JPS63102249A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS63102249A
JPS63102249A JP61247797A JP24779786A JPS63102249A JP S63102249 A JPS63102249 A JP S63102249A JP 61247797 A JP61247797 A JP 61247797A JP 24779786 A JP24779786 A JP 24779786A JP S63102249 A JPS63102249 A JP S63102249A
Authority
JP
Japan
Prior art keywords
impurity region
type impurity
region
low concentration
high concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61247797A
Other languages
Japanese (ja)
Inventor
Tadashi Nakai
正 中井
Takuya Asano
卓也 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61247797A priority Critical patent/JPS63102249A/en
Publication of JPS63102249A publication Critical patent/JPS63102249A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To increase the withstand surge voltage of a parasitic thyristor, and form a CMOS LSI which is endurable to latch-up, by forming, on a substrate, an impurity region of low concentration, which has a conductivity type inverse to that of the substrate, and forming, in contact with the bottom surface of the above-mentioned region, an impurity region of high concentration, which has a conductivity type inverse to that of the substrate. CONSTITUTION:On an N-type semiconductor substrate 1 of low concentration, a P-type impurity region 23 of high concentration is formed, and thereon a P-type impurity region 2 of low concentration is formed. A source region 4 and a drain region 3 of a P-channel transistor as the P-type impurity region of high concentration are formed. In the P-type impurity region 2 of low concentration, a source region 7 and a drain region 8 of an N-channel transistor as the N-type impurity region of high concentration are formed. Thus, a low resistance caused by the P-type impurity region 23 of high concentration is added in parallel with a resistance caused by the P-type impurity region 2 of low concentration, so that a resistance from base to an earth terminal 21 of a parasitic transistor is reduced. Consequently, a large current is necessary for the parasitic transistor to turn ON, and latch-up endurance can be increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、MO8型半導体集積回路装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an MO8 type semiconductor integrated circuit device.

従来の技術 MOS型半導体集積回路装置のうち、相補型MOS(以
下cMOS,I、S Iと称ス。) は消費を力が少な
いという利点があり、多く使用されるようになってきた
。第2図に従来のCMOSφLSIの構造例を示す。
Among conventional MOS type semiconductor integrated circuit devices, complementary MOS (hereinafter referred to as cMOS, I, SI) has the advantage of low power consumption, and has come to be widely used. FIG. 2 shows an example of the structure of a conventional CMOSφLSI.

低濃度のN型半導体基板1上に低濃度P型不純物領域2
及び高濃度P型不純物領域であるPチャンネルトランジ
スタのソース領域4とドレイン領域3が形成され、且つ
、低濃度不純物領域2に高濃度N型不純物領域であるN
チャンネルトランジスタのソース領域7とドレイン領域
8が形成されてイル。Pチャンネルトランジスタのソー
ス領域4及びドレイン領域3を結ぶ薄いゲート酸化膜9
上にゲート電極12が形成され、且つ、Nチャンネルト
ランジスタのソース領域7及びドレイン領域8を結ぶ薄
いゲート酸化膜1o上にゲート電極17が形成され、ゲ
ート電極12及びゲート電極17は入力端子22に接続
されている。また、Pチャンネルトランジスタのドレイ
ン領域3上に導電性電極11が形成され、Nチャンネル
トランジスタのドレイン領域8上に導電性電極18が形
成されてお9、導電性1啄11及び18は出力端子19
に接続されている。Pチャンネルトランジスタのソース
領域4上に導電性電極13が形成され電源端子20に接
続されており、また、Nチャンネルトランジスタソース
領域T上に導電性電極1eが形成され接地端子21に接
続されている。さらに、N型半導体基板1上に高濃度N
型不純物領域5が形成され、且つ、低濃度P型不純物領
域2上に高濃度P型不純物領域6が形成されている。高
濃度N型不純物領域S上には導電性電極14が形成され
電源端子20に接続されると共に、高濃度P型不純物預
域e上には導電性電極15が形成され接地端子21に接
続されている。
Low concentration P type impurity region 2 on low concentration N type semiconductor substrate 1
A source region 4 and a drain region 3 of a P channel transistor, which are high concentration P type impurity regions, are formed in the low concentration impurity region 2, and a high concentration N type impurity region, which is a high concentration N type impurity region, is formed in the low concentration impurity region 2.
A source region 7 and a drain region 8 of the channel transistor are formed. Thin gate oxide film 9 connecting source region 4 and drain region 3 of P-channel transistor
A gate electrode 12 is formed thereon, and a gate electrode 17 is formed on a thin gate oxide film 1o connecting the source region 7 and drain region 8 of the N-channel transistor. It is connected. Further, a conductive electrode 11 is formed on the drain region 3 of the P-channel transistor, a conductive electrode 18 is formed on the drain region 8 of the N-channel transistor 9, and the conductive electrodes 11 and 18 are connected to the output terminal 19.
It is connected to the. A conductive electrode 13 is formed on the source region 4 of the P-channel transistor and connected to the power supply terminal 20, and a conductive electrode 1e is formed on the N-channel transistor source region T and connected to the ground terminal 21. . Furthermore, a high concentration of N on the N-type semiconductor substrate 1 is
A type impurity region 5 is formed, and a high concentration P type impurity region 6 is formed on the low concentration P type impurity region 2. A conductive electrode 14 is formed on the high concentration N-type impurity region S and connected to the power supply terminal 20, and a conductive electrode 15 is formed on the high concentration P-type impurity deposit region e and connected to the ground terminal 21. ing.

発明が解決しようとする問題点 前述の従来例では、その構造上の理由によシラッチアッ
プが起こり易いという欠点がある。以下、ラッチアップ
現象を第3図を用いて説明する。すなわち、第3図は第
2図の電気的等価回路である。
Problems to be Solved by the Invention The above-mentioned conventional example has a disadvantage in that sillage build-up is likely to occur due to its structure. The latch-up phenomenon will be explained below with reference to FIG. That is, FIG. 3 is an electrical equivalent circuit of FIG. 2.

第3図において、寄生トランジスタQ1はPチャンネル
トランジスタのソース領域4とN型半導体基板1及び低
濃度P型不純物領域2によって形成され、寄生トランジ
スタQ2はPチャンネルトランジスタのドレイン領域3
とN型半導体基板1及び低濃度P型不純物領域2によっ
て形成されている。また、寄生トランジスタQ3はNチ
ャンネルトランジスタのソース領域子と低濃度P型不純
物領域2及びN型半導体基板1によって形成され、寄生
トランジスタQ4はNチャンネルトランジスタのドレイ
ン領域8と低濃度P型不純物領域2及びN型半導体基板
1によって形成されている。また、抵抗R1,R3,R
5,R了はN型半導体基板1による抵抗であシ、抵抗R
2,R4,R6゜R8は低濃度のP型不純物領域2によ
る抵抗である。前記構造において、出力端子19に電源
端子20よシも高い電圧が印加され、電流が寄生トラン
ジスタQ2.抵抗Re、抵抗R4を流れて接地端子21
へ抜ける場合、抵抗R4の両端に発生する電圧が寄生ト
ランジスタQ3のベース−エミッタ間順方向電圧よシも
大きければ寄生トランジスタQ3がONし、抵抗R1,
抵抗R3及び寄生トランジスタQ3を通って電源端子2
oから接地端子21に電流が流れる。さらに、抵抗R1
,抵抗R3及び寄生トランジスタQ3を通って流れる電
流により抵抗R1の両端に発生する電圧が寄生トランジ
スタQ1のエミッターベース間順方向電圧よりも大きけ
れば寄生トランジスタQ1がONL、、寄生トランジス
タQ3及び寄生トランジスタQ1によって構成されるサ
イリスタがONした状態になり、電源OFFするまで電
流が流れ続は素子の破壊を起こしてしまう。また、出力
端子19に接地端子21よりも低い電圧が印加され、電
源端子2oから抵抗R1,抵抗R7,寄生トランジスタ
Q4を通って出力端子19へ電流が抜ける場合、抵抗R
1の両端に発生する電圧が寄生トランジスタQ1のエミ
ッターペース間順方向電圧よりも大きければ寄生トラン
ジスタQ1がONL、寄生トランジスタQ1.抵抗R2
,抵抗R4を通って電源端子20から接地端子21に電
流が流れる。このとき、抵抗R4の両端に発生する電圧
が寄生トランジスタQ3のベース−エミッタ間順方向電
圧よりも大きければ寄生トランジスタQ3がONI、、
寄生トランジスタQ3及び寄生トランジスタQ1によっ
て構成されるサイリスタがONした状態になり、電源を
OFFするまで電流が流れ続は素子の破壊を起こしてし
まう。従来は、基板による抵抗R1及び低濃度P型不純
物領域2による抵抗R4を小さくするように設計してい
るが、製造プロセスのバラツキによシ設計値どおシの抵
抗値にするのは難しいという問題点があった。
In FIG. 3, a parasitic transistor Q1 is formed by a source region 4 of a P-channel transistor, an N-type semiconductor substrate 1, and a low concentration P-type impurity region 2, and a parasitic transistor Q2 is formed by a drain region 3 of a P-channel transistor.
, an N-type semiconductor substrate 1 and a low concentration P-type impurity region 2 . Further, the parasitic transistor Q3 is formed by the source region of the N-channel transistor, the low concentration P-type impurity region 2, and the N-type semiconductor substrate 1, and the parasitic transistor Q4 is formed by the drain region 8 of the N-channel transistor and the low concentration P-type impurity region 2. and an N-type semiconductor substrate 1. Also, resistors R1, R3, R
5, R is a resistance due to the N-type semiconductor substrate 1, and the resistance R
2, R4, R6° and R8 are resistances due to the low concentration P-type impurity region 2. In the above structure, a higher voltage than the power supply terminal 20 is applied to the output terminal 19, and a current flows through the parasitic transistors Q2. Flows through resistor Re and resistor R4 to ground terminal 21
If the voltage generated across the resistor R4 is larger than the base-emitter forward voltage of the parasitic transistor Q3, the parasitic transistor Q3 turns on and the resistors R1,
Power supply terminal 2 through resistor R3 and parasitic transistor Q3
A current flows from o to the ground terminal 21. Furthermore, resistance R1
, if the voltage generated across the resistor R1 due to the current flowing through the resistor R3 and the parasitic transistor Q3 is larger than the emitter-base forward voltage of the parasitic transistor Q1, then the parasitic transistor Q1 is ONL, the parasitic transistor Q3 and the parasitic transistor Q1 The thyristor constituted by is turned on, and if the current continues to flow until the power is turned off, the device will be destroyed. Furthermore, when a voltage lower than the ground terminal 21 is applied to the output terminal 19 and current flows from the power supply terminal 2o to the output terminal 19 through the resistor R1, resistor R7, and parasitic transistor Q4, the resistor R
1 is larger than the emitter-to-pace forward voltage of the parasitic transistor Q1, the parasitic transistor Q1 is ONL, and the parasitic transistor Q1. Resistance R2
, a current flows from the power supply terminal 20 to the ground terminal 21 through the resistor R4. At this time, if the voltage generated across the resistor R4 is larger than the forward voltage between the base and emitter of the parasitic transistor Q3, the parasitic transistor Q3 becomes ONI.
If the thyristor constituted by the parasitic transistor Q3 and the parasitic transistor Q1 is turned on, and the current continues to flow until the power is turned off, the device will be destroyed. Conventionally, the resistance R1 due to the substrate and the resistance R4 due to the low concentration P-type impurity region 2 are designed to be small, but it is said that it is difficult to achieve a resistance value as high as the design value due to variations in the manufacturing process. There was a problem.

問題点を解決するための手段 本発明は、0MOS,LS Iの基板に基板と反対導電
型の低濃度不純物領域を形成し、該低濃度不純物領域の
底面に接して基板と反対導電型の高濃度不純物領域を形
成する構造の半導体集積回路装置である。
Means for Solving the Problems The present invention forms a low concentration impurity region of a conductivity type opposite to that of the substrate on the substrate of 0MOS, LSI, and a high concentration impurity region of the opposite conductivity type to the substrate in contact with the bottom surface of the low concentration impurity region. This is a semiconductor integrated circuit device having a structure in which a concentrated impurity region is formed.

作  用 前記構成により、基板と反対導電型の高濃度不純物領域
による抵抗が基板と反対導電型の低濃度不純物領域によ
る抵抗(第3図に示す抵抗R4)に並列に加わるので第
3図の寄生トランジスタQ3のベース−エミッタ間の抵
抗が小さくなり、寄生トランジスタQ3がONしにくく
なる。
Operation With the above configuration, the resistance due to the high concentration impurity region of the opposite conductivity type to the substrate is added in parallel to the resistance due to the low concentration impurity region (resistance R4 shown in FIG. 3) of the opposite conductivity type to the substrate, so that the parasitic effect shown in FIG. The base-emitter resistance of transistor Q3 becomes smaller, making it difficult for parasitic transistor Q3 to turn on.

実施例 以下、本発明の一実施例を図面を用いて説明する。第1
図は本発明の一実施例を示す断面図である。低濃度のN
型半導体基板1上に、高濃度P型不純物領域23を形成
した上に低濃度P型不純物領域2を形成すると共に高濃
度P型不純物領域であるPチャンネルトランジスタのソ
ース領域4とドレイン領域3が形成され、且つ、低濃度
P型不純物領域2に高濃度N型不純物領域であるNチャ
ンネルトランジスタのソース領域7とドレイン領域8が
形成されている。Pチャンネルトランジスタのソース領
域4及びドレイン領域3を結ぶ薄いゲート酸化膜9上に
ゲート電極12が形成され、且つ、Nチャンネルトラン
ジスタのソース領域7及びドレイン領域8を結ぶ薄いゲ
ート酸化膜1゜上にゲート電極17が形成され、ゲート
電極12及びゲート電極17は入力端子22に接続され
ている。また、Pチャンネルトランジスタのドレイン領
域3上に導電性電極11が形成され、Nチャンネルトラ
ンジスタのドレイン領域8上に導電性電極11及び18
は出力端子19に接続されている。Pチャンネルトラン
ジスタのソース領域4上に導電性電極13が形成され電
源端子2oに接続されておシ、Nチャンネルトランジス
タのソース領域7上に導電性電極16が形成され接地端
子21に接続されている。さらに、低濃度N型半導体基
板1上に高濃度N型不純物領域5が形成され、且つ、低
濃度P型不純物領域2上に高濃度P型不純物領域6が形
成されている。高濃度N型不純物領域6上には導電性電
極14が形成され電源端子2゜に接続されると共に、高
濃度P型不純物領域θ上には導電性電極15が形成され
接地端子21に接続されている。前記高濃度P型不純物
領域23を拡散、あるいはチャネリング現象を利用した
イオン注入、あるいは他の方法によって形成することに
よって、第3図に示す低濃度P型不純物領域2による抵
抗R4に並列に高濃度P型不純物領域23による低抵抗
が付は加わることになり、第3図の寄生トランジスタQ
3のベースから接地端子21に至る抵抗R4が減少する
ことになシ寄生トランジスタQ3がONするのに必要な
電流が大きくなりラッチアップ強度を向上することがで
きる。以上の説明はN型基板を例としたが、導電性を逆
にすることにより、P型基板の0MO8,LS Iにも
適用されることは明白であるう 発明の効果 以上のように本発明は、基板上に基板と反対導電型、且
つ、低濃度の不純物領域を形成し、該低濃度の不純物領
域の底面に接して基板と反対導電型の高濃度不純物領域
を形成した構成の0MOS・LSIとすることによって
、寄生サイリスタのサージ耐圧を向上できラッチアップ
に強い0MOS・LSIを提供するものである。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
The figure is a sectional view showing one embodiment of the present invention. low concentration of N
A high concentration P type impurity region 23 is formed on a type semiconductor substrate 1, and then a low concentration P type impurity region 2 is formed, and a source region 4 and a drain region 3 of a P channel transistor, which are high concentration P type impurity regions, are formed. A source region 7 and a drain region 8 of an N-channel transistor, which are heavily doped N-type impurity regions, are formed in the lightly doped P-type impurity region 2 . A gate electrode 12 is formed on a thin gate oxide film 9 connecting the source region 4 and drain region 3 of the P-channel transistor, and on a thin gate oxide film 1° connecting the source region 7 and drain region 8 of the N-channel transistor. A gate electrode 17 is formed, and the gate electrode 12 and the gate electrode 17 are connected to the input terminal 22. Further, a conductive electrode 11 is formed on the drain region 3 of the P-channel transistor, and conductive electrodes 11 and 18 are formed on the drain region 8 of the N-channel transistor.
is connected to the output terminal 19. A conductive electrode 13 is formed on the source region 4 of the P-channel transistor and connected to the power supply terminal 2o, and a conductive electrode 16 is formed on the source region 7 of the N-channel transistor and connected to the ground terminal 21. . Further, a high concentration N type impurity region 5 is formed on the low concentration N type semiconductor substrate 1, and a high concentration P type impurity region 6 is formed on the low concentration P type impurity region 2. A conductive electrode 14 is formed on the high concentration N-type impurity region 6 and connected to the power supply terminal 2°, and a conductive electrode 15 is formed on the high concentration P-type impurity region θ and connected to the ground terminal 21. ing. By forming the high-concentration P-type impurity region 23 by diffusion, ion implantation using a channeling phenomenon, or other method, a high-concentration P-type impurity region 23 is formed in parallel with the resistor R4 formed by the low-concentration P-type impurity region 2 shown in FIG. A low resistance due to the P-type impurity region 23 is additionally added, and the parasitic transistor Q in FIG.
As the resistance R4 from the base of transistor Q3 to the ground terminal 21 decreases, the current required to turn on the parasitic transistor Q3 increases, and the latch-up strength can be improved. Although the above explanation has been made using an N-type substrate as an example, it is obvious that it can also be applied to P-type substrates such as 0MO8 and LSI by reversing the conductivity. The 0MOS has a structure in which a low concentration impurity region of the opposite conductivity type to the substrate is formed on the substrate, and a high concentration impurity region of the opposite conductivity type to the substrate is formed in contact with the bottom surface of the low concentration impurity region. By using an LSI, it is possible to improve the surge withstand voltage of the parasitic thyristor and provide a 0MOS LSI that is resistant to latch-up.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の0MO8,LS Iの一実施例を示す
断面図、第2図はCMOS 、 L S Iの従来例を
示す断面図、第3図は0MO8−LS Iの従来例の電
気的等価回路図である。 1・・・・・・低濃度N型半導体基板、2・・・・・・
低濃度P型不純物領域、3,4,6.23・・・・・・
高濃度P型不純物領域、5,7,8・・・・・・高濃度
N型不純物領域、9,1o・・・・・・ゲート酸化膜、
11 、13,14゜15.16.18・・・・・・導
電性電極、12,17・・・・・・ゲート電極、19・
・・・・・出力端子、20・・・・・・電源端子、21
・・・・・・接地端子、22・・・・・・入力端子。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名イ一
一−イt)ミ、二@ノIS【、〜二!11(顯2−9 
  pり8剋疋入 3.46.23− 糺11F配  +75.7.3−−
−ノーパイS:” 1?、+7−−−ゲーL−t’極 +9−−一出、fl扉壬 20−−−を源γ 2f−、#罠 “ 22−一一人7]  Ir ;7.j 第3図
Fig. 1 is a sectional view showing an embodiment of 0MO8, LSI of the present invention, Fig. 2 is a sectional view showing a conventional example of CMOS, LSI, and Fig. 3 is an electrical diagram of a conventional example of 0MO8-LSI. FIG. 1...Low concentration N-type semiconductor substrate, 2...
Low concentration P type impurity region, 3, 4, 6.23...
High concentration P type impurity region, 5, 7, 8... High concentration N type impurity region, 9, 1o... Gate oxide film,
11, 13, 14゜15.16.18... Conductive electrode, 12, 17... Gate electrode, 19.
...Output terminal, 20...Power terminal, 21
...Ground terminal, 22...Input terminal. Name of agent: Patent attorney Toshi Nakao and 1 other person I11-IT) Mi, 2 @ IS [, ~ 2! 11 (Han 2-9
3.46.23- 11th floor +75.7.3--
-No Pie S: "1?, +7---Game L-t' pole +9--Ichide, fl door 20-- Source γ 2f-, #Trap "22-Each person 7] Ir;7 .. j Figure 3

Claims (1)

【特許請求の範囲】[Claims] 一導電型半導体基板上に、該半導体基板と反対導電型の
第一の低濃度不純物領域を形成し、さらに、該第一の低
濃度不純物領域の底面に接して前記半導体基板と反対導
電型の第二の高濃度不純物領域を形成すると共に、前記
半導体基板上及び第一の低濃度不純物領域上にMOS型
電界効果トランジスタを形成することを特徴とする半導
体集積回路装置。
A first low concentration impurity region of a conductivity type opposite to that of the semiconductor substrate is formed on a semiconductor substrate of one conductivity type; A semiconductor integrated circuit device, characterized in that a second high concentration impurity region is formed, and a MOS type field effect transistor is formed on the semiconductor substrate and the first low concentration impurity region.
JP61247797A 1986-10-17 1986-10-17 Semiconductor integrated circuit device Pending JPS63102249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61247797A JPS63102249A (en) 1986-10-17 1986-10-17 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61247797A JPS63102249A (en) 1986-10-17 1986-10-17 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS63102249A true JPS63102249A (en) 1988-05-07

Family

ID=17168795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61247797A Pending JPS63102249A (en) 1986-10-17 1986-10-17 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS63102249A (en)

Similar Documents

Publication Publication Date Title
JP2609619B2 (en) Semiconductor device
US5061981A (en) Double diffused CMOS with Schottky to drain contacts
JPH06104438A (en) Film transistor
JPH01128568A (en) Semiconductor device
JPS6211017Y2 (en)
JPS63102249A (en) Semiconductor integrated circuit device
JPS63244874A (en) Input protective circuit
JPS6164165A (en) Mos type field-effect transistor
JPS6350070A (en) Longitudinal mos field effect transistor
JPH02206174A (en) P-channel insulated-gate bipolar transistor
JPH02210862A (en) Semiconductor device
JPS63142848A (en) Semiconductor integrated circuit device
JPS5819137B2 (en) Complementary MOS transistor
JPS63115364A (en) Semiconductor integrated circuit device
JPS6060753A (en) Semiconductor device
JPH04127574A (en) Vertical type insulated-gate field-effect transistor
JPS6349912B2 (en)
JPS6388857A (en) Semiconductor integrated circuit device
JP2968640B2 (en) Semiconductor device
JP2953804B2 (en) Semiconductor device
JPH02143453A (en) Manufacture of semiconductor device
JPS6212665B2 (en)
JP3071819B2 (en) Insulated gate type semiconductor device
JP2926785B2 (en) Semiconductor device
JPH01134974A (en) Vertical mosfet