JPS63142848A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS63142848A
JPS63142848A JP61291045A JP29104586A JPS63142848A JP S63142848 A JPS63142848 A JP S63142848A JP 61291045 A JP61291045 A JP 61291045A JP 29104586 A JP29104586 A JP 29104586A JP S63142848 A JPS63142848 A JP S63142848A
Authority
JP
Japan
Prior art keywords
impurity region
concentration
type impurity
low
low concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61291045A
Other languages
Japanese (ja)
Inventor
Tadashi Nakai
正 中井
Takuya Asano
卓也 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61291045A priority Critical patent/JPS63142848A/en
Publication of JPS63142848A publication Critical patent/JPS63142848A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0928Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising both N- and P- wells in the substrate, e.g. twin-tub

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To increase latch-up strength by forming a high-concentration impurity region having the same conductivity type as a low-concentration impurity region while being brought into contact with the base of at least one conductivity type low-concentration impurity region in low-concentration impurity regions having different conductivity types. CONSTITUTION:A low-concentration N-type impurity region 2 and a low- concentration P-type impurity region 3 are formed onto a low-concentration N-type semiconductor substrate 1, and a high-concentration N-type impurity region 24 is shaped brought into contact with the base of the low-concentration N-type impurity region 2 while a high-concentration P-type impurity region 25 is formed brought into contact with the base of the low-concentration P-type impurity region 3. Since the high-concentration N-type impurity region 24 and the high-concentration P-type impurity region 25 are shaped through a diffusion or other methods, low resistance by the high-concentration N-type impurity region 24 is added while low resistance by the high-concentration P-type impurity region 25 is added. Accordingly, currents required for turning a parasitic transistor ON are increased, thus improving latch-up strength.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、MO8型半導体集積回路装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an MO8 type semiconductor integrated circuit device.

従来の技術 最近の半導体集積回路技術の進歩はめざましく、大集積
回路(以下LSIと称す。)が多くなってきた。LSI
の場合は素子数が非常に多いために、1素子当りの消費
電力が大きいと発熱などの影響が出るため、消費電力の
小さい相補MOS回路(以下CMOS,LSIと称す。
2. Description of the Related Art Recent advances in semiconductor integrated circuit technology have been remarkable, and the number of large integrated circuits (hereinafter referred to as LSI) has increased. LSI
In the case of , the number of elements is very large, so if the power consumption per element is large, heat generation will occur, so a complementary MOS circuit (hereinafter referred to as CMOS or LSI) with low power consumption is used.

)が多く使われている。しかし、超CMOS−LSIに
なるとMOS)ランジスタのゲー長が1μm前後と短か
ぐなるためにショート・チャンネル効果によるしきい値
電圧の低下などの影響が現われ、これを改善するための
一つとして異なる導電型の二つの井戸形の不純物領域を
有する0MO8−LSI(以下WウェルCMO9−LI
Iと称す。)が考案されている。第2図に従来のWウェ
ルCMOS,LSIの構造例を示す。
) are often used. However, in the case of super CMOS-LSIs, the gate length of MOS transistors becomes short, around 1 μm, which causes effects such as a decrease in threshold voltage due to the short channel effect. 0MO8-LSI (hereinafter referred to as W-well CMO9-LI) having two well-shaped impurity regions of conductivity type.
It is called I. ) has been devised. FIG. 2 shows an example of the structure of a conventional W-well CMOS, LSI.

低濃度のN型半導体基板1上に低濃度N型不純物領域2
及び低濃度P型不純物領域3が形成され、前記低濃度N
型不純物領域2上に高濃度P型不純物領域であるPチャ
ンネルトランジスタのソース領域6とドレイン領域4が
形成され、且つ、低濃度P型不純物領域3上に高濃度N
型不純物領域であるNチャンネルトランジスタのソース
領域8とドレイン領域9が形成されている。Pチャンネ
ルトランジスタのソース領域6及びドレイン領域4を結
ぶ薄いゲート酸化膜1o上にゲート電極13が形成され
、且つ、Nチャンネルトランジスタのソース領域8及び
ドレイン領域9を結ぶ薄いゲート酸化膜11上にゲート
電極18が形成され、ゲート電極13及びゲート電j1
8は入力端子23に接続されている。また、Pチャンネ
ルトランジスタのドレイン領域4上に導電性電極12が
形成され、Nチャンネルトランジスタのドレイン領域9
上に導電性電極19が形成されており、導電性電極12
及び19は出力端子20に接続されている。Pチャンネ
ルトランジスタのソース領域5上に導電性電極14が形
成され電源端子21に接続されておシ、また、Nチャ/
ネルトランジスタのソース領域8上に導電性電極17が
形成され接地端子22に接続されている。さらに、低濃
度N型不純物領域2上に高濃度N型不純物領域6が形成
され、且つ、低濃度P型不純物領域3上に高濃度P型不
純物領域7が形成されている。高濃度N型不純物領域e
上には導電性電極16が形成され電源端子21に接続さ
れると共に、高濃度P型不純物領域T上には導電性電極
16が形成され接地端子22に接続されている。
Low concentration N type impurity region 2 on low concentration N type semiconductor substrate 1
and a low concentration P type impurity region 3 are formed, and the low concentration N
The source region 6 and drain region 4 of a P channel transistor, which are high concentration P type impurity regions, are formed on the type impurity region 2, and the high concentration N type impurity region 3 is formed on the low concentration P type impurity region 3.
A source region 8 and a drain region 9 of an N-channel transistor, which are type impurity regions, are formed. A gate electrode 13 is formed on a thin gate oxide film 1o connecting the source region 6 and drain region 4 of the P-channel transistor, and a gate electrode 13 is formed on the thin gate oxide film 11 connecting the source region 8 and drain region 9 of the N-channel transistor. Electrode 18 is formed, and gate electrode 13 and gate electrode j1
8 is connected to the input terminal 23. Further, a conductive electrode 12 is formed on the drain region 4 of the P-channel transistor, and a conductive electrode 12 is formed on the drain region 9 of the N-channel transistor.
A conductive electrode 19 is formed on the conductive electrode 12.
and 19 are connected to the output terminal 20. A conductive electrode 14 is formed on the source region 5 of the P-channel transistor and connected to the power supply terminal 21.
A conductive electrode 17 is formed on the source region 8 of the channel transistor and connected to a ground terminal 22. Further, a high concentration N type impurity region 6 is formed on the low concentration N type impurity region 2, and a high concentration P type impurity region 7 is formed on the low concentration P type impurity region 3. High concentration N type impurity region e
A conductive electrode 16 is formed thereon and connected to a power supply terminal 21, and a conductive electrode 16 is formed on the high concentration P-type impurity region T and connected to a ground terminal 22.

発明が解決しようとする問題点 前述の従来例では、その構造上の理由によりラッチアッ
プが起こ)易いという欠点がある。以下、ラッチアップ
現象を第3図を用いて説明する。すなわち、第3図は第
2図の電気的等価回路である。
Problems to be Solved by the Invention The conventional example described above has the disadvantage that latch-up is likely to occur due to its structure. The latch-up phenomenon will be explained below with reference to FIG. That is, FIG. 3 is an electrical equivalent circuit of FIG. 2.

第3図において、寄生トランジスタQ1ばPチャンネル
トランジスタのソース領域6(エミッタ)、低濃度N型
不純物領域2及びN型半導体基板1(ベース)、低濃度
P型不純物領域3(コレクタ)によって形成され、寄生
トランジスタQ2はPチャンネルトランジスタのドレイ
ン領域4(エミッタ)、低濃度N型不純物領域2及びN
型半導体基板1(ベース)、低濃度P型不純物領域3(
コレクタ)によって形成されている。また、寄生トラン
ジスタQ3はNチャンネルトランジスタのソース領域8
(エミッタ)、低濃度P型不純物領域2(ベース)、N
型半導体基板1及び低濃度N型不純物領域2(コレクタ
)によって形成され、寄生トランジスタQ4はNチャン
ネルトランジスタのドレイン領域9(エミッタ)、低濃
度P型不純物領域2(ベース)、N型半導体基板1及び
低濃度N型不純物領域2(コレクタ)によって形成され
ている。また、抵抗R1,R3,R6,R7はN型半導
体基板1及び低濃度N型不純物領域2による抵抗であシ
、抵抗R2,R4,Re、Rsは低濃度P型不純物領域
3による抵抗である。前記構造において、出力端子20
に電源端子21より高い電圧が印加され、電流が寄生ト
ランジスタQ2゜抵抗Re、抵抗R4を流れて接地端子
21へ抜ける場合、抵抗R4の両端に発生する電圧が寄
生トランジスタQ3のベース−エミッタ間順方向電圧よ
りも大きければ寄生トランジスタQ3がONI、、抵抗
R1,抵抗R3及び寄生トランジスタQ3を通って電源
端子2oから接地端子21に電流が流れる。さらに、抵
抗R1,抵抗R3及び寄生トランジスタQ3を通って流
れる電流により抵抗R1の両端に発生する電圧が寄生ト
ランジスタQ1のエミッターベース間項方向電圧よりも
大きければ寄生トランジスタQ1がONし、寄生トラン
ジスタQ3及び寄生トランジスタQ1によって構成され
るサイリスタがON した状態になり、電源を○FF 
するまで電流が流れ続は素子の破壊を起こしてしまう。
In FIG. 3, a parasitic transistor Q1 is formed by a source region 6 (emitter) of a P-channel transistor, a low concentration N-type impurity region 2, an N-type semiconductor substrate 1 (base), and a low concentration P-type impurity region 3 (collector). , the parasitic transistor Q2 is connected to the drain region 4 (emitter) of the P channel transistor, the low concentration N type impurity region 2 and the N
type semiconductor substrate 1 (base), low concentration P type impurity region 3 (
collector). In addition, the parasitic transistor Q3 is the source region 8 of the N-channel transistor.
(emitter), low concentration P-type impurity region 2 (base), N
The parasitic transistor Q4 is formed by the drain region 9 (emitter) of the N-channel transistor, the low concentration P-type impurity region 2 (base), and the N-type semiconductor substrate 1. and a low concentration N-type impurity region 2 (collector). Further, resistors R1, R3, R6, and R7 are resistances due to the N-type semiconductor substrate 1 and low concentration N-type impurity region 2, and resistors R2, R4, Re, and Rs are resistances due to the low concentration P-type impurity region 3. . In the structure, the output terminal 20
When a voltage higher than the power supply terminal 21 is applied to the parasitic transistor Q2, the current flows through the parasitic transistor Q2, the resistor Re, the resistor R4, and exits to the ground terminal 21, the voltage generated across the resistor R4 is in the order between the base and emitter of the parasitic transistor Q3. If it is larger than the directional voltage, the parasitic transistor Q3 is ONI, and current flows from the power supply terminal 2o to the ground terminal 21 through the resistor R1, the resistor R3, and the parasitic transistor Q3. Furthermore, if the voltage generated across the resistor R1 due to the current flowing through the resistors R1, R3, and the parasitic transistor Q3 is larger than the emitter-base voltage of the parasitic transistor Q1, the parasitic transistor Q1 turns on, and the parasitic transistor Q3 The thyristor constituted by the parasitic transistor Q1 is turned ON, and the power supply is turned OFF.
If the current continues to flow until this happens, the device will be destroyed.

また、出力端子19に接地端子21よりも低い電圧が印
加され、電源端子2oから抵抗R1,抵抗R7,W生ト
ランジスタQ4を通って出力端子19へ電流が抜ける場
合、抵抗R1の両端に発生する電圧が寄生トランジスタ
Q1のエミッターベース間電圧よりも大きければ寄生ト
ランジスタQ1がONし、寄生トランジスタQ1゜抵抗
R2,抵抗R4を通って電源端子2oから接地端子21
に電流が流れる。このとき、抵抗R4の両端に発生する
電圧が寄生トランジスタQ3のベース−エミッタ間順方
向・電圧よりも大きければ寄生トランジスタQ3がON
し、寄生トランジスタQ3及び寄生トランジスタQ1に
よって構成されるサイリスタがON した状態になり、
電源をOFF するまで電流が流れ続は素子の破壊を起
こしてしまう。従来は、N型半導体基板1及び低濃度N
型不純物領域2による抵抗R1,また、低濃度P型不純
物領域3による抵抗R4を小さくするように設計してい
るが、従来の抵抗値ではラッチアップを抑制するには不
十分であった。
Furthermore, when a voltage lower than the ground terminal 21 is applied to the output terminal 19 and current flows from the power supply terminal 2o to the output terminal 19 through the resistor R1, resistor R7, and W transistor Q4, a voltage is generated across the resistor R1. If the voltage is larger than the emitter-base voltage of the parasitic transistor Q1, the parasitic transistor Q1 is turned on, and the voltage is passed from the power supply terminal 2o to the ground terminal 21 through the parasitic transistor Q1, resistor R2, and resistor R4.
A current flows through. At this time, if the voltage generated across the resistor R4 is larger than the base-emitter forward voltage of the parasitic transistor Q3, the parasitic transistor Q3 is turned on.
Then, the thyristor constituted by the parasitic transistor Q3 and the parasitic transistor Q1 is turned on,
If the current continues to flow until the power is turned off, the device will be destroyed. Conventionally, an N-type semiconductor substrate 1 and a low concentration N
Although it is designed to reduce the resistance R1 due to the type impurity region 2 and the resistance R4 due to the low concentration P type impurity region 3, the conventional resistance values were insufficient to suppress latch-up.

問題点を解決するための手段 本発明は、WウェルCMOS,LSIの相異なる導電型
の低濃度不純物領域の少なくとも一方の導電型の低濃度
不純物領域の底面に接して、該低濃度不純物領域と同一
導電型の高濃度不純物領域を形成する構造の半導体集積
回路装置である。
Means for Solving the Problems The present invention provides a structure in which a low concentration impurity region of at least one conductivity type of a W-well CMOS or LSI is in contact with the bottom surface of the low concentration impurity region of different conductivity types. This is a semiconductor integrated circuit device having a structure in which high concentration impurity regions of the same conductivity type are formed.

作  用 前記構成により、基板と同一導電型の高濃度不純物領域
による低抵抗が、半導体基板及び基板と同一導電型の低
濃度不純物領域による抵抗(第3図に示す抵抗R1)に
並列に加わり、寄生トランジスタQ1のベース−エミッ
タ間の抵抗R1は小さくなり(R1′)、寄生トランジ
スタQ1がONしにくくなり、また、基板と反対導電型
の高濃度不純物領域による低抵抗が、基板と反対導電型
の低濃度不純物領域による抵抗(第3図に示す抵抗R4
)に並列に加わり、寄生トランジスタQ3のベース−エ
ミッタ間の抵抗R4は小さくなり(R4’ ) 、寄生
トランジスタQ3がON Lにくくなる。
Operation With the above configuration, the low resistance due to the high concentration impurity region having the same conductivity type as the substrate is added in parallel to the resistance due to the semiconductor substrate and the low concentration impurity region having the same conductivity type as the substrate (resistance R1 shown in FIG. 3). The resistance R1 between the base and emitter of the parasitic transistor Q1 becomes small (R1'), making it difficult for the parasitic transistor Q1 to turn on. Resistance due to the low concentration impurity region (resistance R4 shown in Figure 3)
), the resistance R4 between the base and emitter of the parasitic transistor Q3 becomes small (R4'), and the parasitic transistor Q3 becomes difficult to turn on.

実施例 以下、本発明の一実施例を図面を用いて説明する。第1
図は本発明の一実施例を示す断面図である。低濃度のN
型半導体基板1上に低濃度N型不純物領域2及び、低濃
度P型不純物領域3を形成し、低濃度N型不純物領域2
の底面に接して高濃度N型不純物領域24を形成すると
共に、低濃度P型不純物領域3の底面に接して高濃度P
型不純物領域26を形成している。前記低濃度N型不純
物領域2上に高濃度P型不純物領域であるPチャンネル
トランジスタのソース領域6とドレイン領域4が形成さ
れ、且つ、低濃度P型不純物領域3±に高濃度N型不純
物領域であるNチャンネルトランジスタのソース領域8
とドレイン領域9力;形成されている。Pチャンネル−
トランジスタのソース領域5及びドレイン領域4を結ぶ
薄いゲート酸化膜10上にゲート電極13が形成され、
且つ、Nチャンネルトランジスタのソース領域8及びド
レイン領域9を結ぶ薄いゲート酸化膜11上にゲート電
極18が形成され、ゲート電極13及びゲート電極18
は入力端子23に接続されている。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
The figure is a sectional view showing one embodiment of the present invention. low concentration of N
A low concentration N type impurity region 2 and a low concentration P type impurity region 3 are formed on a type semiconductor substrate 1.
A high-concentration N-type impurity region 24 is formed in contact with the bottom surface of
A type impurity region 26 is formed. A source region 6 and a drain region 4 of a P channel transistor, which are high concentration P type impurity regions, are formed on the low concentration N type impurity region 2, and a high concentration N type impurity region is formed on the low concentration P type impurity region 3±. The source region 8 of the N-channel transistor is
and a drain region are formed. P channel-
A gate electrode 13 is formed on a thin gate oxide film 10 connecting the source region 5 and drain region 4 of the transistor.
In addition, a gate electrode 18 is formed on a thin gate oxide film 11 connecting the source region 8 and drain region 9 of the N-channel transistor, and the gate electrode 13 and the gate electrode 18
is connected to the input terminal 23.

また、Pチャンネルトランジスタのドレイン領域4上に
導電性電極12が形成され、Nチャンネルトランジスタ
のドレイン領域9上に導電性電極19が形成されており
、導電性電極12及び19は出力端子20に接続されて
いる。Pチャンネルトランジスタのソース領域S上に導
電性電極14が形成され電源端子21に接続されており
、また、Nチャンネルトランジスタのソース領域8上に
導電性電極17が形成され接地端子22に接続されてい
る。さらに、低濃度N型不純物領域2上に高濃度N型不
純物領域6が形成され、且つ、低濃度P型不純物領域3
上に高濃度P型不純物領域7が形成されている。高濃度
N型不純物領域6上には導電性電極16が形成され電源
端子21に接続されると共に、高濃度P型不純物領域T
上には゛導電性電極16が形成され接地端子22に接続
されている。前記高濃度N型不純物領域24及び、高濃
度P型不純物領域25を拡散、あるいはチャネリング現
象を利用したイオン注入、あるいは他の方法によって形
成することによって、第3図に示す低濃度N型不純物領
域及びN型半導体基板による抵抗R1に並列に高濃度N
型不純物領域24による低抵抗が付は加わると共に、低
濃度P型不純物領域による抵抗R4に並列に高濃度P型
不純物領域26による低抵抗が付は加わることになる。
Further, a conductive electrode 12 is formed on the drain region 4 of the P-channel transistor, a conductive electrode 19 is formed on the drain region 9 of the N-channel transistor, and the conductive electrodes 12 and 19 are connected to the output terminal 20. has been done. A conductive electrode 14 is formed on the source region S of the P-channel transistor and connected to the power supply terminal 21, and a conductive electrode 17 is formed on the source region 8 of the N-channel transistor and connected to the ground terminal 22. There is. Further, a high concentration N type impurity region 6 is formed on the low concentration N type impurity region 2, and a high concentration N type impurity region 6 is formed on the low concentration N type impurity region 3.
A heavily doped P-type impurity region 7 is formed thereon. A conductive electrode 16 is formed on the high concentration N-type impurity region 6 and connected to the power supply terminal 21, and the high concentration P-type impurity region T
A conductive electrode 16 is formed on top and connected to a ground terminal 22. By forming the high-concentration N-type impurity region 24 and the high-concentration P-type impurity region 25 by diffusion, ion implantation using a channeling phenomenon, or other methods, the low-concentration N-type impurity region shown in FIG. 3 is formed. and a high concentration N in parallel with the resistor R1 formed by the N-type semiconductor substrate.
In addition to the low resistance due to the type impurity region 24, the low resistance due to the high concentration P type impurity region 26 is added in parallel to the resistance R4 due to the low concentration P type impurity region.

従って、寄生トランジスタQ1のベースから電源端子2
1に至る抵抗R1及び、寄生トランジスタQ3のベース
から接地端子22に至る抵抗R4は小さくなり、寄生ト
ランジスタQ1及び寄生トランジスタQ3がONするの
に必要な電流が大きくなるのでラッテアップ強度を向上
することができる。
Therefore, from the base of the parasitic transistor Q1 to the power supply terminal 2
1 and the resistance R4 from the base of the parasitic transistor Q3 to the ground terminal 22 become smaller, and the current required to turn on the parasitic transistors Q1 and Q3 becomes larger, so that the ratte-up strength can be improved. I can do it.

以上の説明はN型半導体基板を例としたが、導電型を逆
にすることにより、P型基板のWウェルCMO8,LS
Iにも適用されることは明白である。また、実施例では
低濃度N型不純物領域2及び低濃度P型不純物領域3の
底面に接して、それぞれ高濃度不純物領域24.25を
形成したが、低濃度不純物領域2,3の底面に接してい
ずれか一方の高濃度不純物領域を形成しても所期の目的
は達成できるものである。
The above explanation took the N-type semiconductor substrate as an example, but by reversing the conductivity type, the W-well CMO8, LS of the P-type substrate
It is clear that this also applies to I. Further, in the embodiment, the high concentration impurity regions 24 and 25 were formed in contact with the bottom surfaces of the low concentration N-type impurity region 2 and the low concentration P-type impurity region 3, respectively, but the high concentration impurity regions 24 and 25 were formed in contact with the bottom surfaces of the low concentration impurity regions 2 and 3. Even if either one of the high concentration impurity regions is formed, the desired purpose can be achieved.

発明の効果 以上のように本発明は、半導体基板上に該半導体基板と
同−導電型及び反対導電型の低濃度不純物領域を形成し
、少なくとも一方の導電型の低濃度不純物領域の底面に
接して、該低濃度不純物領域と同一導電型の高濃度不純
物領域を形成した構成のWウェルCMOS−LSIとす
ることによって、寄生サイリスタのサージ耐圧を向上で
きラッチアップに強いWウェルCMO8−LSIを提供
するものである。
Effects of the Invention As described above, the present invention forms low concentration impurity regions of the same conductivity type and opposite conductivity type as the semiconductor substrate on a semiconductor substrate, and contacts the bottom surface of the low concentration impurity region of at least one conductivity type. By forming a W-well CMOS-LSI with a high-concentration impurity region of the same conductivity type as the low-concentration impurity region, we provide a W-well CMOS-LSI that can improve the surge withstand voltage of the parasitic thyristor and is resistant to latch-up. It is something to do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のWウェルCMOS,LSIの一実施例
を示す断面図、第2図はWウェルCMOS・LSIの従
来例を示す断面図、第3図はWウェルCMOS,LSI
の従来例の電気的等価回路図である。 1・・・・・・低濃度N型半導体基板、2・・・・・・
低濃度N型不純物領域、3・・・・・・低濃度P型不純
物領域、4゜5.7,215・・・・・・高濃度P型不
純物領域、6,8゜9.24・・・・・・高濃度N型不
純物領域、10.11・・・・・・ゲート酸化膜、12
,14,15,16゜17.19・・・・・・導電性電
極、13.18・・・・・・ゲート電極、20・・・・
・・出力端子、21・・・・・・電源端子、22・・・
・・・接地端子、23・・・・・・入力端子。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名f・
一体膿凌N!千引様扱 2−−−  q   ’/モ乳物領戚 3−−−、、  p隻 ・ ”−<5凍I 22−葎境・ 23−一一人カ ダ 第 3 図
Fig. 1 is a sectional view showing an embodiment of the W-well CMOS/LSI of the present invention, Fig. 2 is a sectional view showing a conventional example of the W-well CMOS/LSI, and Fig. 3 is a sectional view of the W-well CMOS/LSI.
FIG. 2 is an electrical equivalent circuit diagram of a conventional example. 1...Low concentration N-type semiconductor substrate, 2...
Low concentration N type impurity region, 3...Low concentration P type impurity region, 4°5.7,215...High concentration P type impurity region, 6,8°9.24... ...High concentration N-type impurity region, 10.11... Gate oxide film, 12
, 14, 15, 16° 17.19... Conductive electrode, 13.18... Gate electrode, 20...
...Output terminal, 21...Power terminal, 22...
...Ground terminal, 23...Input terminal. Name of agent: Patent attorney Toshio Nakao and one other person f.
What the hell is this? Senbiki-sama treatment 2 --- q '/mo milk territory 3 ---,, p ship ・ ”-<5 frozen I 22- Ukyo ・ 23- 1 person Kada Fig. 3

Claims (1)

【特許請求の範囲】[Claims] 一導電型半導体基板上に、該半導体基板と同一導電型の
第一の低濃度不純物領域及び、前記半導体基板と反対導
電型の第二の低濃度不純物領域を形成し、前記第一及び
第二の低濃度不純物領域のうち少なくとも一方の導電型
の低濃度不純物領域の底面に接して、該低濃度不純物領
域と同一導電型の高濃度不純物領域を形成し、前記第一
の低濃度不純物領域及び第二の低濃度不純物領域上にM
OS型電界効果トランジスタを形成することを特徴とす
る半導体集積回路装置。
A first low concentration impurity region of the same conductivity type as the semiconductor substrate and a second low concentration impurity region of the opposite conductivity type to the semiconductor substrate are formed on a semiconductor substrate of one conductivity type; A high concentration impurity region of the same conductivity type as the low concentration impurity region is formed in contact with the bottom surface of at least one of the low concentration impurity regions of the low concentration impurity region, and the first low concentration impurity region and M on the second low concentration impurity region
A semiconductor integrated circuit device characterized by forming an OS type field effect transistor.
JP61291045A 1986-12-05 1986-12-05 Semiconductor integrated circuit device Pending JPS63142848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61291045A JPS63142848A (en) 1986-12-05 1986-12-05 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61291045A JPS63142848A (en) 1986-12-05 1986-12-05 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS63142848A true JPS63142848A (en) 1988-06-15

Family

ID=17763726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61291045A Pending JPS63142848A (en) 1986-12-05 1986-12-05 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS63142848A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015076453A (en) * 2013-10-07 2015-04-20 キヤノン株式会社 Solid-state imaging device, method of manufacturing the same, and imaging system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015076453A (en) * 2013-10-07 2015-04-20 キヤノン株式会社 Solid-state imaging device, method of manufacturing the same, and imaging system

Similar Documents

Publication Publication Date Title
US11069805B2 (en) Embedded JFETs for high voltage applications
JP2008193101A (en) Semiconductor device
JPH02307274A (en) Semiconductor device
JPS62115873A (en) Vertical mos field effect transistor
JPS63142848A (en) Semiconductor integrated circuit device
JPS6164165A (en) Mos type field-effect transistor
JPS60123053A (en) Semiconductor device
JPH01185971A (en) Insulated gate semiconductor device
JPS63102249A (en) Semiconductor integrated circuit device
JPS6388857A (en) Semiconductor integrated circuit device
JPH02210862A (en) Semiconductor device
JPS63115364A (en) Semiconductor integrated circuit device
JPH04127574A (en) Vertical type insulated-gate field-effect transistor
JPH01273346A (en) Semiconductor device
JPH03145163A (en) Thyristor
JP2926785B2 (en) Semiconductor device
KR940008215B1 (en) Transistor device with both sides characteristic
JPH0636596Y2 (en) CMOS semiconductor device
JPS59954A (en) Semiconductor integrated device
JPH05121672A (en) Semiconductor device
JPS6336145B2 (en)
JPS6027162A (en) Complementary type mos integrated circuit device
JPS63161658A (en) Semiconductor integrated circuit device
JPS5910256A (en) Semiconductor integrated circuit device
JPH0828505B2 (en) Conductivity modulation type MOSFET