JPH0370381B2 - - Google Patents

Info

Publication number
JPH0370381B2
JPH0370381B2 JP57220581A JP22058182A JPH0370381B2 JP H0370381 B2 JPH0370381 B2 JP H0370381B2 JP 57220581 A JP57220581 A JP 57220581A JP 22058182 A JP22058182 A JP 22058182A JP H0370381 B2 JPH0370381 B2 JP H0370381B2
Authority
JP
Japan
Prior art keywords
film
silicon
substrate
memory cell
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57220581A
Other languages
Japanese (ja)
Other versions
JPS59110154A (en
Inventor
Masaaki Yoshida
Toshuki Ishijima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP57220581A priority Critical patent/JPS59110154A/en
Publication of JPS59110154A publication Critical patent/JPS59110154A/en
Publication of JPH0370381B2 publication Critical patent/JPH0370381B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate
    • H10B12/373DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate the capacitor extending under or around the transistor

Landscapes

  • Element Separation (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Description

【発明の詳細な説明】 本発明は半導体メモリセルの構造に関し、さら
に詳しくはより大きな記憶容量を実現する半導体
メモリセルの構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a structure of a semiconductor memory cell, and more particularly to a structure of a semiconductor memory cell that achieves a larger storage capacity.

電荷の形で2進情報を貯蔵する半導体メモリセ
ルはセル面積が小さいため、高集積、大容量メモ
リセルとして秀れている。特にメモリセルとして
1つのトランジスタと1つのコンデンサからなる
メモリセル(以下1TICセルと略す)は、構成要
素も少なく、セル面積も小さいため高集積メモリ
用メモリセルとして重要である。
Semiconductor memory cells that store binary information in the form of charges have a small cell area, making them excellent as highly integrated and large-capacity memory cells. In particular, a memory cell (hereinafter abbreviated as 1TIC cell) consisting of one transistor and one capacitor is important as a memory cell for highly integrated memory because it has few constituent elements and has a small cell area.

第1図に従来よく用いられている1TICセルの
一例を示す。第1図において、3がキヤパシタ電
極で6の反転層との間に記憶容量を形成する。2
はスイツチングトランジスタのゲート電極でワー
ド線に接続されており、ビツト線に接続されてい
る拡散層4と反転層6の間の電荷の移動を制御す
る。又、7は隣接メモリセルとの分離領域であ
る。従来例において、記憶容量は3のキヤパシタ
電極の面積と、5の絶縁膜の誘電率及び膜厚によ
つて決定される。すなわち、大きな記憶容量を確
保する手段として以下の3つの方法がある。
Figure 1 shows an example of a 1TIC cell that has been commonly used in the past. In FIG. 1, a capacitor electrode 3 forms a storage capacitor between it and an inversion layer 6. In FIG. 2
is the gate electrode of the switching transistor, which is connected to the word line, and controls the movement of charges between the diffusion layer 4 and the inversion layer 6, which are connected to the bit line. Further, 7 is an isolation region from an adjacent memory cell. In the conventional example, the storage capacity is determined by the area of the capacitor electrode (3) and the dielectric constant and film thickness of the insulating film (5). That is, there are the following three methods for securing a large storage capacity.

(1) キヤパシタ電極の面積を大きくする。(1) Increase the area of the capacitor electrode.

(2) 絶縁膜の膜厚を薄くする。(2) Reduce the thickness of the insulating film.

(3) 高誘電率の絶縁膜を用いる。(3) Use an insulating film with a high dielectric constant.

ところで一般にメモリの高集積化は微細加工技
術の進展に伴うメモリセルサイズの縮小によつて
達成されており、従来例で示した1TICセル構造
ではキヤパシタ電極の面積は減少する。それ故従
来例の1TICセルでは絶縁膜の膜厚を薄くするこ
とにより記憶容量の大幅な減少を防いでいた。し
かし絶縁膜の膜厚はもはや限界に近づいており、
一方セルの微細化は進展するばかりで従来の構造
の1TICセルでは高誘電率の絶縁膜を採用しない
限り記憶容量は減少する一方である。高誘電率の
絶縁膜は模索段階で近いうちに実用化される目途
はない。
Incidentally, high integration of memory is generally achieved by reducing memory cell size with advances in microfabrication technology, and in the 1TIC cell structure shown in the conventional example, the area of the capacitor electrode is reduced. Therefore, in conventional 1TIC cells, a significant decrease in storage capacity was prevented by reducing the thickness of the insulating film. However, the thickness of the insulating film is approaching its limit.
On the other hand, cell miniaturization continues to progress, and the storage capacity of conventional 1TIC cells will continue to decrease unless an insulating film with a high dielectric constant is used. Insulating films with high dielectric constants are still in the exploratory stage and there is no prospect that they will be put to practical use in the near future.

以上述べた様に従来型の1TICセルは今後増々
記憶容量が減少するという問題点を有している。
しかも耐α粒子問題、センスアンプの感度等から
大きな記憶容量が望まれており、(例えば耐α粒
子問題からは50fF以上の記憶容量)従来型の
1TICではもはや対処出来ない。
As mentioned above, the conventional 1TIC cell has the problem that its storage capacity will decrease more and more in the future.
Moreover, a large memory capacity is desired due to the alpha particle resistance problem, the sensitivity of the sense amplifier, etc. (for example, a memory capacity of 50 fF or more due to the alpha particle resistance problem).
1TIC is no longer sufficient.

本発明の目的は、上記従来型1T1Cセルの欠点
を改善し、微小な面積のメモリセルにおいても従
来型より大きい記憶容量を得ることが可能な新規
な構造の半導体メモリセルを提供することにあ
る。
An object of the present invention is to provide a semiconductor memory cell with a novel structure that improves the drawbacks of the conventional 1T1C cell and can obtain a larger storage capacity than the conventional type even in a memory cell with a small area. .

本発明によれば、半導体基板上に半導体の壁で
仕切られた領域を複数形成し、それら各領域内の
壁の側面または側面と底面の一部を薄い絶縁膜を
介して導電性薄膜で被い、この導電性薄膜と前記
薄い絶縁膜と壁または壁と基板の半導体とでメモ
リセル用キヤパシタを構成し、前記導電性薄膜の
表面を絶縁膜で被い、基板と電気的に接続したエ
ピタキシヤル半導体膜を前記各領域を埋めるよう
に形成し、一つの領域内のエピタキシヤル半導体
膜にMIS電界効果トランジスタを一つ形成し、そ
の一方の拡散層を前記導電性薄膜と電気的に接続
することを特徴とする半導体メモリセルが得られ
る。
According to the present invention, a plurality of regions partitioned by semiconductor walls are formed on a semiconductor substrate, and the side surfaces of the walls or part of the side surfaces and bottom surfaces in each region are covered with a conductive thin film via a thin insulating film. This conductive thin film, the thin insulating film, and the wall or the semiconductor of the wall and the substrate constitute a memory cell capacitor, and the surface of the conductive thin film is covered with an insulating film, and the epitaxial layer is electrically connected to the substrate. an epitaxial semiconductor film is formed to fill each of the regions, one MIS field effect transistor is formed in the epitaxial semiconductor film in one region, and one of the diffusion layers is electrically connected to the conductive thin film. A semiconductor memory cell characterized by this can be obtained.

以下発明の典型的な実施例を第2、第3図を用
いて詳述する。第2図は本発明におけるメモリ・
セルの平面図を示したものであり、第3図は第2
図の平面図をAA′の一点鎖線に沿つて切り開いた
部分を製造プロセスの順を追つて示した模式的断
面図である。
Typical embodiments of the invention will be described in detail below with reference to FIGS. 2 and 3. Figure 2 shows the memory in the present invention.
Figure 3 shows the top view of the cell.
FIG. 3 is a schematic cross-sectional view of a portion of the plan view shown in the figure cut out along the dashed line AA′, showing the manufacturing process in order.

まず例えばP型単結晶シリコン基板21の表面
上に熱酸化法により二酸化珪素膜22を形成した
後、素子分離領域の形状を有するホトレジスト2
3を形成した(a図)。
First, for example, a silicon dioxide film 22 is formed on the surface of a P-type single crystal silicon substrate 21 by a thermal oxidation method, and then a photoresist film 22 having a shape of an element isolation region is formed.
3 was formed (Figure a).

次に前記ホトレジスト23を耐エツチングマス
クとして前記二酸化珪素膜22をエツチング除去
し、さらにシリコン基板21をも深くエツチング
してシリコン基板表面に凹部を設けた後、熱酸化
法によりシリコン基板21を二酸化珪素膜24で
被い、さらに多結晶シリコン25、二酸化珪素膜
26、窒化珪素膜27を順次形成してから、凹部
の一部分を除く全面をホトレジスト28で被つた
(b図)。
Next, the silicon dioxide film 22 is etched away using the photoresist 23 as an etching-resistant mask, and the silicon substrate 21 is also deeply etched to form a recess on the surface of the silicon substrate. After covering with a film 24, a polycrystalline silicon 25, a silicon dioxide film 26, and a silicon nitride film 27 were successively formed, and then the entire surface except for a portion of the recess was covered with a photoresist 28 (Figure b).

次に前記ホトレジスト28を耐エツチングマス
クとして前記窒化珪素膜27、前記二酸化珪素膜
26、前記多結晶シリコン25、前記二酸化珪素
膜24を各々除去した後、前記窒化珪素膜27を
耐酸化マスクとして熱酸化法により前記多結晶シ
リコン25の一部を酸化した(c図)。
Next, the silicon nitride film 27, the silicon dioxide film 26, the polycrystalline silicon 25, and the silicon dioxide film 24 are removed using the photoresist 28 as an etching-resistant mask, and then the silicon nitride film 27 is used as an oxidation-resistant mask to remove the silicon dioxide film 24. A part of the polycrystalline silicon 25 was oxidized by an oxidation method (Figure c).

次に前記窒化珪素膜27を耐エツチングマスク
として凹部の底の一部に形成された二酸化珪素膜
29′を除去し、次に前記窒化珪素膜27を除去
した後凹部の底に形成された窓よりシリコンのエ
ピタキシヤル成長法を用いて基板シリコンと同一
導電型の単結晶シリコン30を成長させて凹部を
完全に埋めた(d図)。
Next, using the silicon nitride film 27 as an etching-resistant mask, the silicon dioxide film 29' formed on a part of the bottom of the recess is removed, and after removing the silicon nitride film 27, the window formed at the bottom of the recess is removed. Using a silicon epitaxial growth method, single crystal silicon 30 having the same conductivity type as the substrate silicon was grown to completely fill the recess (Figure d).

次に表面に出ている前記二酸化珪素膜26を除
去した後前記多結晶シリコン25およびエピタキ
シヤル成長により形成した単結晶シリコン30を
前記二酸化珪素膜22′の表面が出るまでエツチ
ング除去した(e図)。
Next, after removing the silicon dioxide film 26 exposed on the surface, the polycrystalline silicon 25 and the single crystal silicon 30 formed by epitaxial growth were removed by etching until the surface of the silicon dioxide film 22' was exposed (Fig. e). ).

次に前記単結晶シリコン上にゲート酸化膜31
を形成、多結晶シリコンによりスイツチングトラ
ンジスタのゲート電極11′を形成、さらに砒素
又は燐のイオン注入によりビツト線に接続するN
型拡散層領域12および多結晶シリコン13を通
して前記シリコン基板21内に形成した前記多結
晶シリコン25と導通しているN型拡散層32を
形成することにより1T1Cセルを形成した(f
図)。
Next, a gate oxide film 31 is formed on the single crystal silicon.
The gate electrode 11' of the switching transistor is formed using polycrystalline silicon, and the N electrode connected to the bit line is formed by ion implantation of arsenic or phosphorus.
A 1T1C cell was formed by forming an N-type diffusion layer 32 that was electrically connected to the polycrystalline silicon 25 formed in the silicon substrate 21 through the type diffusion layer region 12 and polycrystalline silicon 13 (f
figure).

第2図の平面図、第3図fの断面図と従来の
1T1Cセルの第1図を比較して見ると、第1図の
ワード線に接続されているスイツチングトランジ
スタのゲート電極2は、第2図、第3図fでは、
多結晶シリコン11′に相当し、第1図のビツト
線に接続されている拡散層4は、第2図、第3図
fでは、拡散層12に相当している。電荷を記憶
する場合、ワード線に接続されたスイツチングト
ランジスタをONにすることにより、ビツト線に
接続された拡散層より基板内に形成された多結晶
シリコン25に電荷が蓄積されて記憶状態とな
る。そしてこの蓄積容量は、多結晶シリコン25
と基板シリコン21間に形成された二酸化珪素膜
の容量により形成される。すなわち容量は多結晶
シリコン25の両側に形成される。このため蓄積
容量はきわめて大きくなる。また更に大きな容量
が必要ならば多結晶シリコン25を基板内に深く
形成することにより、占有表面積を増加させるこ
となく蓄積容量のみを大幅に増加できる。記憶し
た電荷を読み出す場合、ワード線に接続されたス
イツチングトランジスタをONにして、ビツト線
に接続された拡散層12に基板内に形成された多
結晶シリコン25に蓄積された電荷を移動させて
読み出しを行う。
The plan view in Figure 2, the sectional view in Figure 3 f, and the conventional
Comparing Figure 1 of the 1T1C cell, the gate electrode 2 of the switching transistor connected to the word line in Figure 1 is as follows in Figures 2 and 3 f.
Diffusion layer 4, which corresponds to polycrystalline silicon 11' and is connected to the bit line in FIG. 1, corresponds to diffusion layer 12 in FIGS. 2 and 3f. When storing electric charge, by turning on the switching transistor connected to the word line, the electric charge is accumulated in the polycrystalline silicon 25 formed in the substrate from the diffusion layer connected to the bit line, and the memory state is changed. Become. And this storage capacitance is polycrystalline silicon 25
It is formed by the capacitance of the silicon dioxide film formed between the silicon substrate 21 and the silicon substrate 21. That is, capacitors are formed on both sides of polycrystalline silicon 25. Therefore, the storage capacity becomes extremely large. Furthermore, if an even larger capacitance is required, by forming the polycrystalline silicon 25 deep within the substrate, only the storage capacitance can be significantly increased without increasing the occupied surface area. When reading out the stored charge, the switching transistor connected to the word line is turned on, and the charge accumulated in the polycrystalline silicon 25 formed in the substrate is transferred to the diffusion layer 12 connected to the bit line. Perform reading.

現在までのところ、ダイナミツクメモリセルの
記憶容量は、α線が1個入射してもソフトエラー
を発生しないだけの大きさを有することが必要と
されている。記憶容量部を平面的に形成している
従来の1T1Cメモリセルを用いる場合、1Mbitク
ラスの高集積大容量メモリセルでは、セル面積に
おける記憶容量部の占める割合は50%程度にも及
ぶが、本発明によれば記憶容量部は基板内に形成
されるため、この部分の表面積は非常に小さくて
すみ高集積化に適している。
Up to now, the storage capacity of a dynamic memory cell is required to be large enough not to cause a soft error even if one alpha ray is incident thereon. When using a conventional 1T1C memory cell in which the storage capacity section is formed in a planar manner, in a 1Mbit class highly integrated large capacity memory cell, the storage capacity section accounts for approximately 50% of the cell area. According to the invention, since the storage capacitor portion is formed within the substrate, the surface area of this portion is extremely small and is suitable for high integration.

なお第3図に示したリング型のMOSトランジ
スタをスイツチングトランジスタとして使う実施
例の外にも第4図に示したようなバー型のMOS
トランジスタをスイツチングトランジスタとして
使う構造でもよい。またセルとセルの間の素子分
離については、前記実施例ではシリコン基板を細
く残して分離領域としたが、これに限る必要はな
く、絶縁体例えばSiO2などを用いて分離しても
よい。またMOSトランジスタに限らず一般の
MISトランジスタをスイツチングトランジスタと
して使うことができることは明らかである。
In addition to the ring type MOS transistor shown in Figure 3, which uses the ring type MOS transistor as a switching transistor, there is also a bar type MOS transistor as shown in Figure 4.
A structure in which the transistor is used as a switching transistor may also be used. Regarding element isolation between cells, in the embodiment described above, a thin silicon substrate was left as an isolation region, but there is no need to limit it to this, and isolation may be performed using an insulator such as SiO 2 . Also, not only MOS transistors but also general
It is clear that MIS transistors can be used as switching transistors.

また前記実施例においては、シリコン基板内に
形成した多結晶シリコンによるキヤパシタンス領
域の形を素子領域下まで広げて、断面図3fでも
わかるようにL字型にしているが、このキヤパシ
タンス部の形状自体は必ずしもこのように素子領
域下まで広がつたL字型でなくてもよく、基板の
深さ方向のみに形成された構造でも十分である。
ただし、この場合はL字型に比べて深さ方向に深
くキヤパシタンス領域を形成して容量を大きく取
る必要がある。
Further, in the above embodiment, the shape of the capacitance region made of polycrystalline silicon formed in the silicon substrate is extended to below the element region, and is L-shaped as can be seen in the cross-sectional view 3f. However, the shape of this capacitance region itself It does not necessarily have to be an L-shape extending below the element region, and a structure formed only in the depth direction of the substrate is sufficient.
However, in this case, it is necessary to form a capacitance region deeper in the depth direction than in the L-shape to increase the capacitance.

以上述べたように本発明によれば微細なメモリ
セル面積においても記憶容量を大きくとることが
できるため、高集積化に適したメモリセルが容易
に得られる。
As described above, according to the present invention, a large memory capacity can be obtained even in a small memory cell area, so that a memory cell suitable for high integration can be easily obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の1T1Cメモリセルの断面図、
第2図は、本発明によるメモリセルの平面図、第
3図は、本発明によるメモリセルの一実施例を製
造するプロセスを示す断面図である。第4図は本
発明の他の実施例を示す平面図。図中の番号は以
下のものを示す。1…シリコン基板、2…ワード
線に接続されたゲート電極、3…キヤパシタ電
極、4…ビツト線に接続された拡散層、5…二酸
化珪素膜、6…反転層、7…分離領域に形成され
た二酸化珪素膜、11…ワード線、11′…スイ
ツチングトランジスタのゲート電極(多結晶シリ
コン)、12…ビツト線に接続する拡散層、13
…多結晶シリコン、21…シリコン基板、22,
22′…二酸化珪素膜、23…ホトレジスト、2
4…二酸化珪素膜、25…多結晶シリコン、26
…二酸化珪素膜、27…窒化珪素膜、28…ホト
レジスト、29,29′…二酸化珪素膜、30…
エピタキシヤル成長により形成した単結晶シリコ
ン、31…二酸化珪素膜、32…拡散層、32…
二酸化珪素膜、41…スイツチングトランジスタ
のゲート電極、42…ビツト線に接続する拡散
層、43…多結晶シリコン、45…多結晶シリコ
ン、46…二酸化珪素膜。
Figure 1 is a cross-sectional view of a conventional 1T1C memory cell.
FIG. 2 is a plan view of a memory cell according to the present invention, and FIG. 3 is a cross-sectional view showing a process for manufacturing an embodiment of the memory cell according to the present invention. FIG. 4 is a plan view showing another embodiment of the present invention. The numbers in the figure indicate the following. DESCRIPTION OF SYMBOLS 1... Silicon substrate, 2... Gate electrode connected to word line, 3... Capacitor electrode, 4... Diffusion layer connected to bit line, 5... Silicon dioxide film, 6... Inversion layer, 7... Formed in isolation region. 11... Word line, 11'... Gate electrode of switching transistor (polycrystalline silicon), 12... Diffusion layer connected to bit line, 13
...Polycrystalline silicon, 21...Silicon substrate, 22,
22'...Silicon dioxide film, 23...Photoresist, 2
4...Silicon dioxide film, 25...Polycrystalline silicon, 26
...Silicon dioxide film, 27...Silicon nitride film, 28...Photoresist, 29, 29'...Silicon dioxide film, 30...
Single crystal silicon formed by epitaxial growth, 31... silicon dioxide film, 32... diffusion layer, 32...
Silicon dioxide film, 41... Gate electrode of switching transistor, 42... Diffusion layer connected to bit line, 43... Polycrystalline silicon, 45... Polycrystalline silicon, 46... Silicon dioxide film.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板上に半導体の壁で仕切られた領域
を複数形成し、それら各領域内の壁の側面または
側面と底面の一部を薄い絶縁膜を介して導電性薄
膜で被い、この導電性薄膜と前記薄い絶縁膜と壁
または壁と基板の半導体とでメモリセル用キヤパ
シタを構成し、前記導電性薄膜の表面を絶縁膜で
被い、基板と電気的に接続したエピタキシヤル半
導体膜を前記各領域を埋めるように形成し、一つ
の領域内のエピタキシヤル半導体膜にMIS電界効
果トランジスタを一つ形成し、その一方の拡散層
を前記導電性薄膜と電気的に接続することを特徴
とする半導体メモリセル。
1. A plurality of regions partitioned by semiconductor walls are formed on a semiconductor substrate, and the sides of the walls or part of the sides and bottom of each region are covered with a conductive thin film via a thin insulating film, and the conductive A capacitor for a memory cell is constituted by a thin film, the thin insulating film, and a wall, or a wall and a semiconductor of the substrate, and the surface of the conductive thin film is covered with an insulating film, and the epitaxial semiconductor film is electrically connected to the substrate. It is characterized in that it is formed to fill each region, one MIS field effect transistor is formed in the epitaxial semiconductor film in one region, and one of the diffusion layers is electrically connected to the conductive thin film. semiconductor memory cell.
JP57220581A 1982-12-16 1982-12-16 Semiconductor memory cell Granted JPS59110154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57220581A JPS59110154A (en) 1982-12-16 1982-12-16 Semiconductor memory cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57220581A JPS59110154A (en) 1982-12-16 1982-12-16 Semiconductor memory cell

Publications (2)

Publication Number Publication Date
JPS59110154A JPS59110154A (en) 1984-06-26
JPH0370381B2 true JPH0370381B2 (en) 1991-11-07

Family

ID=16753211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57220581A Granted JPS59110154A (en) 1982-12-16 1982-12-16 Semiconductor memory cell

Country Status (1)

Country Link
JP (1) JPS59110154A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59129461A (en) * 1983-01-13 1984-07-25 Fujitsu Ltd Semiconductor device and manufacture thereof
JPH0669081B2 (en) * 1985-01-23 1994-08-31 三菱電機株式会社 Method of manufacturing semiconductor memory
JPS61177742A (en) * 1985-02-01 1986-08-09 Mitsubishi Electric Corp Semiconductor device
JP2595945B2 (en) * 1986-11-13 1997-04-02 三菱電機株式会社 Semiconductor storage device

Also Published As

Publication number Publication date
JPS59110154A (en) 1984-06-26

Similar Documents

Publication Publication Date Title
US5017981A (en) Semiconductor memory and method for fabricating the same
US5302540A (en) Method of making capacitor
JP3963970B2 (en) DRAM cell and method of forming the same
JPH0423832B2 (en)
EP0167764B1 (en) Dynamic ram cell
JPH0682800B2 (en) Semiconductor memory device
US5290726A (en) DRAM cells having stacked capacitors of fin structures and method of making thereof
KR950003915B1 (en) Semiconductor integrated circuit device and manufacturing method thereof
JP3222944B2 (en) Method for manufacturing capacitor of DRAM cell
KR960003773B1 (en) Manufacture of dram cell
KR100417484B1 (en) Method for producing a dram cell arrangement
US6087692A (en) DRAM cell configuration and method for its fabrication
JP2671899B2 (en) Semiconductor storage device
JPS63281457A (en) Semiconductor memory
US7208799B2 (en) Floating body cell dynamic random access memory with optimized body geometry
JPH0294561A (en) Semiconductor storage device and manufacture thereof
JPH0370381B2 (en)
US5830792A (en) Method of making a stack capacitor in a DRAM cell
JPH0370382B2 (en)
US5814526A (en) Method of forming a DRAM stacked capacitor with a two step ladder storage node
JPH0834303B2 (en) Method for manufacturing semiconductor memory device
US4794091A (en) Method of making high-performance dram arrays including trench capacitors
JPS6156449A (en) Semiconductor memory device
JP3120633B2 (en) Semiconductor memory device and manufacturing method thereof
JP2827377B2 (en) Semiconductor integrated circuit