JPH01273346A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH01273346A
JPH01273346A JP63101933A JP10193388A JPH01273346A JP H01273346 A JPH01273346 A JP H01273346A JP 63101933 A JP63101933 A JP 63101933A JP 10193388 A JP10193388 A JP 10193388A JP H01273346 A JPH01273346 A JP H01273346A
Authority
JP
Japan
Prior art keywords
substrate
transistor
concentration
layer
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63101933A
Other languages
Japanese (ja)
Inventor
Kotomichi Ishihara
石原 言道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP63101933A priority Critical patent/JPH01273346A/en
Publication of JPH01273346A publication Critical patent/JPH01273346A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent a latch up phenomenon from occurring in a parasitic bipolar between a pMOS and an nMOS, by equipping an electrode on the rear of a high-concentration substrate and a high-concentration layer reaching the substrate from the surface of an epitaxial growing layer on the borders of said pMOS and said nMOS in the epitaxial growth layer. CONSTITUTION:A high-concentration substrate 1 and a high-concentration layer 15 reaching said substrate 1 increase the amplification factor of the parasitic bipolar formed between the pMOS transistor 9 and the nMOS transistor 14 of a low-concentration epitaxial growing layer 3 to decrease the amplification factor of the parasitic bipolar and the frequency of operations. The high- concentration layer 15 reaching the high-concentration substrate 1 is formed in the epitaxial growing layer 3 on the borders of the pMOS and the nMOS. This makes the high-concentration substrate 1 and the high-concentration layer 15 of extremely low substrate resistance constitute the base of a parasitic pnp transistor to produce no potential difference between the base and the source even if a large current is passed through the pMOS transistor, therefore, the parasitic bipolar is not be operated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はCMO3半導体装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a CMO3 semiconductor device.

[従来技術] CMO3半導体装置は、例えば、第2図に示すように、
N−型基板100にPウェル101を設け、前記N−型
基板100にソース(P′″)102とドレイン(P”
)103とゲート酸化膜104を介して形成されるゲー
ト、105とからなるpM。
[Prior Art] A CMO3 semiconductor device, for example, as shown in FIG.
A P well 101 is provided on an N-type substrate 100, and a source (P''') 102 and a drain (P'') are provided on the N-type substrate 100.
) 103 and a gate 105 formed through a gate oxide film 104.

Sトランジスタ106と、Pウェル101内に形成され
るソース(N”)107とドレイン(N′″)108と
ゲート酸化膜109を介して形成されるゲート110と
からなるnMOSトランジスタ111で構成されるもの
が一般的である。このCMO8半導体装置では、例えば
、pMOSトランジスタ106のソース102.N−型
基板100゜Pウェルlotで形成される寄生p−n−
pバイポーラトランジスタδ1と、nMOSトランジス
タ111のソース102.Pウェル101内部。
It is composed of an S transistor 106, an nMOS transistor 111 consisting of a source (N") 107 and a drain (N'") 108 formed in a P well 101, and a gate 110 formed through a gate oxide film 109. Things are common. In this CMO8 semiconductor device, for example, the source 102 . Parasitic p-n- formed in N-type substrate 100° P well lot
p bipolar transistor δ1 and source 102 of nMOS transistor 111. Inside P-well 101.

N−型基板100で形成される寄生n−p−nバイポー
ラトランジスタδ、がそれぞれ構成されてしまい、上記
二つの寄生バイポーラトランジスタδ1.δ2は破線で
示すようなサイリスタ112を構成していると考えられ
ている。
The parasitic npn bipolar transistors δ formed on the N-type substrate 100 are respectively configured, and the two parasitic bipolar transistors δ1 . It is believed that δ2 constitutes a thyristor 112 as shown by a broken line.

[発明が解決しようとする&ll!題]上記のCMO3
半導体装置では、例えば、電源より侵入する雑音電流等
がトリガとなって、上記寄生バイポーラトランジスタδ
1.δ2で構成されるサイリスタ112が動作し、電f
i(yoD)端子と接地(V ss)端子が導通状態と
なるラッチアップ現象が生じやす(、サイリスタ112
が一度動作すると電源電圧■IIDを完全に零としてし
まわない限り電流が流れっばなしとなる。
[Invention tries to solve &ll! Title] CMO3 above
In a semiconductor device, for example, the parasitic bipolar transistor δ is triggered by a noise current that enters from the power supply.
1. The thyristor 112 composed of δ2 operates and the electric current f
A latch-up phenomenon in which the i (yoD) terminal and the ground (V ss) terminal become conductive easily occurs (, thyristor 112
Once activated, current will continue to flow unless the power supply voltage ■IID is completely reduced to zero.

そのため、次に示すような種々の手段によってこのラン
チアップ現象の防止が試みられているが、いずれも、充
分な防止策とはなっていない。
Therefore, attempts have been made to prevent this launch-up phenomenon by various means as shown below, but none of them have been sufficient preventive measures.

まず第1の手段としては、第2図に示すように、上記の
寄生バイポーラトランジスタδ7.δ2のベース領域に
相当する実行ベース長す、、b、を大きくすることであ
る。これによって、該寄生バイポーラトランジスタδ1
.δ□の性能となる増幅率(ho)が減少するため、サ
イリスタ112は機能し難くなるが、半導体チップがど
うしても大きくなるといった問題がある。
First, as shown in FIG. 2, the parasitic bipolar transistor δ7. The purpose is to increase the execution base length, ,b, corresponding to the base area of δ2. This causes the parasitic bipolar transistor δ1
.. Since the amplification factor (ho), which is the performance of δ□, decreases, the thyristor 112 becomes difficult to function, but there is a problem that the semiconductor chip inevitably becomes larger.

第2の手段としては、寄生バイポーラトランジスタδ1
のベース濃度を上げることである。これは第3図に示す
ように、高濃度のN゛型基板113を用い、該基板11
3に低濃度のエピタキシャル成長層(N”)  114
を形成し、該エピタキシャル成長層114にpMOsM
OSトランジスタ106O3)ランジスタ111を形成
することである。これによりて、寄生バイポーラトラン
ジスタδ1のベース濃度が上がるので、該寄生バイポー
ラトランジスタδ、の増幅率hFEが下がり、上記寄生
バイポーラトランジスタδ1が動作し難くなるが、まだ
充分なラッチアンプ現象の防止策とはなっていない。
As a second means, the parasitic bipolar transistor δ1
The aim is to increase the base concentration of As shown in FIG. 3, this uses a highly concentrated N-type substrate 113, and
3, low concentration epitaxial growth layer (N”) 114
and pMOsM is formed on the epitaxial growth layer 114.
OS transistor 106O3) transistor 111 is formed. As a result, the base concentration of the parasitic bipolar transistor δ1 increases, so the amplification factor hFE of the parasitic bipolar transistor δ decreases, making it difficult for the parasitic bipolar transistor δ1 to operate, but this is still a sufficient measure to prevent the latch amplifier phenomenon. It's not.

[課題を解決するための手段] 上記の課題を解決するために、本発明の半導体装置は、
高濃度基板上に低濃度のエピタキシャル成長層を形成し
、エピタキシャル成長層内にCMOSトランジスタを形
成してなる半導体装置であって、上記高濃度基板の裏面
に電極を設けると共に、エピタキシャル成長層の表面か
ら高濃度基板に達する高濃度層を、上記エピタキシャル
成長層内の9MOsトランジスタとnMOSトランジス
タとを区切る位置に設けたことを特徴とする。
[Means for Solving the Problems] In order to solve the above problems, the semiconductor device of the present invention has the following features:
A semiconductor device in which a low concentration epitaxial growth layer is formed on a high concentration substrate, and a CMOS transistor is formed in the epitaxial growth layer, in which an electrode is provided on the back surface of the high concentration substrate, and a high concentration The present invention is characterized in that a high concentration layer reaching the substrate is provided at a position separating the 9MOS transistor and the nMOS transistor in the epitaxial growth layer.

[作用] 上記構成の半導体装置では、高濃度基板と咳高濃度基板
に達する高濃度層によって、該基板上に形成した低濃度
のエピタキシャル成長層の1)MOSトランジスタとn
MOSトランジスタ間に形成される寄生バイポーラトラ
ンジスタのベース濃度を上げることがでるので、該寄生
バイポーラトランジスタの増幅率が下がり動作し難くな
ると共に、上記高濃度基板に達する高濃度層をpMOS
トランジスタとnMO3トランジスタとを区切るエピタ
キシャル成長層に形成することで、基板抵抗の極端に低
い高濃度基板と高濃度層とが寄生p−n−p)ランジス
タのベースとなるため、9MOsトランジスタに大電流
が流れても、該ベースと9MOsトランジスタのソース
間との電位差が生じないようにすることができるので、
上記した寄生バイポーラトランジスタは殆ど動作しなく
なり、ランチアンプ現象が防止策が成されたCMO3半
導体装置が実現できる。さらに、高濃度基板が■3.と
なるので、該高濃度基板の裏面に設けたt橿をVlll
D電極とすることでCMO3半導体装置の大幅な小型化
が可能となる。。
[Function] In the semiconductor device having the above configuration, the high concentration substrate and the high concentration layer reaching the high concentration substrate are used to form the 1) MOS transistor and n of the low concentration epitaxial growth layer formed on the substrate.
Since the base concentration of the parasitic bipolar transistor formed between the MOS transistors can be increased, the amplification factor of the parasitic bipolar transistor decreases and it becomes difficult to operate, and the high concentration layer reaching the high concentration substrate is replaced with a pMOS.
By forming the epitaxial growth layer that separates the transistor and the nMO3 transistor, the highly doped substrate with extremely low substrate resistance and the highly doped layer serve as the base of the parasitic pnp) transistor, allowing a large current to flow into the 9MOS transistor. Even if the current flows, it is possible to prevent a potential difference between the base and the source of the 9MOS transistor from occurring.
The parasitic bipolar transistors described above almost no longer operate, and a CMO3 semiconductor device in which measures are taken to prevent the launch amplifier phenomenon can be realized. Furthermore, the high concentration substrate is ■3. Therefore, the t-edge provided on the back side of the high concentration substrate is
By using the D electrode, the CMO3 semiconductor device can be significantly downsized. .

〔実施例] 以下、図面を参照して本発明の一実施例を説明する。〔Example] Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例にかかる半導体装置の断面図
であり、CMO3型半導体装置を示している0図におい
て、1は基板抵抗が百分の数Ω1程度の高濃度N゛型基
板であり、裏面にはアルミ等の電極2が形成されている
。また上方には内部抵抗が数Ω1程度で低濃度のエピタ
キシャル成長層(N−)3が形成されており、該エピタ
キシャル成長N3に、Pウェル4が形成されている。さ
らに、このエピタキシャル成長層3には、ソース(Po
)5とドレイン(P”)6とゲート酸化膜7を介して形
成されるゲート8とからなるpMOSトランジスタ9が
形成されている。また、前記Pウェル4内には、ソース
(N”″)10とドレイン(N”)11とゲート酸化膜
12を介して形成されるゲート13とからなるnMOS
トランジスタ14が形成されており、上記ドレイン6.
11が出力となるCMO3半導体装置が構成されている
。さらに、エピタキシャル成長層3の上記pMO3)ラ
ンジスタ9とnMOSトランジスタ14を区切る位置に
は、表面より上記高濃度基板1に達する高濃度層(N”
)15が形成されている。
FIG. 1 is a cross-sectional view of a semiconductor device according to an embodiment of the present invention, and in FIG. An electrode 2 made of aluminum or the like is formed on the back surface. Further, a low concentration epitaxial growth layer (N-) 3 having an internal resistance of about several Ω1 is formed above, and a P well 4 is formed in the epitaxial growth N3. Furthermore, this epitaxial growth layer 3 has a source (Po
) 5, a drain (P") 6, and a gate 8 formed through a gate oxide film 7. In addition, in the P well 4, a source (N"") is formed. 10, a drain (N'') 11, and a gate 13 formed through a gate oxide film 12.
A transistor 14 is formed and the drain 6.
A CMO3 semiconductor device is constructed in which 11 serves as an output. Further, at a position of the epitaxial growth layer 3 that separates the pMO3) transistor 9 and the nMOS transistor 14, a highly doped layer (N''
) 15 are formed.

上記CMO3半導体装置では、pMO3I−ランジスタ
9とnMOSトランジスタ14によって、寄生バイポー
ラトランジスタ(第2図参照)が形成されるが、高濃度
基板1に達っする高濃度層15が、エピタキシャル成長
層2のpMOSトランジスタ9とnMOSトランジスタ
14とを区切る位置に形成されているため、高濃度基板
1と該高濃度層15によって寄生n−p−nトランジス
タベース濃度が充分高くなるので、形成される寄生バイ
ポーラトランジスタの増幅率hFEが大きく下げられ、
該寄生バイポーラトランジスタは殆ど動作しないものと
なる。また、上記高濃度基板lの基板抵抗と高濃度層1
り(N”)の抵抗は極端に低いため、たとえ寄生バイポ
ーラトランジスタに電流が流れ始めたとしても、電流は
抵抗の低い高濃度基板1と高濃度層1.5に流れるよう
になり、この寄生バイポーラトランジスタは動作しなく
なる。また、高濃度基板lと高濃度層15がベース(V
、)となるので、該ベース(Voe)とpM。
In the CMO3 semiconductor device described above, a parasitic bipolar transistor (see FIG. 2) is formed by the pMO3I-transistor 9 and the nMOS transistor 14. Since it is formed at a position separating the transistor 9 and the nMOS transistor 14, the base concentration of the parasitic npn transistor becomes sufficiently high due to the highly doped substrate 1 and the heavily doped layer 15, so that the parasitic bipolar transistor formed The amplification factor hFE is significantly lowered,
The parasitic bipolar transistor hardly operates. Also, the substrate resistance of the high concentration substrate 1 and the high concentration layer 1
Since the resistance of the transistor (N”) is extremely low, even if current begins to flow through the parasitic bipolar transistor, the current will flow through the highly doped substrate 1 and the heavily doped layer 1.5, which have low resistance, and this parasitic The bipolar transistor stops operating. Also, the high concentration substrate l and the high concentration layer 15 are connected to the base (V
, ), so the base (Voe) and pM.

Sトランジスタ9のソース5間のバイアス電圧を大幅に
下げることが可能となり、従って、形成される寄生バイ
ポーラトランジスタの動作を防止できるラッチアップ現
象の対策がなされたCMOS半導体装置が実現できる。
It becomes possible to significantly lower the bias voltage between the source 5 of the S transistor 9, and therefore, a CMOS semiconductor device can be realized in which measures are taken against the latch-up phenomenon that can prevent the operation of the parasitic bipolar transistor that is formed.

さらに、従来のCMO3半導体装置では、pMOSトラ
ンジスタとnMOSトランジスタの組合せで回路が形成
されるため、各pMO3)ランジスタの電源V□用の配
線と、各nMOSトランジスタの接地VSS用の配線と
は、それぞれを同一配線でつなぐようにチップ表面の広
い範囲に電極が形成されている。しかし、本発明のCM
O3半導体装置では、上記高濃度層15と高濃度の基板
1とがつながり抵抗も低いので、pMOsトランジスタ
9の電BvllDを基板1の裏面に形成した電極2から
とることができるようになる。従って、この電極2が各
pMOs)ランジスタの電源Vllll用の電極にでき
るので、チップ表面に該電源VIID用の電極を形成す
る必要がなくなり、第2図に示す従来のCMO3半導体
装置と比較すると、チップ面積が約半分にできるといっ
た極めて大幅な小型化が図れるようになる。さらに、C
MO3半導体装置はピン数が多い(例えば24ピン)た
め、pMOSトランジスタの電源Vlll+を裏面電極
2とすることで、パッドを一本削減できるので、ワイヤ
ボンディングの回数が削減できる。
Furthermore, in a conventional CMO3 semiconductor device, a circuit is formed by a combination of pMOS transistors and nMOS transistors, so the wiring for the power supply V□ of each pMO3) transistor and the wiring for the ground VSS of each nMOS transistor are different from each other. Electrodes are formed over a wide area of the chip surface so that they are connected by the same wiring. However, the commercial of the present invention
In the O3 semiconductor device, the high concentration layer 15 and the high concentration substrate 1 are connected and the resistance is low, so that the voltage BvllD of the pMOS transistor 9 can be taken from the electrode 2 formed on the back surface of the substrate 1. Therefore, since this electrode 2 can be used as the electrode for the power supply Vllll of each pMO transistor, there is no need to form an electrode for the power supply VIID on the chip surface, and compared to the conventional CMO3 semiconductor device shown in FIG. It will be possible to significantly reduce the size of the chip by cutting the chip area in half. Furthermore, C
Since the MO3 semiconductor device has a large number of pins (for example, 24 pins), by using the power supply Vllll+ of the PMOS transistor as the back electrode 2, the number of pads can be reduced by one, and the number of wire bonding operations can be reduced.

尚、pMO3l−ランジスタのソース5と高濃度層15
の短絡部16には、その部分にだけアルミ等の電極を形
成すればよく、チップ自体の大きさには影響ない、また
、高濃度の基板1はN゛基板使用したが、Pゝ基板を使
用したCMO3半導体装置とすることも勿論可能である
In addition, the source 5 of the pMO3l-transistor and the high concentration layer 15
It is only necessary to form an electrode made of aluminum or the like on the short-circuit part 16 of the chip, and the size of the chip itself is not affected.Also, although the high concentration substrate 1 is a N゛ substrate, a P゛ substrate is used. Of course, it is also possible to use a CMO3 semiconductor device.

[発明の効果] 本発明のCMO3半導体装置では、pMOSトランジス
タとnMO5)ランジスタ間に形成される寄生バイポー
ラトランジスタによって生じるランチアンプ現象の防止
策がなされたCMO3半導体装置となる。さらに、高濃
度基板の裏面に設けた電極をベース電極としたCMO3
半導体装置となるので、チップの大幅な小型化を実現で
きるといった極めて有効な効果を奏する。
[Effects of the Invention] The CMO3 semiconductor device of the present invention is a CMO3 semiconductor device in which measures are taken to prevent the launch amplifier phenomenon caused by the parasitic bipolar transistor formed between the pMOS transistor and the nMO5 transistor. Furthermore, CMO3 with the electrode provided on the back surface of the high concentration substrate as the base electrode
Since it is a semiconductor device, it has an extremely effective effect of being able to significantly reduce the size of the chip.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例にかかる半導体装置の断面図
、第2図、第3図はいずれも従来の半導体装置を示す断
面図である。 1・・・高濃度基板、 2・・・電極、 3・・・エピタキシャル成長層、 9・・・9MO5)ランジスタ、 14・・・nMO5)ランジスタ、 15・・・高濃度層。 第1図 第2図 第3図
FIG. 1 is a sectional view of a semiconductor device according to an embodiment of the present invention, and FIGS. 2 and 3 are sectional views of conventional semiconductor devices. DESCRIPTION OF SYMBOLS 1... High concentration substrate, 2... Electrode, 3... Epitaxial growth layer, 9... 9MO5) transistor, 14... nMO5) transistor, 15... High concentration layer. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)高濃度基板上に低濃度のエピタキシャル成長層を
形成し、エピタキシャル成長層内にCMOSトランジス
タを形成してなる半導体装置であって、上記高濃度基板
の裏面に電極を設けると共に、エピタキシャル成長層の
表面から高濃度基板に達する高濃度層を、上記エピタキ
シャル成長層内のpMOSトランジスタとnMOSトラ
ンジスタとを区切る位置に設けてなる半導体装置。
(1) A semiconductor device in which a low concentration epitaxial growth layer is formed on a high concentration substrate, and a CMOS transistor is formed in the epitaxial growth layer, in which an electrode is provided on the back surface of the high concentration substrate, and the surface of the epitaxial growth layer is A semiconductor device comprising: a highly doped layer extending from the top to the highly doped substrate at a position separating a pMOS transistor and an nMOS transistor in the epitaxial growth layer.
JP63101933A 1988-04-25 1988-04-25 Semiconductor device Pending JPH01273346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63101933A JPH01273346A (en) 1988-04-25 1988-04-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63101933A JPH01273346A (en) 1988-04-25 1988-04-25 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH01273346A true JPH01273346A (en) 1989-11-01

Family

ID=14313715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63101933A Pending JPH01273346A (en) 1988-04-25 1988-04-25 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH01273346A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009516361A (en) * 2005-10-14 2009-04-16 シリコン・スペース・テクノロジー・コーポレイション Radiation-resistant isolation structure and manufacturing method thereof
US8093145B2 (en) 2004-02-17 2012-01-10 Silicon Space Technology Corp. Methods for operating and fabricating a semiconductor device having a buried guard ring structure
US10038058B2 (en) 2016-05-07 2018-07-31 Silicon Space Technology Corporation FinFET device structure and method for forming same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8093145B2 (en) 2004-02-17 2012-01-10 Silicon Space Technology Corp. Methods for operating and fabricating a semiconductor device having a buried guard ring structure
US8497195B2 (en) 2004-02-17 2013-07-30 Silicon Space Technology Corporation Method for radiation hardening a semiconductor device
US8729640B2 (en) 2004-02-17 2014-05-20 Silicon Space Technology Corporation Method and structure for radiation hardening a semiconductor device
JP2009516361A (en) * 2005-10-14 2009-04-16 シリコン・スペース・テクノロジー・コーポレイション Radiation-resistant isolation structure and manufacturing method thereof
US8252642B2 (en) 2005-10-14 2012-08-28 Silicon Space Technology Corp. Fabrication methods for radiation hardened isolation structures
US8278719B2 (en) 2005-10-14 2012-10-02 Silicon Space Technology Corp. Radiation hardened isolation structures and fabrication methods
US10038058B2 (en) 2016-05-07 2018-07-31 Silicon Space Technology Corporation FinFET device structure and method for forming same
US10615260B1 (en) 2016-05-07 2020-04-07 Silicon Space Technology Corporation Method for forming FinFET device structure

Similar Documents

Publication Publication Date Title
JP4122203B2 (en) Electrostatic charge discharge circuit structure of semiconductor device
JPS63172454A (en) Semiconductor integrated circuit
US4543593A (en) Semiconductor protective device
KR20050011681A (en) Semiconductor integrated circuit
JPH0653497A (en) Semiconductor device equipped with i/o protective circuit
JPH01273346A (en) Semiconductor device
JP2000022080A (en) Semiconductor device
JPH02238668A (en) Semiconductor device
JPH0478162A (en) Protecting device for integrated circuit
JPH01185971A (en) Insulated gate semiconductor device
JPH04312968A (en) Cmos semiconductor integrated circuit device
JPH03225952A (en) Semiconductor integrated circuit
JPH02294063A (en) Semiconductor integrated circuit
JPH0412627B2 (en)
JPH0532908B2 (en)
JPH0456465B2 (en)
JPS62279675A (en) Protective circuit for semiconductor integrated circuit
JPH05235344A (en) Semiconductor integrated circuit device
JPS61208863A (en) Cmos semiconductor device
JPH09191054A (en) Cmos transistor
JPH0373567A (en) Input protector for semiconductor integrated circuit
JPH04239763A (en) Output buffer
JPH1187700A (en) Semiconductor integrated circuit
JPS59202658A (en) Mos type semiconductor integrated circuit
JPH0440867B2 (en)