JPS5910256A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS5910256A
JPS5910256A JP57118542A JP11854282A JPS5910256A JP S5910256 A JPS5910256 A JP S5910256A JP 57118542 A JP57118542 A JP 57118542A JP 11854282 A JP11854282 A JP 11854282A JP S5910256 A JPS5910256 A JP S5910256A
Authority
JP
Japan
Prior art keywords
transistor
type
region
mos transistor
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57118542A
Other languages
Japanese (ja)
Inventor
Isao Akitake
秋武 勇夫
Kazuo Kondo
和夫 近藤
Shuzo Matsumoto
脩三 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57118542A priority Critical patent/JPS5910256A/en
Publication of JPS5910256A publication Critical patent/JPS5910256A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0623Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain an MOS transistor integrated circuit device which has a small occupation area and is suitable for a low voltage power source driven circuit by a method wherein a bi-polar transistor is formed on the same chip as the MOS transistor, resulting in the construction of an analog circuit. CONSTITUTION:The constant current source connected to the common source to differential pair N type NOS transistors 2 and 3 is constituted of the bi-polar N-P-N transistor 13. The bi-polar N-P-N transistor 13 is composed of N type regions 18 and 19 and a P type region 23. A base region 23 is formed at the same time with the P type layer 20 of the N type MOS transistor 2, and a collector region 18 and an emitter region 19 with the N type layers 21 and 22 of the N type MOS transistor 2. The VBE of the bi-polar N-P-N transistor 13 can be regarded as a nearly constant value not be depending on the current value of the IC, and is much smaller than the VGS of the N type MOS transistor without being influenced by the emitter area, accordingly advantageous in case of operation by means of a low voltage power source.

Description

【発明の詳細な説明】 本発明は絶縁ゲート型暇界効果トランジスタで構成され
るアナログ回路の半導体集積装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor integrated device of an analog circuit composed of insulated gate time-field effect transistors.

第1図に絶縁ゲート醒界トランジスタ(以下MO5)ラ
ンジスタと記す)集積回路製造プロセスで構成される差
動増幅回路の従来例を示す。
FIG. 1 shows a conventional example of a differential amplifier circuit constructed using an insulated gate open field transistor (hereinafter referred to as MO5 transistor) integrated circuit manufacturing process.

上記差動増幅回路はル形MOSトランジスタ2.3を差
動対接続し、第1のバイアス電圧10を抵抗7.8を介
してそれぞれのゲートへ印加し該ル形MO5)ランジス
タ2のゲートを入力端子1としまたそれぞれのドレイン
に負荷としてP形MOSトランジスタ4,5を電源9と
の間に接続し、そして共通ソースに第2のバイアス電圧
11をゲートに印加し、ソースを接地したル形MO5)
ランジスタロを接続し定電流源とした周知の回路である
The above-mentioned differential amplifier circuit connects a differential pair of MOS transistors 2.3, and applies a first bias voltage 10 to each gate via a resistor 7.8. P-type MOS transistors 4 and 5 are connected between the input terminal 1 and the power source 9 as a load at each drain, and a second bias voltage 11 is applied to the gate of the common source, and the source is grounded. MO5)
This is a well-known circuit that connects a transistor and uses it as a constant current source.

MOSトランジスタのゲート・ソース間亀圧(以下Va
tと称する)とドレイン電流およびMOSトランジスタ
の大きさの関係は次式(飽和値域動作時)で表わされる
Tortoise pressure between the gate and source of a MOS transistor (hereinafter referred to as Va
The relationship between the drain current (referred to as t), the drain current, and the size of the MOS transistor is expressed by the following equation (during operation in the saturation range).

2 ID = K−T(Vas −Vth)   ・・・(
1)ここで、IDニドレイン電流、に:定数、W;チャ
ネル幅、L:チャネル長、 fth : Lきい1直鑞圧、 となる。(2)式でわかるようにドレイン電流IDが決
まるとVazの値は〃Lに依存する。そしてチャネル長
LL)は製造プロセスで最小値が決定される。よりて〆
GJ’の値はチャネル幅(ハ)で決まることになる。こ
こで第1図の差動増幅回路に注目する。該鑞#電圧9を
低電圧で駆動するために(7MO5)ランジスタ2,5
.A、5.6のVatを極力小さくする必要がある。そ
のためには上述したようにチャネル幅(ハ)を大きくし
なければならず該MO5トランジスタの面積が非常に大
きくなるとイウ欠点が生じる。ちなみにIo=1mA 
、g′/L−10とした場合のVatは略3にと非常に
大きい。
2 ID = K-T(Vas-Vth)...(
1) Here, ID Ni drain current, N: constant, W: channel width, L: channel length, fth: L threshold 1 direct soldering pressure. As can be seen from equation (2), once the drain current ID is determined, the value of Vaz depends on L. The minimum value of the channel length LL) is determined in the manufacturing process. Therefore, the value of GJ' is determined by the channel width (c). Here, attention will be paid to the differential amplifier circuit shown in FIG. In order to drive the solder #voltage 9 with a low voltage (7MO5) transistors 2 and 5
.. A. It is necessary to make the 5.6Vat as small as possible. For this purpose, as mentioned above, the channel width (c) must be increased, and if the area of the MO5 transistor becomes very large, a drawback will occur. By the way, Io=1mA
, g'/L-10, Vat is approximately 3, which is very large.

本発明の目的は上記した従来技術の欠点をなくし、占有
面積が小さくかつ低電圧電源駆動回路に適したMOS 
)ランジスタ集積回路装置を提供するにある。
An object of the present invention is to eliminate the drawbacks of the prior art described above, and to provide a MOS that occupies a small area and is suitable for low voltage power supply drive circuits.
) provides a transistor integrated circuit device.

本発明は双極トランジスタのベース・エミッタ間電圧(
以後ragとする)がエミッタ面積に影響されず、また
コレクタ電流に対して指数特性を示すためあまシ影響を
うけないことに着目し、MOS )ランジスタ集積回路
製造プロセスで上記双極トランジスタをMnS )ラン
ジスタと同一チップ上に形成しア犬ログ回路を構成する
The present invention is based on the base-emitter voltage (
We focused on the fact that rag) is not affected by the emitter area and exhibits an exponential characteristic with respect to the collector current. is formed on the same chip to form an analog circuit.

以下、本発明の実施例を図を用いて詳しく説明する。第
2図は本発明の実晦例である集積回路の構造を示し、第
3図はその等両回路を、また第4図は他の実施例の等両
回路を示す。ここで第1図と同一部分については同一番
号を付すまず、第6図の等両回路で第1図における従来
回路との差異を述べる。該差動対ル形MO5)ランジス
タ2,5の共通ソースへ接続した定電流源を第2図で示
した双極ルpn )ランジスタ15で構成したことにあ
る。周知のように双極npルトランジスタ15のVsz
は下記のように表わされる。
Hereinafter, embodiments of the present invention will be described in detail using the drawings. FIG. 2 shows the structure of an integrated circuit according to an embodiment of the present invention, FIG. 3 shows its circuit, and FIG. 4 shows a circuit of another embodiment. Here, the same parts as in FIG. 1 are given the same numbers. First, the differences between the circuit shown in FIG. 6 and the conventional circuit shown in FIG. 1 will be described. The constant current source connected to the common source of the differential pair MO transistors 2 and 5 is constituted by a bipolar transistor 15 shown in FIG. As is well known, Vsz of the bipolar np transistor 15
is expressed as below.

Vs E z−!Ef−1nla          
  −(!l)ここで k:ボルツマン定数、T:絶対
温良q:胤子の電荷、IC;コレクタ電 流。
Vs Ez-! Ef-1nla
-(!l) where k: Boltzmann constant, T: absolute temperature, q: electric charge of Taneko, IC: collector current.

(5)式でわかるようにFBEはlcの指数関数である
ため上記双極npn トランジスター3が通常の動作時
においてはlcの電流値によらずほぼ一定値とみなすこ
とができる。またエミッタ面積に影響されずその直は略
0.7Vである。この直は第1図で示した該ル形MOS
トランジスタ60VGsr (5V 、u7/L= 1
0 、 I i>−1mA)に比べて非常に小さい。よ
って低置圧電源で動作させる場合に有利である。
As can be seen from equation (5), since FBE is an exponential function of lc, it can be regarded as a substantially constant value regardless of the current value of lc when the bipolar npn transistor 3 is in normal operation. Moreover, it is not affected by the emitter area and its direct voltage is about 0.7V. This line is the square MOS shown in Figure 1.
Transistor 60VGsr (5V, u7/L=1
0, Ii>-1 mA). Therefore, it is advantageous when operating with a low pressure power source.

つぎに第2図によpMOsMOSトランジスタ路製造プ
ロセスでの該双極ルprLトランジスター3の形成を説
明する。ここで半導体基板14はル形クリコン単結晶、
  +5.16,17.18.19はル形領域、202
1.22.2”+はP影領域、24.25は酸化膜、2
6 、27は多結晶シリコンである。15,16,2.
4および26で第3図のp@MOSトランジスタ4を2
0.21.22゜25およヒ27でル形MOSトランジ
スタ2を17で抵抗7をそして18.19.25で双極
npn トランジスタ15を構成している。そして上記
18は該双極npルトランジスタ15のコレクタ領域を
、19はエミッタ領域を、23けベース領域を形成する
。上記ベース領域26はル形MO5トランジスタ2のP
形層20と製造工程上同時に形成される。またコレクタ
領域18、エミッタ領域19は該ル形AlO3トランジ
スタ2のル形層24.22と同時形成される。以上のよ
うに双極ルprL)ランジスタはに来のMOSトランジ
スタ集潰回V6製造プロセスで工程を追加することなく
実現できる。
Next, the formation of the bipolar prL transistor 3 in the pMOSMOS transistor path manufacturing process will be explained with reference to FIG. Here, the semiconductor substrate 14 is a Le-shaped crystal single crystal,
+5.16, 17.18.19 are le-shaped areas, 202
1.22.2”+ is P shadow area, 24.25 is oxide film, 2
6 and 27 are polycrystalline silicon. 15, 16, 2.
4 and 26, the p@MOS transistor 4 in Fig. 3 is replaced with 2
0.21.22.degree. 25 and 27 constitute a loop-type MOS transistor 2, 17 constitutes a resistor 7, and 18.19.25 constitutes a bipolar npn transistor 15. The numeral 18 forms a collector region, the numeral 19 forms an emitter region, and the numeral 23 forms a base region. The base region 26 is the P of the MO5 transistor 2.
It is formed at the same time as the shaped layer 20 in the manufacturing process. Further, the collector region 18 and the emitter region 19 are formed simultaneously with the square layers 24 and 22 of the square AlO3 transistor 2. As described above, the bipolar (prL) transistor can be realized in the current MOS transistor integration V6 manufacturing process without adding any steps.

第4図の実施列は該双極rbpルトランジスタを第5図
における差動対n形JfO5)ランジスタ2゜3の替り
に置き換えたものであり、上述してきたようにVBEが
小さいので第5図の差動増幅回路よシも低電圧電源動作
に適した回路である。
In the implementation column of FIG. 4, the bipolar RBP transistor is replaced with the differential pair n-type JfO5) transistor 2゜3 in FIG. 5, and as mentioned above, since VBE is small, Differential amplifier circuits are also suitable for low voltage power supply operation.

以上、上述してきたように本発明によれば、一般的にデ
ィジタル回路用集積回路製造プロセスである。MOSト
ランジスタ製造プロセスで差動増幅回路等のアナログ回
路を同一チップ上に混在させた場合の問題点(Vaxが
大きく低電圧動作をさせにくい)を製造工程の増加なく
双極トランジスタを構成して解決することができるとい
う効果を奏することができる。
As described above, the present invention generally relates to an integrated circuit manufacturing process for digital circuits. Solve the problem when analog circuits such as differential amplifier circuits are mixed on the same chip in the MOS transistor manufacturing process (Vax is large and it is difficult to operate at low voltage) by configuring bipolar transistors without increasing the manufacturing process. It is possible to achieve the effect of being able to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の製造プロセスで構成した回路図、第2図
は本発明の一実施例の半導体集積装置の構造断面図、第
6図は第2図における等価回路図、第4図は本発明の他
の実施列の回路図である。 2.5.6・・・ル形−hfO5)ランジスタ、15 
、28 、29・・・双極ルPルトランジスタ、1B、
19.21.22・・・ル形半導体領域、20 、23
・・・P形半導体領域。 11図 牙3区 才4霞
FIG. 1 is a circuit diagram constructed using a conventional manufacturing process, FIG. 2 is a cross-sectional view of the structure of a semiconductor integrated device according to an embodiment of the present invention, FIG. 6 is an equivalent circuit diagram of FIG. 2, and FIG. FIG. 6 is a circuit diagram of another implementation of the invention. 2.5.6... Le type-hfO5) transistor, 15
, 28, 29...Bipolar transistor, 1B,
19.21.22... Le-shaped semiconductor region, 20, 23
...P-type semiconductor region. 11 Zuga 3 Ward Sai 4 Kasumi

Claims (1)

【特許請求の範囲】[Claims] 1、 第14電型半導体基板中に互いに隔離された1対
の第2導眠型ソース・トレイン領域を有する第1の絶縁
ゲート型電界効果トランジスタと前記半導体基板中に形
成された第2導電型の牛導体領域中に互いに隔離されて
形成された1対の第1導1mソース・ドレイン領域を有
する第2の絶縁ゲート型区界効果トランジスクと前記半
導体基板中に前記第2導電型牛導体領域と同時に形成さ
れた第2導電型ペース領域とこのベース領域中に互いに
隔離されて前記第2の絶縁ゲート型電界効果トランジス
タのソース・ドレイン領域と同時に形成された第1導成
型コレクタ領域とエミッタ領域とから成る双極トランジ
スタを具備してなわ、増幅素子とした前記第1の絶縁ゲ
ート型雄界効オトランジスタまたは前記第2の絶縁ゲー
ト型電界効果トランジスタの定電流源として前記双極ト
ランジスタを接続したことを特徴とする半導体集積装置
1. A first insulated gate field effect transistor having a pair of second conductive type source/train regions isolated from each other in a fourteenth conductive type semiconductor substrate, and a second conductive type field effect transistor formed in the semiconductor substrate. a second insulated gate type zone effect transistor having a pair of first conductive 1 m source/drain regions formed isolated from each other in a conductor region of the semiconductor substrate; and a second conductor conductor region of the second conductivity type in the semiconductor substrate. A second conductivity type space region formed at the same time, and a first conductivity type collector region and an emitter region separated from each other in the base region and formed at the same time as the source/drain region of the second insulated gate field effect transistor. and the bipolar transistor is connected as a constant current source for the first insulated gate male field effect transistor or the second insulated gate field effect transistor serving as an amplification element. A semiconductor integrated device characterized by:
JP57118542A 1982-07-09 1982-07-09 Semiconductor integrated circuit device Pending JPS5910256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57118542A JPS5910256A (en) 1982-07-09 1982-07-09 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57118542A JPS5910256A (en) 1982-07-09 1982-07-09 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS5910256A true JPS5910256A (en) 1984-01-19

Family

ID=14739162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57118542A Pending JPS5910256A (en) 1982-07-09 1982-07-09 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS5910256A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724320A (en) * 1993-07-07 1995-01-27 Agency Of Ind Science & Technol Production of catalyst for steam reforming of methanol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724320A (en) * 1993-07-07 1995-01-27 Agency Of Ind Science & Technol Production of catalyst for steam reforming of methanol

Similar Documents

Publication Publication Date Title
JP3246807B2 (en) Semiconductor integrated circuit device
US4672584A (en) CMOS integrated circuit
US4547791A (en) CMOS-Bipolar Darlington device
US4543593A (en) Semiconductor protective device
JPH0865063A (en) Semiconductor integrated circuit
US6369654B1 (en) Semiconductor device
JP2003332456A (en) Divided resistance circuit and semiconductor device
US4689653A (en) Complementary MOS integrated circuit including lock-up prevention parasitic transistors
JPH0653497A (en) Semiconductor device equipped with i/o protective circuit
JP2602974B2 (en) CMOS semiconductor integrated circuit device
US3296508A (en) Field-effect transistor with reduced capacitance between gate and channel
JPS5910256A (en) Semiconductor integrated circuit device
US5682120A (en) Differential amplifier circuit using lateral-type bipolar transistors with back gates
US4057763A (en) Current amplifiers
JPH04225238A (en) Lateral transistor and current mirror circuit using same
JPS6046064A (en) Semiconductor device
JPS5944782B2 (en) semiconductor integrated circuit
JPH01185971A (en) Insulated gate semiconductor device
JPH0532908B2 (en)
JPH01273346A (en) Semiconductor device
JP2671304B2 (en) Logic circuit
JP3117260B2 (en) Semiconductor integrated circuit
JPS6193655A (en) Semiconductor device
JPS6146988B2 (en)
JPH05121672A (en) Semiconductor device