前記多結晶シリコ
ン21の表面上に薄い二酸化珪素膜22を形成する。
Next, as shown in FIG. 3(g), the polycrystalline silicon 21 is etched away using a reactive sputter etching technique, leaving the polycrystalline silicon 21 only on the side walls of the trench, which is used as a first electrode. A thin silicon dioxide film 22 is formed on the surface of the polycrystalline silicon 21 by thermal oxidation.

次いで、第3図(h、)のように、CVD法により薄い
窒化珪素膜23を形成した後、全面にシリコン基板11
と異なる導電型不純物例えばリン又は砒素を含んだ多結
晶シリコン24を形成し前記溝を完全に埋める。
Next, as shown in FIG. 3(h), after forming a thin silicon nitride film 23 by the CVD method, a silicon substrate 11 is deposited on the entire surface.
Polycrystalline silicon 24 containing an impurity of a different conductivity type, such as phosphorus or arsenic, is formed to completely fill the trench.

次に、第3図(i)に示すように、多結晶シリコン24
を表面からエツチングして+11B内にのみ多結晶シリ
コン24を残してこれを第2電極とし、窒化珪素膜13
を耐酸化マスクとして溝内に形成した多結晶シリコン2
1.24を酸化し厚い二酸化珪素膜25を形成する。前
記厚い二酸化珪素膜形成時、前記多結晶シリコン中に拡
散されていた不純物26がシリコン基板11内にしみ出
す。
Next, as shown in FIG. 3(i), polycrystalline silicon 24
is etched from the surface, leaving polycrystalline silicon 24 only in +11B, and using this as a second electrode, silicon nitride film 13 is etched.
Polycrystalline silicon 2 formed in the groove using as an oxidation-resistant mask
1.24 is oxidized to form a thick silicon dioxide film 25. When the thick silicon dioxide film is formed, impurities 26 that have been diffused into the polycrystalline silicon seep into the silicon substrate 11.

次に、第3図(j)に示すように、窒化珪素膜13およ
び二酸化珪素膜12を除去した後、ゲート絶縁膜27.
ワード線に接続したゲート電極28゜ビット線30に接
続した拡散層29、およびビット線30を各々形成する
とメモリセルは完成する。
Next, as shown in FIG. 3(j), after removing the silicon nitride film 13 and the silicon dioxide film 12, the gate insulating film 27.
The memory cell is completed by forming a gate electrode 28 connected to a word line, a diffusion layer 29 connected to a bit line 30, and a bit line 30.

(発明の効果) 以上述べた様に、本発明によれば大きな記憶容量を小さ
なセル面積で実現出来、しかも公知の半導体メモリセル
に較べα粒子等によるンフトエラーの影響を受けに<<
、拡散層の耐圧が同程度に保たれ九高集積化に適したメ
モリセルが容易に得られる。
(Effects of the Invention) As described above, according to the present invention, a large storage capacity can be realized with a small cell area, and moreover, compared to known semiconductor memory cells, it is less susceptible to the effects of ft errors caused by α particles, etc.
Therefore, a memory cell suitable for high-density integration can be easily obtained in which the breakdown voltage of the diffusion layer is maintained at the same level.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による半導体メモリセルの一実施例の概
略断面図、第2図は本発明による半導体メモリセルの他
の実施例の概略断面図、第3図(a)〜(j)は本発明
の半導体メモリセルの製造方法を説明するために工程順
に示した概略断面図、第4図は従来の溝型ITICメモ
リセルの概略断面図である。 1.11.41・・・・・・半導体基板、2・・・・・
・不純物層、3・・・・・・ワード線に接続された多結
晶シリコン。 4・・・・・・ビット線に接続された拡散層、5・・・
・・・拡散層、6,9・・・・・・多結晶シリコン、7
,8・・・・・・二酸化珪素膜、h・・・・・・溝、1
2.14.17,22゜25・・・・・・二酸化珪素膜
、13.23・・・・・・窒化珪素膜、15,18.2
0・・・・・・レジスト、16・・・・・・ホウ素注入
領域、19・・・・・・絶縁性物質、21. 24・・
・・・・多結晶シリコン、26・・・・・・不純物、2
7・・・・・・ゲート絶縁膜、28・・・・・・ゲート
電極、29・・・・・・拡散層、30・・・・・・ビッ
ト線。 卒1剖 半づ珂 /ダLシーズ1〜 .4噸 ¥3剖 2θLし”スト 2ノ ?りφ−@IYbン1ノ′コン 茅3惑A 争:l徊
FIG. 1 is a schematic sectional view of one embodiment of a semiconductor memory cell according to the present invention, FIG. 2 is a schematic sectional view of another embodiment of a semiconductor memory cell according to the present invention, and FIGS. 3(a) to (j) are FIG. 4 is a schematic cross-sectional view of a conventional trench-type ITIC memory cell. 1.11.41...Semiconductor substrate, 2...
- Impurity layer, 3... Polycrystalline silicon connected to the word line. 4... Diffusion layer connected to the bit line, 5...
...Diffusion layer, 6,9...Polycrystalline silicon, 7
, 8...Silicon dioxide film, h...Groove, 1
2.14.17,22゜25...Silicon dioxide film, 13.23...Silicon nitride film, 15,18.2
0...Resist, 16...Boron implantation region, 19...Insulating material, 21. 24...
...Polycrystalline silicon, 26...Impurity, 2
7... Gate insulating film, 28... Gate electrode, 29... Diffusion layer, 30... Bit line. Graduation 1 Autopsy Hanzuka/Da L Seeds 1~ . 4 噸 ¥ 3 autopsy 2 theta

Claims (2)

【特許請求の範囲】[Claims] (1)第1導電型半導体基板表面に形成された凹部の少
なくとも一部を覆う第1の絶縁性物質と、該第1の絶縁
性物質の少なくとも側壁に接し、しかも互いに隔離して
いる第1及び第2の導電性物質と、該第1及び第2の導
電性物質の少なくとも側面を覆う第2の絶縁性物質と、
前記第1及び第2の導電性物質とは絶縁され前記凹部の
残りの部分を埋め基準電位を与えられた第3の導電性物
質と、前記第1導電型半導体基板表面に設けられ、前記
第1の絶縁性物質に接し、前記第1又は第2の導電性物
質に電気的に接続し形成されたMISトランジスタのソ
ース電極である第2導電型の拡散領域と、該拡散領域と
隔離し、前記凹部側壁に接して形成された第1導電型拡
散領域とを備えたことを特徴とする半導体メモリセル。
(1) A first insulating material that covers at least a portion of a recess formed on the surface of a first conductivity type semiconductor substrate, and a first insulating material that is in contact with at least a sidewall of the first insulating material and is isolated from each other and a second electrically conductive material, and a second insulating material that covers at least the side surfaces of the first and second electrically conductive materials;
a third conductive material that is insulated from the first and second conductive materials and fills the remaining portion of the recess and is supplied with a reference potential; a second conductivity type diffusion region that is a source electrode of a MIS transistor formed in contact with the first insulating material and electrically connected to the first or second conductive material; and isolated from the diffusion region; a first conductivity type diffusion region formed in contact with a side wall of the recess.
(2)第1導電型半導体基板表面の溝形成領域に異方性
エッチングにより浅い溝を形成する工程と、イオン注入
して前記溝底部に第1導電型不純物領域を形成する工程
と、熱処理を施し半導体基板中に前記不純物を押し込む
工程と、前記浅い溝に更に異方性エッチングを施し深い
溝を形成する工程と、前記溝の内壁に二酸化珪素膜を形
成する工程と、全面に有機物及び絶縁性物質を順次塗布
し次いで前記溝開孔部及びその周辺部以外を有機物で覆
う工程と、前記有機物をマスクとして絶縁性物質をエッ
チング除去し次いで絶縁性物質をマスクとして前記有機
物をエッチングしその表面を半導体基板の表面より下げ
る工程と、前記有機物をマスクとして溝開孔部付近の二
酸化珪素膜をエッチング除去する工程と、前記有機物を
除去し第2導電型不純物を含んだ多結晶シリコンを溝幅
の1/3以下の厚さに全面に形成する工程と、前記多結
晶シリコンをエッチングし前記溝側壁にのみ残す工程と
、熱酸化し前記多結晶シリコン表面に二酸化珪素膜を形
成する工程と、CVD法により表面に窒化珪素膜を形成
し引続き半導体基板と異なる第2導電型不純物を含んだ
多結晶シリコンを形成し前記溝を完全に埋める工程と、
該多結晶シリコンを表面からエッチングし前記溝内にの
み多結晶シリコンを残す工程と、溝内の多結晶シリコン
表面に厚い二酸化珪素膜を形成する工程と、第1導電型
半導体基板の表面にMIS型トランジスタのソース電極
である第2導電型の拡散領域を形成する工程とを含むこ
とを特徴とする半導体メモリセルの製造方法。
(2) forming a shallow groove by anisotropic etching in the groove forming region on the surface of the first conductivity type semiconductor substrate; forming a first conductivity type impurity region at the bottom of the groove by ion implantation; and heat treatment. A step of pushing the impurity into the semiconductor substrate, a step of further performing anisotropic etching on the shallow trench to form a deep trench, a step of forming a silicon dioxide film on the inner wall of the trench, and a step of forming an organic material and an insulating film on the entire surface. a step of sequentially applying a chemical substance and then covering the area other than the groove opening and its surrounding area with an organic substance, etching and removing the insulating substance using the organic substance as a mask, etching the organic substance using the insulating substance as a mask, and etching the surface thereof. a step of lowering the silicon dioxide film from the surface of the semiconductor substrate, a step of etching away the silicon dioxide film near the trench opening using the organic material as a mask, and a step of removing the organic material and removing the polycrystalline silicon containing the second conductivity type impurity to the trench width. a step of etching the polycrystalline silicon to leave it only on the side walls of the groove; and a step of thermally oxidizing the polycrystalline silicon to form a silicon dioxide film on the surface of the polycrystalline silicon. forming a silicon nitride film on the surface by a CVD method, and then forming polycrystalline silicon containing impurities of a second conductivity type different from that of the semiconductor substrate to completely fill the trench;
a step of etching the polycrystalline silicon from the surface to leave the polycrystalline silicon only in the groove; a step of forming a thick silicon dioxide film on the surface of the polycrystalline silicon in the groove; forming a second conductivity type diffusion region that is a source electrode of a semiconductor memory cell.
JP60179614A 1985-08-14 1985-08-14 Semiconductor memory cell and manufacture thereof Granted JPS6239053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60179614A JPS6239053A (en) 1985-08-14 1985-08-14 Semiconductor memory cell and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60179614A JPS6239053A (en) 1985-08-14 1985-08-14 Semiconductor memory cell and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS6239053A true JPS6239053A (en) 1987-02-20
JPH0588550B2 JPH0588550B2 (en) 1993-12-22

Family

ID=16068829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60179614A Granted JPS6239053A (en) 1985-08-14 1985-08-14 Semiconductor memory cell and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6239053A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022671A (en) * 1988-06-17 1990-01-08 Fujitsu Ltd Dynamic random access memory device
JP2007214513A (en) * 2006-02-13 2007-08-23 Tokyo Electron Ltd Substrate processing apparatus, substrate processing method, and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59141262A (en) * 1983-02-02 1984-08-13 Nec Corp Semiconductor memory cell
JPS60109265A (en) * 1983-11-18 1985-06-14 Hitachi Ltd Semiconductor ic device
JPS60126861A (en) * 1983-12-13 1985-07-06 Fujitsu Ltd Semiconductor memory device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59141262A (en) * 1983-02-02 1984-08-13 Nec Corp Semiconductor memory cell
JPS60109265A (en) * 1983-11-18 1985-06-14 Hitachi Ltd Semiconductor ic device
JPS60126861A (en) * 1983-12-13 1985-07-06 Fujitsu Ltd Semiconductor memory device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022671A (en) * 1988-06-17 1990-01-08 Fujitsu Ltd Dynamic random access memory device
JP2007214513A (en) * 2006-02-13 2007-08-23 Tokyo Electron Ltd Substrate processing apparatus, substrate processing method, and storage medium

Also Published As

Publication number Publication date
JPH0588550B2 (en) 1993-12-22

Similar Documents

Publication Publication Date Title
US7608506B2 (en) Body-contacted semiconductor structures and methods of fabricating such body-contacted semiconductor structures
US4920390A (en) Semiconductor memory device and method of fabricating the same
US7847322B2 (en) Semiconductor memory device and method of manufacturing the same
US6707092B2 (en) Semiconductor memory having longitudinal cell structure
JP2012174866A (en) Semiconductor device and manufacturing method of the same
JP2510048B2 (en) Double trench semiconductor memory and manufacturing method thereof
KR100673673B1 (en) Dram cell arrangement and method for fabricating it
US5156993A (en) Fabricating a memory cell with an improved capacitor
US6872629B2 (en) Method of forming a memory cell with a single sided buried strap
JPS61185965A (en) Memory cell and making thereof
JP2013069770A (en) Semiconductor device and manufacturing method of the same
KR100517219B1 (en) Dram cell arrangement with dynamic gain memory cells, and method for the production thereof
JP2005158869A (en) Semiconductor device and its manufacturing method
JPS6239053A (en) Semiconductor memory cell and manufacture thereof
JP2661156B2 (en) Semiconductor memory device
JPH0336309B2 (en)
JPS63136559A (en) Semiconductor memory and manufacture thereof
KR970000227B1 (en) Semiconductor memory device and method for producing the same
JPS62249473A (en) Semiconductor memory
KR100728967B1 (en) Semiconductor device and method of manufacturing the same
JP2509177B2 (en) Memory cell
KR960001038B1 (en) Method of manufacturing a dram cell having wordline buried
KR950007012Y1 (en) Semicanductor memory device
JPS6187359A (en) Semiconductor memory cell
JP2723802B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees