JPH0480540B2 - - Google Patents

Info

Publication number
JPH0480540B2
JPH0480540B2 JP58005084A JP508483A JPH0480540B2 JP H0480540 B2 JPH0480540 B2 JP H0480540B2 JP 58005084 A JP58005084 A JP 58005084A JP 508483 A JP508483 A JP 508483A JP H0480540 B2 JPH0480540 B2 JP H0480540B2
Authority
JP
Japan
Prior art keywords
insulating film
layer
semiconductor
conductive layer
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58005084A
Other languages
Japanese (ja)
Other versions
JPS59129461A (en
Inventor
Junji Sakurai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58005084A priority Critical patent/JPS59129461A/en
Publication of JPS59129461A publication Critical patent/JPS59129461A/en
Publication of JPH0480540B2 publication Critical patent/JPH0480540B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/33DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor extending under the transistor

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は半導体装置に係り、特に1トランジス
タ・1キヤパシタ型ダイナミツク・ランダムアク
セスメモリ(D・RAM)構造の半導体メモリと
その製造方法に関するものである。
[Detailed Description of the Invention] (a) Technical Field of the Invention The present invention relates to a semiconductor device, and particularly relates to a semiconductor memory having a one-transistor, one-capacitor type dynamic random access memory (DRAM) structure, and a method for manufacturing the same. be.

(b) 技術の背景 周知のように半導体メモリの発展は目覚しいも
のがあり、コンピユータなどの情報機器を背景に
して種々の形式構造のメモリが開発され、特に高
集積化された64Kビツトや256KビツトのLSIメモ
リは1個のMOS形半導体素子と1個のキヤパシ
タ(容量素子)とが組合わされた1トランジス
タ・1キヤパシタ型DRAM構造の半導体メモリ
が一般に広く用いられている。
(b) Background of the technology As is well known, the development of semiconductor memory has been remarkable, and memories with various format structures have been developed for information devices such as computers, and in particular, highly integrated 64K-bit and 256K-bit memory. Generally, a semiconductor memory having a one-transistor/one-capacitor type DRAM structure in which one MOS type semiconductor element and one capacitor (capacitive element) are combined is widely used as an LSI memory.

(c) 従来技術と問題点 従来の1MOSキヤパシタ型のトランジスタメモ
リセルについて第1図を用いて説明すると、P型
シリコン基板1内にLOCOS法によつて作られた
局部的な厚い酸化膜層2により1トランジスタメ
モリセルの能動領域3の境界が形成される。
(c) Prior Art and Problems To explain a conventional 1MOS capacitor type transistor memory cell with reference to FIG. This forms the boundary of the active area 3 of a one-transistor memory cell.

この能動領域3の上に絶縁膜4により能動領域
3から分離され、又相互間が隔離されてそれぞれ
一つの平面内にあるボリシリコン導電層5および
6が設けられ第1導電層5は1トランジスタメモ
リセルのメモリキヤパシタの一方の電極を形成し
第2導電層6はそのMOSトランジスタの伝送ゲ
ート電極(ワード線に接続)を構成する。導電層
5と6によつて覆われていない能動領域3の片側
にたとえばイオン注入によつてドープしてn+
ープ領域(ビツト線に接続)が形成され1MOSキ
ヤパシタ型のトランジスタメモリセルが構成され
る。しかしながら上記構造の1MOSキヤパシタ型
メモリセルにおいては、1トランジスタ・1キヤ
パシタの各素子がシリコン基板1の同一表面上に
横に配列されるため所要面積が比較的大きくな
り、より高集積化に対して制限の要素となり、そ
の対策としてスタツクド(Stacked)キヤパシタ
型、或は埋込キヤパシタ型の1トランジスタメモ
リセルが考案されている。上記スタツクドキヤパ
シタ型及び埋込キヤパシタ型の要部概略構成図を
第2図及び第3図に示す。第2図においてP型シ
リコン基板10上に絶縁膜11を介してn+ポリ
シリコン層よりなるゲート電極12(ワード線に
接続)、該ゲート電極12の両側のシリコン基板
10内にソース(ビツト線に接続)13、及びド
レイン14のn+領域を形成し、該ゲート電極1
2上に絶縁膜11を介してキヤパシタを構成する
第1のキヤパシタ電極15(ドレイン領域に接
続)、及び第2キヤパシタ電極16を形成すれば、
1トランジスタ・1キヤパシタの各素子が縦方向
に配列される。此のスタツクドキヤパシタ型構造
は前記1MOSキヤパシタ型に比べて高集積化が可
能であるがゲート電極上にキヤパシタ素子が積層
されるため表面に凹凸が出き、後の工程における
Al配線の際に断線を生ずる危険があり又製作上
歩留が悪い欠点がある。又第3図に示す埋込キヤ
パシタ型においてはP型シリコン基板20にn+
埋没層21を予め形成し、シリコン基板20の所
定領域にn+拡散によつて図示したように埋没層
21に接続拡散層22を形成した後、該基板20
に図示したごとくソース23(拡散層22に接
続)、ドレイン24(ビツト線に接続)、及び絶縁
膜25を介してゲート電極26をそれぞれ形成す
れば基板表面のMOSトランジスト素子の真下に
n+埋没層21とP型シリコン基板20のPN接合
の空乏層によるキヤパシタ素子が作られ、第2図
のスタツクドキヤパシタ型と同様に縦型の構造で
表面の凹凸の小さい1トランジスタメモリセルが
形成されるが、P−N接合のリーク電流が大き
く、そのため電荷蓄積の保持時間が短かく、かつ
α線によつて生ずるいわゆるソフトエラー(Soft
error)に弱い欠点がある。
On this active region 3, polysilicon conductive layers 5 and 6 are provided which are separated from the active region 3 by an insulating film 4 and are isolated from each other and each lie within one plane, and the first conductive layer 5 has one transistor. One electrode of the memory capacitor of the memory cell is formed, and the second conductive layer 6 constitutes the transmission gate electrode (connected to the word line) of the MOS transistor. One side of the active region 3 not covered by the conductive layers 5 and 6 is doped, for example, by ion implantation, to form an n + doped region (connected to the bit line) to constitute a 1MOS capacitor type transistor memory cell. Ru. However, in the 1MOS capacitor type memory cell with the above structure, each element of one transistor and one capacitor is arranged horizontally on the same surface of the silicon substrate 1, so the required area is relatively large, and it is difficult to achieve higher integration. This is a limiting factor, and as a countermeasure to this, one-transistor memory cells of a stacked capacitor type or a buried capacitor type have been devised. A schematic diagram of the main parts of the stacked capacitor type and embedded capacitor type is shown in FIGS. 2 and 3. In FIG. 2, a gate electrode 12 (connected to a word line) made of an n + polysilicon layer is placed on a P-type silicon substrate 10 via an insulating film 11, and a source (bit line) is placed in the silicon substrate 10 on both sides of the gate electrode 12. ) 13 and the n + region of the drain 14, and the gate electrode 1
If a first capacitor electrode 15 (connected to the drain region) and a second capacitor electrode 16 constituting a capacitor are formed on 2 with an insulating film 11 interposed therebetween,
Each element of one transistor and one capacitor is arranged in the vertical direction. This stacked capacitor type structure allows for higher integration than the 1MOS capacitor type described above, but since the capacitor element is stacked on the gate electrode, the surface becomes uneven, making it difficult to use in later processes.
There is a risk of disconnection during Al wiring, and the production yield is low. In addition, in the buried capacitor type shown in FIG .
After forming the buried layer 21 in advance and forming the connection diffusion layer 22 on the buried layer 21 by n + diffusion in a predetermined region of the silicon substrate 20 as shown in the figure, the substrate 20
If the source 23 (connected to the diffusion layer 22), the drain 24 (connected to the bit line), and the gate electrode 26 are formed through the insulating film 25 as shown in the figure, the gate electrode 26 will be located directly under the MOS transistor element on the substrate surface.
A capacitor element is created by the depletion layer of the PN junction between the n + buried layer 21 and the P-type silicon substrate 20, and the one-transistor memory has a vertical structure with small surface irregularities, similar to the stacked capacitor type shown in FIG. A cell is formed, but the leakage current of the P-N junction is large, so the retention time for charge accumulation is short, and so-called soft errors caused by α rays occur.
error) has a weak disadvantage.

(d) 発明の目的 本発明の目的はかかる問題点を解消するためな
されたもので高集積化可能で、表面の凹凸が小さ
く、かつソフトエラーに強い半導体装置及びその
製造方法の提供にある。
(d) Object of the Invention The object of the present invention was made to solve the above problems, and it is to provide a semiconductor device that can be highly integrated, has small surface irregularities, and is resistant to soft errors, and a method for manufacturing the same.

(e) 発明の構成 上記目的は、半導体基板上に形成された絶縁膜
と、該絶縁膜中に導電体層が埋め込まれてなり、
該基板と該導電体層とその間に介在する該絶縁膜
にて構成されたキヤパシタ素子と、該導電体層上
に位置する該絶縁膜の平坦化された領域上に積層
された半導体層と、該半導体層内に形成され、チ
ヤネル領域及び該半導体層の下端に達するソー
ス、ドレイン領域とを有するMIS型トランジスタ
素子と、該導電体層上に位置する該絶縁膜を選択
的に貫通して該導電体層と該MIS型トランジスタ
素子の該ソースとを接続する接続用電極とを備え
た半導体装置によつて達成される。
(e) Structure of the invention The above object comprises an insulating film formed on a semiconductor substrate, and a conductive layer embedded in the insulating film,
a capacitor element composed of the substrate, the conductive layer, and the insulating film interposed therebetween; a semiconductor layer stacked on a flattened region of the insulating film located on the conductive layer; A MIS type transistor element is formed in the semiconductor layer and has a channel region and a source and drain region reaching the lower end of the semiconductor layer, and selectively penetrates the insulating film located on the conductor layer. This is achieved by a semiconductor device including a conductor layer and a connection electrode that connects the source of the MIS type transistor element.

或いは半導体基板上に第1の絶縁膜を形成し、
該第1の絶縁膜上に導電体層を被着してパターニ
ングし、該基板と該導電体層と該第1の絶縁膜に
て構成されたキヤパシタ素子を形成する工程と、
該導電体層を被覆し、平坦な表面を有する第2の
絶縁膜を形成する工程と、該導電体層上の該第2
の絶縁膜を選択的に開口し、該開口部内に導電体
を埋め込むことにより、該導電体層に接続する接
続用電極を形成する工程と、該第2の絶縁膜の該
平坦な表面及び該接続用電極上に半導体層を積層
する工程と、該半導体層内に、チヤネル領域及び
該半導体層の下端に達するソース、ドレイン領域
とを有するMIS型トランジスタ素子を、該ソース
が該接続用電極に接続するように形成する工程と
を含んだ半導体装置の製造方法によつて達成され
る。
Alternatively, forming a first insulating film on the semiconductor substrate,
depositing and patterning a conductive layer on the first insulating film to form a capacitor element composed of the substrate, the conductive layer, and the first insulating film;
forming a second insulating film covering the conductive layer and having a flat surface;
selectively opening the second insulating film and burying a conductor in the opening to form a connecting electrode to be connected to the conductive layer; A step of laminating a semiconductor layer on the connection electrode, and an MIS type transistor element having a channel region and a source and drain region reaching the lower end of the semiconductor layer in the semiconductor layer, the source of which is connected to the connection electrode. This is achieved by a method of manufacturing a semiconductor device including a step of forming the semiconductor device so as to be connected.

(f) 発明の実施例 以下本発明に係る半導体装置をその製造方法と
共に実施例により具体的に説明する。第4図は本
発明の一実施例を製造工程に従つて示す要部断面
図である。同図aにおいて半導体基板30たとえ
ばシリコン基板(導体)の表面を酸化して約300
Åの厚さのシリコン酸化膜(SiO2)よりなる第
1の絶縁膜31を形成し、該絶縁膜31上に厚さ
約5000Åのn+型ポリシリコン層よりなる導電体
層32をCVD法によつて被着し、該導電体層3
2を連続発振アルゴン(CWAr)レーザビーム照
射によつて単結晶化する。前記絶縁膜31は
SiO2膜の代りにSi3N4膜、Ta3O3膜を用いてもよ
い。次いで同図bに示すごとく前記導電体層32
を選択酸化膜、又はレアクテイブイオンエツチン
グ(RIE)法によつて所定形状に分離パターンニ
ングした後、該分離された導電体層32上に第2
のシリコン酸化膜よりなる絶縁膜33を形成す
る。次いで同図cに示すように第2絶縁膜33の
所定領域をパターンニングして接続窓(Via
hole)34を形成し、次にCVD法にて該接続窓
34を含む第2絶縁膜上にn+型ポリシリコン層
を形成した後、接続窓34内に充填されたn+
ポリシリコン35を残して他を全てエツチングす
ることにより除去し、次にn+型ポリシリコン3
5の表面にたとえば熱酸化法にて二酸化シリコン
膜36を形成し、次に再びCVD法にて所定厚の
ポリシリコン層を被着して前述したと同様に
CWArレーザビームの照射によつて該ポリシリコ
ン層を単結晶化し同時にP型の半導体単結晶層3
7を形成する。このようにするとn+型ポリシリ
コン35は二酸化シリコン膜36で覆われている
のでCWArレーザビームの照射を行なつてもn+
不純物がP型半導体単結晶層37中に拡散される
ことはない。次いで同図dに示すごとく再び接続
窓34内のn+型ポリシリコン35上の二酸化シ
リコン膜36及びP型単結晶層の一部を選択的に
エツチングして除去してn+型ポリシリコン38
を充填した後、前記P型半導体単結晶層37を
LOCOS法によつて選択酸化して局部的な厚い酸
化膜39によつて素子分離を行なう。次いで該半
導体単結晶層37に通常の拡散プロセス技術を用
いてn+層のソース40、ドレイン41(ビツト
線に接続)及びゲート酸化膜42を介して伝送ゲ
ート電極43(ワード線に接続)を形成して
MOSトランジスタ素子を形成する。一方ソース
40は接続窓34を介して導電体層32に導通さ
れ、該導電体層32(キヤパシター電極)は半導
体基板30との間に介在する絶縁膜31中に電荷
蓄積層とからなるキヤパシター素子を形成し、本
発明による1トランジスタメモリセルを構成す
る。かかるように構成された本発明による1トラ
ンジスタ・1キヤパシタ型DRAM半導体装置は
MOSトランジスタ直下に二つの対向する導電体、
即ち導電体層32と半導体基板30との間の絶縁
膜31を介在せしめたキヤパシタ素子に形成され
るので埋込キヤパシタ型(第3図)のPN接合に
よるキヤパシタの問題であるPN接合によるリー
ク電流の増加、及びソフトエラーに弱い欠点を解
消することができる。又第5図に示すごとく本発
明の製造方法を用いて半導体基板上に導電体層3
2、接続窓34、ソース40、伝送ゲート電極4
3に、それぞれ対応する導電体層32′、接続窓
34′、ソース40′、伝送ゲート電極43′を同
時に形成し、ドレイン41を共通ビツト線とすれ
ば2つのトランジスタメモリセルが並列配置さ
れ、より高集積化が可能となる。
(f) Embodiments of the Invention The semiconductor device according to the present invention will be specifically described below with reference to Examples along with its manufacturing method. FIG. 4 is a sectional view of a main part showing an embodiment of the present invention according to the manufacturing process. In the same figure a, the surface of a semiconductor substrate 30, for example, a silicon substrate (conductor) is oxidized and
A first insulating film 31 made of a silicon oxide film (SiO 2 ) with a thickness of 5000 Å is formed on the insulating film 31, and a conductive layer 32 made of an n + type polysilicon layer with a thickness of about 5000 Å is formed by CVD. The conductor layer 3 is deposited by
2 is single-crystalized by continuous wave argon (CWAr) laser beam irradiation. The insulating film 31 is
A Si 3 N 4 film or a Ta 3 O 3 film may be used instead of the SiO 2 film. Next, as shown in FIG.
After separating and patterning into a predetermined shape using a selective oxide film or reactive ion etching (RIE) method, a second conductor layer 32 is formed on the separated conductor layer 32.
An insulating film 33 made of a silicon oxide film is formed. Next, as shown in FIG.
After forming an n + type polysilicon layer on the second insulating film including the connection window 34 by CVD method, an n + type polysilicon layer 35 filled in the connection window 34 is formed. All the remaining parts are removed by etching, and then the n + type polysilicon 3 is removed by etching.
A silicon dioxide film 36 is formed on the surface of 5 by thermal oxidation, for example, and then a polysilicon layer of a predetermined thickness is deposited again by CVD in the same manner as described above.
The polysilicon layer is made into a single crystal by irradiation with a CWAr laser beam, and at the same time a P-type semiconductor single crystal layer 3 is formed.
form 7. In this way, since the n + type polysilicon 35 is covered with the silicon dioxide film 36, the n + type impurity will not be diffused into the P type semiconductor single crystal layer 37 even when irradiated with the CWAr laser beam. do not have. Next, as shown in FIG. 4D, the silicon dioxide film 36 and a part of the P-type single crystal layer on the n + type polysilicon 35 within the connection window 34 are selectively etched and removed again to form the n + type polysilicon 38.
After filling the P-type semiconductor single crystal layer 37 with
Selective oxidation is performed by the LOCOS method, and element isolation is performed by a locally thick oxide film 39. Next, a transmission gate electrode 43 (connected to the word line) is formed on the semiconductor single crystal layer 37 via the source 40, drain 41 (connected to the bit line) and gate oxide film 42 of the n + layer using a normal diffusion process technique. form
Form a MOS transistor element. On the other hand, the source 40 is electrically connected to the conductor layer 32 through the connection window 34, and the conductor layer 32 (capacitor electrode) is a capacitor element consisting of a charge storage layer in an insulating film 31 interposed between the semiconductor substrate 30 and the conductor layer 32. is formed to constitute a one-transistor memory cell according to the present invention. The one-transistor/one-capacitor type DRAM semiconductor device according to the present invention configured as described above is
Two opposing conductors directly below the MOS transistor,
That is, since it is formed in a capacitor element with an insulating film 31 interposed between the conductor layer 32 and the semiconductor substrate 30, leakage current due to the PN junction is a problem with capacitors using a buried capacitor type (Figure 3) PN junction. It is possible to eliminate the drawbacks of increased susceptibility to soft errors and soft errors. Further, as shown in FIG. 5, a conductor layer 3 is formed on a semiconductor substrate using the manufacturing method of the present invention.
2, connection window 34, source 40, transmission gate electrode 4
3, the corresponding conductor layer 32', connection window 34', source 40', and transmission gate electrode 43' are simultaneously formed, and the drain 41 is used as a common bit line, so that two transistor memory cells are arranged in parallel. Higher integration becomes possible.

(g) 発明の効果 以上説明したように本発明の一実施例によれば
半導体基板上の絶縁膜中に電荷蓄積層と電極とを
設けてキヤパシタを構成し、該キヤパシタの直上
に該電極を介して該キヤパシタと接続された
MOSトランジスタを設ける積層構造によつて高
集積化可能で凹凸が小さく、かつソフトエラーに
強い半導体装置とその製造が可能となり、1トラ
ンジスタメモリの高集積化、品質向上に大きな効
果がある。尚本実施例は本発明の一例としてあげ
たものであり、本発明の範囲を制限するものでは
ない。
(g) Effects of the Invention As explained above, according to one embodiment of the present invention, a charge storage layer and an electrode are provided in an insulating film on a semiconductor substrate to form a capacitor, and the electrode is placed directly above the capacitor. connected to the capacitor via
The stacked structure in which MOS transistors are provided makes it possible to manufacture a semiconductor device that is highly integrated, has small irregularities, and is resistant to soft errors, and has a great effect on increasing the degree of integration and improving the quality of one-transistor memories. Note that this example is given as an example of the present invention, and is not intended to limit the scope of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、及び第3図はそれぞれ従来の
1MOSキヤパシタ型、スタツクド(Stacked)キ
ヤパシタ型、及び埋込キヤパシタ型の1トランジ
スタメモリの要部概略構成図、第4図は本発明の
一実施例を製造工程に従つて示す要部断面図、第
5図は他の実施例を示す要部断面図である。 図において、30は半導体基板、31は第1の
絶縁膜、32は導電体層、33は第2の絶縁膜、
34は接続窓、37は半導体単結晶層、40はソ
ース、41はドレイン、42はゲート酸化膜、4
3は伝送ゲート電極を示す。
Figures 1, 2, and 3 are respectively conventional
4 is a schematic diagram of the essential parts of a 1MOS capacitor type, stacked capacitor type, and embedded capacitor type 1-transistor memory; FIG. FIG. 5 is a sectional view of main parts showing another embodiment. In the figure, 30 is a semiconductor substrate, 31 is a first insulating film, 32 is a conductive layer, 33 is a second insulating film,
34 is a connection window, 37 is a semiconductor single crystal layer, 40 is a source, 41 is a drain, 42 is a gate oxide film, 4
3 indicates a transmission gate electrode.

Claims (1)

【特許請求の範囲】 1 半導体基板上に形成された絶縁膜と、 該絶縁膜中に導電体層が埋め込まれてなり、該
基板と該導電体層とその間に介在する該絶縁膜に
て構成されたキヤパシタ素子と、 該導電体層上に位置する該絶縁膜の平坦化され
た領域上に積層された半導体層と、 該半導体層内に形成され、チヤネル領域及び該
半導体層の下端に達するソース、ドレイン領域と
を有するMIS型トランジスタ素子と、 該導電体層上に位置する該絶縁膜を選択的に貫
通して該導電体層と該MIS型トランジスタ素子の
該ソースとを接続する接続用電極とを備えたこと
を特徴とする半導体装置。 2 半導体基板上に第1の絶縁膜を形成し、該第
1の絶縁膜上に導電体層を被着してパターニング
し、該基板と該導電体層と該第1の絶縁膜にて構
成されたキヤパシタ素子を形成する工程と、 該導電体層を被覆し、平坦な表面を有する第2
の絶縁膜を形成する工程と、 該導電体層上の該第2の絶縁膜を選択的に開口
し、該開口部内に導電体を埋め込むことにより、
該導電体層に接続する接続用電極を形成する工程
と、 該第2の絶縁膜の該平坦な表面及び該接続用電
極上に半導体層を積層する工程と、 該半導体層内に、チヤネル領域及び該半導体層
の下端に達するソース、ドレイン領域とを有する
MIS型トランジスタ素子を、該ソースが該接続用
電極に接続するように形成する工程とを含むこと
を特徴とする半導体装置の製造方法。
[Claims] 1. An insulating film formed on a semiconductor substrate, a conductive layer embedded in the insulating film, and composed of the substrate, the conductive layer, and the insulating film interposed therebetween. a semiconductor layer stacked on a flattened region of the insulating film located on the conductor layer; and a semiconductor layer formed in the semiconductor layer and reaching a channel region and a lower end of the semiconductor layer. A MIS type transistor element having a source and a drain region, and a connection for selectively penetrating the insulating film located on the conductive layer to connect the conductive layer and the source of the MIS type transistor element. A semiconductor device characterized by comprising an electrode. 2. A first insulating film is formed on a semiconductor substrate, a conductive layer is deposited and patterned on the first insulating film, and the substrate, the conductive layer, and the first insulating film are formed. a second capacitor element covering the conductive layer and having a flat surface;
selectively opening the second insulating film on the conductor layer and burying the conductor in the opening;
forming a connection electrode connected to the conductor layer; laminating a semiconductor layer on the flat surface of the second insulating film and the connection electrode; forming a channel region in the semiconductor layer; and source and drain regions reaching the lower end of the semiconductor layer.
1. A method of manufacturing a semiconductor device, comprising the step of forming an MIS type transistor element so that the source is connected to the connection electrode.
JP58005084A 1983-01-13 1983-01-13 Semiconductor device and manufacture thereof Granted JPS59129461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58005084A JPS59129461A (en) 1983-01-13 1983-01-13 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58005084A JPS59129461A (en) 1983-01-13 1983-01-13 Semiconductor device and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS59129461A JPS59129461A (en) 1984-07-25
JPH0480540B2 true JPH0480540B2 (en) 1992-12-18

Family

ID=11601518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58005084A Granted JPS59129461A (en) 1983-01-13 1983-01-13 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59129461A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3477102D1 (en) * 1984-04-25 1989-04-13 Siemens Ag One-transistor memory cell for high-density integrated dynamic semiconductor memories, and method for manufacturing the same
JPS60250665A (en) * 1984-05-25 1985-12-11 Mitsubishi Electric Corp Semiconductor memory device
US5306648A (en) * 1986-01-24 1994-04-26 Canon Kabushiki Kaisha Method of making photoelectric conversion device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5519820A (en) * 1978-07-27 1980-02-12 Nec Corp Semiconductor device
JPS5687359A (en) * 1979-12-19 1981-07-15 Fujitsu Ltd Manufacture of one transistor type memory cell
JPS58212160A (en) * 1982-06-02 1983-12-09 Toshiba Corp Manufacture of semiconductor memory device
JPS59110154A (en) * 1982-12-16 1984-06-26 Nec Corp Semiconductor memory cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5519820A (en) * 1978-07-27 1980-02-12 Nec Corp Semiconductor device
JPS5687359A (en) * 1979-12-19 1981-07-15 Fujitsu Ltd Manufacture of one transistor type memory cell
JPS58212160A (en) * 1982-06-02 1983-12-09 Toshiba Corp Manufacture of semiconductor memory device
JPS59110154A (en) * 1982-12-16 1984-06-26 Nec Corp Semiconductor memory cell

Also Published As

Publication number Publication date
JPS59129461A (en) 1984-07-25

Similar Documents

Publication Publication Date Title
US5321306A (en) Method for manufacturing a semiconductor device
KR910009786B1 (en) Semiconductor memory device and fabricating method therefor
US4922313A (en) Process for manufacturing semiconductor memory device and product formed thereby
US4988637A (en) Method for fabricating a mesa transistor-trench capacitor memory cell structure
US7214572B2 (en) Semiconductor memory device and manufacturing method thereof
US5181089A (en) Semiconductor memory device and a method for producing the same
JPH0616549B2 (en) Semiconductor integrated circuit device
US4864464A (en) Low-profile, folded-plate dram-cell capacitor fabricated with two mask steps
US5034787A (en) Structure and fabrication method for a double trench memory cell device
JPH04342164A (en) Formation of semiconductor integrated circuit device
EP0821412B1 (en) Hemispherical-grained silicon top-gate electrode for improved soft-error immunity in SRAMs
JPS62286270A (en) Semiconductor memory
US5606189A (en) Dynamic RAM trench capacitor device with contact strap
JP2818964B2 (en) Manufacturing method of semiconductor memory device having charge storage portion of laminated structure
JP2604705B2 (en) Method of manufacturing MOS capacitor
JPS6155258B2 (en)
JPH0673368B2 (en) Semiconductor memory device and manufacturing method thereof
JPH0642535B2 (en) How to make a memory cell
US4897702A (en) Semiconductor memory device and manufacturing method for the same
JPH0480540B2 (en)
JPH05243517A (en) Semiconductor device
JP3251777B2 (en) Semiconductor storage device
JPH0795585B2 (en) Semiconductor memory device and manufacturing method thereof
JP2969876B2 (en) Semiconductor device and manufacturing method thereof
JPS62213273A (en) Dynamic random access memory