JPS6388857A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS6388857A
JPS6388857A JP61233528A JP23352886A JPS6388857A JP S6388857 A JPS6388857 A JP S6388857A JP 61233528 A JP61233528 A JP 61233528A JP 23352886 A JP23352886 A JP 23352886A JP S6388857 A JPS6388857 A JP S6388857A
Authority
JP
Japan
Prior art keywords
region
impurity region
substrate
type impurity
high concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61233528A
Other languages
Japanese (ja)
Inventor
Tadashi Nakai
正 中井
Takuya Asano
卓也 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61233528A priority Critical patent/JPS6388857A/en
Publication of JPS6388857A publication Critical patent/JPS6388857A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To increase a current necessary to turn ON a parasitic transistor having a substrate as a base thereby to improve the latchup strength by forming the same conductivity type and high concentration impurity region as the substrate on the substrate and connecting the impurity region to a power terminal by a conductor. CONSTITUTION:A high concentration N-type impurity region 23 is formed on a low concentration N-type semiconductor substrate 1, and a low concentration N-type impurity region 24 is formed on the region 23, a high concentration N-type impurity region 25 which penetrates to the region 23 is formed thereon, a low concentration P-type impurity region 2, and source and drain regions 4 and 3 of high concentration P-type impurity regions are formed, and a conductive electrode 13 on the region 4 and a conductive electrode 26 on the region 25 are connected to a power terminal 20. The region having the same potential as the power source is formed in a wide range on the substrate 1 to reduce a resistance due to the substrate from the region 2 to the power source. A current necessary to turn ON the parasitic transistor is increased to improve the latchup strength.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、MoS型半導体集積回路装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a MoS type semiconductor integrated circuit device.

従来の技術 2 ・・−1 近年、マイクロプロセッサを用いた制御回路に代表され
るディジタル回路の増加に伴−)で、MoS型半導体集
積回路装置(以下MO8−LSIと称す。)が多く使わ
れるようになり、MOS.LSIのなかでも消費電力が
少ない相補MoS型半導体集積回路装置(以下CMO8
,LSIと称す。)の占める割合が高くなっている。第
2図に従来の0MO8,LSIの構造例を示す。
Conventional technology 2...-1 In recent years, with the increase in the number of digital circuits typified by control circuits using microprocessors, MoS type semiconductor integrated circuit devices (hereinafter referred to as MO8-LSI) are often used. Then, MOS. Complementary MoS semiconductor integrated circuit device (hereinafter CMO8) has low power consumption among LSIs.
, called LSI. ) account for a high proportion. FIG. 2 shows an example of the structure of a conventional 0MO8, LSI.

低濃度のN型半導体基板1」二に低濃度P型不純物領域
2及び高濃度P型不純物領域であるソース領域4とドレ
イン領域3が形成され、旧つ、低濃度P型不純物領域2
に高濃度N型不純物領域であるソース領域7とドレイン
領域8が形成されている。ソース領域4及びドレイン領
域3を結ぶ薄いゲート酸化膜e上にゲート電極12が形
成され、且つ、ソース領域7及びドレイン領域8を結ぶ
薄いゲート酸化膜1o上にゲート電極17が形成され、
ゲート電極12及びゲート電極17は入力端子22に接
続されている。うまた、ドレイン領域3上に導電性電極
11が形成され、ドレイン領域83 ベー/ 」二に導電性電極18が形成されており、導電性電極1
1及び18は出力端子19に接続されている。
A low concentration P type impurity region 2 and a source region 4 and a drain region 3 which are high concentration P type impurity regions are formed in a low concentration N type semiconductor substrate 1.
A source region 7 and a drain region 8, which are heavily doped N-type impurity regions, are formed in the region. A gate electrode 12 is formed on a thin gate oxide film e that connects the source region 4 and the drain region 3, and a gate electrode 17 is formed on the thin gate oxide film 1o that connects the source region 7 and the drain region 8.
Gate electrode 12 and gate electrode 17 are connected to input terminal 22 . Furthermore, a conductive electrode 11 is formed on the drain region 3, a conductive electrode 18 is formed on the drain region 83, and a conductive electrode 18 is formed on the drain region 83.
1 and 18 are connected to the output terminal 19.

ソース領域4上に導電性電極13が形成され電源端子2
oに接続されており、壕だ、ソース領域7上に導電性電
極16が形成され接地端子21に接続されている。さら
に、N型半導体基板1上に高濃度N型不純物領域5が形
成され、且つ、低濃度P型不純物領域2」二に高濃度P
型不純物領域6が形成されている。高濃度N型不純物領
域5上には導電性電極14が形成され電源端子2oに接
続されると共に、高濃度P型不純物領域6上には導電性
電極16が形成され接地端子21に接続されている。
A conductive electrode 13 is formed on the source region 4 and the power terminal 2
In the trench, a conductive electrode 16 is formed on the source region 7 and connected to a ground terminal 21 . Further, a high concentration N type impurity region 5 is formed on the N type semiconductor substrate 1, and a high concentration P type impurity region 2 is formed on the low concentration P type impurity region 2.
A type impurity region 6 is formed. A conductive electrode 14 is formed on the high concentration N-type impurity region 5 and connected to the power supply terminal 2o, and a conductive electrode 16 is formed on the high concentration P-type impurity region 6 and connected to the ground terminal 21. There is.

発明が解決しようとする問題点 前述の従来例では、その構造上の理由によりラッチアッ
プが起こり易いという欠点がある。以下、ランチアップ
現象を第3図を用いて説明する。すなわち、第3図は第
2図の電気的等価回路である。
Problems to be Solved by the Invention The conventional example described above has the disadvantage that latch-up is likely to occur due to its structure. The launch-up phenomenon will be explained below using FIG. 3. That is, FIG. 3 is an electrical equivalent circuit of FIG. 2.

第3図において、寄生トランジスタQ1はソース領域4
と基板1及び低濃度P型不純物領域2によって形成され
、寄生トランジスタQ2はドレイン領域3と基板1及び
低濃度P型不純物領域2によって形成されている。寸だ
、寄生トランジスタQ3はソース領域7と低濃度P型不
純物領域2及び基板1によって形成され、寄生トランジ
スタQ4はドレイン領域8と低濃度P型不純物領域2及
び基板1によって形成されている。また、抵抗R1゜R
3、R5、R7はN型基板1による抵抗であり、抵抗R
2,R4,R6,R8は低濃度のP型不純物領域2によ
る抵抗である。前記構造に」・・いて、出力端子19に
過電流が流入すると電流はトランジスタQ2.抵抗R6
,R4を通り接地端子21へ抜ける。この時に抵抗R4
の両端に発生する電圧がトランジスタQ3のベース−エ
ミッタ間順方向電圧よりも大きければトランジスタQ3
がONし、抵抗R1,R3及びトランジスタQ3を通−
)で電源端子20から接地端子21に電流が流れる。
In FIG. 3, the parasitic transistor Q1 is located in the source region 4.
The parasitic transistor Q2 is formed by the drain region 3, the substrate 1, and the lightly doped P-type impurity region 2. In other words, the parasitic transistor Q3 is formed by the source region 7, the low concentration P type impurity region 2, and the substrate 1, and the parasitic transistor Q4 is formed by the drain region 8, the low concentration P type impurity region 2, and the substrate 1. Also, the resistance R1゜R
3, R5, R7 are resistances due to the N-type substrate 1, and the resistance R
2, R4, R6, and R8 are resistances due to the low concentration P-type impurity region 2. In the above structure, when an overcurrent flows into the output terminal 19, the current flows through the transistor Q2. Resistor R6
, R4 and exits to the ground terminal 21. At this time, resistance R4
If the voltage generated across the transistor Q3 is larger than the base-emitter forward voltage of the transistor Q3, the transistor Q3
turns on, passing through resistors R1, R3 and transistor Q3.
), current flows from the power supply terminal 20 to the ground terminal 21.

さらに、抵抗R1,R3及びトランジスタQ3を通って
流れる電流により抵抗R1の両端に発生する電圧がトラ
ンジスタQ1のエミッターベース間5 ヘ−ノ 順方向電圧よりも大きければトランジスタQ1がONし
、トランジスタQ3及びQlによって構成されるサイリ
スタがONした状態になり、電源をOFFするまで電流
が流れ続は素子の破壊を起こしてしまう。従来は、基板
抵抗R1及び低濃度のP型不純物領域2による抵抗R4
を小さくするように設計しているが、製造プロセスのバ
ラツキにより設計値どおりの抵抗値にするのは難しいと
いう問題点があった。
Further, if the voltage generated across the resistor R1 due to the current flowing through the resistors R1, R3 and the transistor Q3 is larger than the forward voltage between the emitter and base of the transistor Q1, the transistor Q1 turns on, and the transistor Q3 and The thyristor formed by Ql is turned on, and if the current continues to flow until the power is turned off, the device will be destroyed. Conventionally, the substrate resistance R1 and the resistance R4 due to the low concentration P-type impurity region 2
However, due to variations in the manufacturing process, it is difficult to achieve the designed resistance value.

問題点を解決するための手段 前記問題点を解決するために本発明は、0MO8−LS
Iの基板上のMOS−LSIが形成される前記基板と異
なる導電型の低濃度領域の近傍に前記内基板と同一導電
型の高濃度不純物領域を形成し、その高濃度不純物領域
を0MO8,LIIの電源に接続する構成の半導体集積
回路装置を特徴とするものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides 0MO8-LS
A high concentration impurity region of the same conductivity type as the inner substrate is formed near a low concentration region of a conductivity type different from that of the substrate on which the MOS-LSI is formed on the substrate of I, and the high concentration impurity region is 0MO8, LII. The present invention is characterized by a semiconductor integrated circuit device configured to be connected to a power source.

作  用 上記構成によれば、基板に電源と同電位の領域が、前記
高濃度不純物領域により広範囲に形成されることと、M
OS−LSIが形成される低濃度不純物領域から電源ま
での基板による抵抗を小さくし、ラッチアップの起こり
にくい構造にすることができる。
Effect According to the above configuration, a region having the same potential as the power supply is formed in a wide range in the substrate by the high concentration impurity region, and
The resistance of the substrate from the low concentration impurity region where the OS-LSI is formed to the power supply can be reduced, and a structure in which latch-up is less likely to occur can be achieved.

実施例 以下本発明の一実施例を図面を用いて説明する。Example An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例を示す断面図である。FIG. 1 is a sectional view showing one embodiment of the present invention.

低濃度N型半導体基板1上に高濃度N型不純物領域23
を形成した上に低濃度N型不純物領域24を形成し、低
濃度N型不純物領域24に高濃度N型不純物領域23ま
で貫通する高濃度N型不純物領域25を形成すると共に
、低濃度P型不純物領域2及び高濃度P型不純物領域で
あるソース領域4とドレイン領域3が形成され、且つ、
低濃度P型不純物領域2に高濃度N型不純物領域である
ソース領域7とドレイン領域8が形成されている。
High concentration N type impurity region 23 on low concentration N type semiconductor substrate 1
A low concentration N type impurity region 24 is formed on the low concentration N type impurity region 24, and a high concentration N type impurity region 25 penetrating through the low concentration N type impurity region 24 to the high concentration N type impurity region 23 is formed. An impurity region 2 and a source region 4 and a drain region 3 which are high concentration P-type impurity regions are formed, and
A source region 7 and a drain region 8, which are high concentration N-type impurity regions, are formed in the low concentration P-type impurity region 2.

ソース領域4及びドレイン領域3を結ぶ薄いゲート酸化
膜e上にゲート電W1.12が形成され、且つ、ソース
領域7及びドレイン領域8を結ぶ薄いゲート酸化膜10
上にゲート電極17が形成さね、ゲ−1−電極12及び
ゲート電極17は入力端子22に接続されている。また
、ドレイン領域3上に導電性電WL11が形成され、ド
レイン領域8上に導電イイ1:電極18が形成されてお
り、導電性電極11及び18は出力端子19に接続され
ている。ソース領域4上に導電性電極13が形成され、
且つ、高濃度N型不純物領域25上に導電性電極26が
形成されており、導電性電極13及び26は電源端子2
0に接続されている。また、ソース領域T十に導電性電
極16が形成され接地端子21に接続されている。さら
に、低濃度N型不純物領域24上に高濃度N型不純物領
域5が形成され、且つ、低濃度P型不純物領域2」二に
高濃度P型不純物領域6が形成されている。高濃度N型
不純物領域5上には導電性電極14が形成され電源端子
2oに接続される古共に、高濃度P型不純物領域6上に
は導電性電極16が形成され接地端子21に接続されて
いる。前記構成によれば、低濃度N型半導体基板1に高
濃度N型不純物領域23を形成し電源端子に接続するこ
とによって、基板1に電源と同電位の領域が広範囲に形
成されることになり、低濃度P型不純物領域2から電源
1での基板による抵抗を減少させることができる。従っ
て第3図における寄生トランジスタQ1のベースから電
源端子2oに至る経路の抵抗分R1が減少し、寄生トラ
ンジスタQ1がONするのに必要な電流が大きくなりラ
ッチアップ強度を向上することができる。以上の説明は
N型基板を例としたが、導電型を逆にすることにより、
P型基板の0MO3−LSIにも適用されることは明白
である。
A gate voltage W1.12 is formed on a thin gate oxide film e that connects the source region 4 and the drain region 3, and a thin gate oxide film 10 that connects the source region 7 and the drain region 8.
A gate electrode 17 is formed thereon, and the gate electrode 12 and the gate electrode 17 are connected to the input terminal 22 . Further, a conductive electrode WL11 is formed on the drain region 3, a conductive electrode 18 is formed on the drain region 8, and the conductive electrodes 11 and 18 are connected to an output terminal 19. A conductive electrode 13 is formed on the source region 4,
Further, a conductive electrode 26 is formed on the high concentration N-type impurity region 25, and the conductive electrodes 13 and 26 are connected to the power supply terminal 2.
Connected to 0. Further, a conductive electrode 16 is formed in the source region T1 and connected to a ground terminal 21. Further, a high concentration N type impurity region 5 is formed on the low concentration N type impurity region 24, and a high concentration P type impurity region 6 is formed on the low concentration P type impurity region 2''. A conductive electrode 14 is formed on the high concentration N-type impurity region 5 and connected to the power terminal 2o, and a conductive electrode 16 is formed on the high concentration P-type impurity region 6 and connected to the ground terminal 21. ing. According to the above configuration, by forming the high concentration N type impurity region 23 in the low concentration N type semiconductor substrate 1 and connecting it to the power supply terminal, a region having the same potential as the power supply is formed in a wide range in the substrate 1. , the resistance caused by the substrate in the power supply 1 from the low concentration P-type impurity region 2 can be reduced. Therefore, the resistance R1 of the path from the base of the parasitic transistor Q1 to the power supply terminal 2o in FIG. 3 is reduced, the current required to turn on the parasitic transistor Q1 is increased, and the latch-up strength can be improved. The above explanation uses an N-type substrate as an example, but by reversing the conductivity type,
It is clear that the present invention is also applicable to OMO3-LSI with a P-type substrate.

発明の効果 以上のように本発明は、基板上に基板と同一導電型で、
且つ、高濃度の不純物領域を形成し、該高濃度不純物領
域を導電体を用いて電源A111子に接続することによ
って基板をベースとする寄生トランジスタがONするの
に必要な電流を大きくし、ラッチアップに強い0MO8
,LSIを提供するものである。
Effects of the Invention As described above, the present invention provides a substrate with the same conductivity type as the substrate,
In addition, by forming a high concentration impurity region and connecting the high concentration impurity region to the power supply A111 using a conductor, the current required to turn on the parasitic transistor based on the substrate is increased, and the latch is activated. 0MO8 strong against up
, LSI.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す半導体集積回9 ペー
ジ 路装置の断面図、第2図は従来の半導体集積回路装置を
示す断面図、第3図は従来の半導体集積回路装置の電気
的等価回路図である。 1・・・低濃度N型半導体基板、2・・・・・・低濃度
P型不純物領域、3,4.6・・・・・高濃度P型不純
物領域、6 、7 、8 、23 、25・・・・・・
高濃度N型不純物領域、24・・・・・低濃度N型不純
物領域、9゜10・・・ゲート酸化膜、11 、13 
、14 、15゜16.18.26・・・・・導電性電
極、12.17・・・・・・ゲート電極、19・・・・
出力端子、2o・・・・・・電源端子、21・・・・・
・接地端子、22・・・・・・入力端子。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1−
−−イき、&tN泗す半導4擾り嘆ζP之、3.4.l
、、 −一一断濃度P型坏絶害惧戚21−  膨池媚膠 ??−−−人力x子 24−へ渡友Nジ陳咋肩賊
FIG. 1 is a cross-sectional view of a semiconductor integrated circuit device showing an embodiment of the present invention, FIG. 2 is a cross-sectional view showing a conventional semiconductor integrated circuit device, and FIG. 3 is a cross-sectional view of a conventional semiconductor integrated circuit device. FIG. 1...Low concentration N-type semiconductor substrate, 2...Low concentration P-type impurity region, 3,4.6...High concentration P-type impurity region, 6, 7, 8, 23, 25...
High concentration N-type impurity region, 24...Low concentration N-type impurity region, 9°10... Gate oxide film, 11, 13
, 14 , 15° 16.18.26... Conductive electrode, 12.17... Gate electrode, 19...
Output terminal, 2o...Power terminal, 21...
・Grounding terminal, 22...Input terminal. Name of agent: Patent attorney Toshio Nakao and 1 other person1-
--Iki, &tN 3.4. l
,, -One-stop concentration P-type perishable relative 21- Pochi aphrodisiac? ? ---Human power x child 24- to friend Nji Chen Kui shoulder bandit

Claims (1)

【特許請求の範囲】[Claims]  一導電型半導体基板上に、該半導体基板と同一導電型
の第一の高濃度不純物領域を形成した上に前記基板と同
一導電型の第二の低濃度不純物領域を形成し、該第二の
低濃度不純物領域に前記基板と同一導電型で前記第一の
高濃度不純物領域まで貫通する第三の高濃度不純物領域
を形成すると共に、前記第二の低濃度不純物領域上にM
OS型電界効果トランジスタを形成し、前記第三の高濃
度不純物領域を前記MOS型電界効果トランジスタの電
源に接続したことを特徴とする半導体集積回路装置。
On a semiconductor substrate of one conductivity type, a first high concentration impurity region of the same conductivity type as the semiconductor substrate is formed, and then a second low concentration impurity region of the same conductivity type as the substrate is formed; A third high concentration impurity region having the same conductivity type as the substrate and penetrating to the first high concentration impurity region is formed in the low concentration impurity region, and a third high concentration impurity region is formed on the second low concentration impurity region.
1. A semiconductor integrated circuit device comprising an OS type field effect transistor formed therein, and the third high concentration impurity region being connected to a power source of the MOS type field effect transistor.
JP61233528A 1986-10-01 1986-10-01 Semiconductor integrated circuit device Pending JPS6388857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61233528A JPS6388857A (en) 1986-10-01 1986-10-01 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61233528A JPS6388857A (en) 1986-10-01 1986-10-01 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS6388857A true JPS6388857A (en) 1988-04-19

Family

ID=16956452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61233528A Pending JPS6388857A (en) 1986-10-01 1986-10-01 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS6388857A (en)

Similar Documents

Publication Publication Date Title
JPH037144B2 (en)
JPH01128568A (en) Semiconductor device
JPS6388857A (en) Semiconductor integrated circuit device
JPS63244874A (en) Input protective circuit
JPH08115985A (en) Low-noise semiconductor integrated circuit
JPS63142848A (en) Semiconductor integrated circuit device
JPS5819137B2 (en) Complementary MOS transistor
JPH02294063A (en) Semiconductor integrated circuit
JPH04312968A (en) Cmos semiconductor integrated circuit device
JPH01185971A (en) Insulated gate semiconductor device
JPS59110153A (en) Complementary mis field effect semiconductor device
JPS63115364A (en) Semiconductor integrated circuit device
JPS60123053A (en) Semiconductor device
JPS63102249A (en) Semiconductor integrated circuit device
JPS6060753A (en) Semiconductor device
JPH02210862A (en) Semiconductor device
JPS6193655A (en) Semiconductor device
JPH01273346A (en) Semiconductor device
KR930008531B1 (en) Cmos invertor
JPS6027162A (en) Complementary type mos integrated circuit device
JPH04207068A (en) Composite type semiconductor device
JPS6336145B2 (en)
JPS60154554A (en) Complementary type insulated gate field effect semiconductor device
JPS6281053A (en) Semiconductor integrated circuit device
JPS59181669A (en) Mos type semiconductor device