JPS63115364A - Semiconductor integrated circuit device - Google Patents
Semiconductor integrated circuit deviceInfo
- Publication number
- JPS63115364A JPS63115364A JP61261293A JP26129386A JPS63115364A JP S63115364 A JPS63115364 A JP S63115364A JP 61261293 A JP61261293 A JP 61261293A JP 26129386 A JP26129386 A JP 26129386A JP S63115364 A JPS63115364 A JP S63115364A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor substrate
- impurity region
- base
- parasitic transistor
- conductive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 30
- 239000012535 impurity Substances 0.000 claims abstract description 33
- 239000000758 substrate Substances 0.000 claims abstract description 28
- 230000005669 field effect Effects 0.000 claims abstract description 6
- 230000000694 effects Effects 0.000 claims description 2
- 230000003071 parasitic effect Effects 0.000 abstract description 37
- 230000003321 amplification Effects 0.000 abstract description 3
- 238000003199 nucleic acid amplification method Methods 0.000 abstract description 3
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 241000272201 Columbiformes Species 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
- H01L27/0921—Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は相補型MO5集積回路(以下CMOSIC2べ
−7
と称す)に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a complementary MO5 integrated circuit (hereinafter referred to as CMOSIC2B-7).
従来の技術
近年、電子器機のディジタル化に伴い、MOS型半導体
集積回路の使用が多くなっている。MOS型半導体集積
回路の中でも消費電力が少ない0MOSICの占める割
合は高い。BACKGROUND OF THE INVENTION In recent years, with the digitization of electronic equipment, MOS type semiconductor integrated circuits have been increasingly used. Among MOS type semiconductor integrated circuits, 0MOSICs, which consume less power, account for a high proportion.
第2図に従来の0MOSICの構造断面図を示す。FIG. 2 shows a cross-sectional view of the structure of a conventional 0MOSIC.
低濃度のN型半導体基板1」二に低濃度P型不純物領域
2と高濃度P型不純物領域であるPチャンネルトランジ
スタのソース領域4、ドレイン領域3が形成され、低濃
度P型不純物領域2上には高濃度N型不純物領域である
Nチャンネルトランジスタのソース領域子、ドレイン領
域8が形成されている。寸だPチャンネルトランジスタ
のソース領域4とドレイン領域3とを結ぶゲート酸化膜
9上に導電性電極12が形成され、Nチャンネルトラン
ジスタのソース領域7とドレイン領域8とを結ぶゲート
酸化膜1o上には導電性電極17が形成されている。さ
らに導電性電極12.17は入力端子22に接続されて
いる。Pチャンネルトラン3 ぺ一ン
リスクのドレイン領域3上には導電性電極11が形成さ
れ、Nチャンネルトランジスタのドレイン領域8上には
導電性電極18が形成され、導電性電極11.18は出
力端子19に接続されている。A low concentration P type impurity region 2 and a source region 4 and drain region 3 of a P channel transistor, which are high concentration P type impurity regions, are formed on a low concentration N type semiconductor substrate 1. A source region and a drain region 8 of an N-channel transistor, which are heavily doped N-type impurity regions, are formed in the region. A conductive electrode 12 is formed on a gate oxide film 9 that connects the source region 4 and drain region 3 of the P-channel transistor, and a conductive electrode 12 is formed on the gate oxide film 1o that connects the source region 7 and the drain region 8 of the N-channel transistor. A conductive electrode 17 is formed. Furthermore, the electrically conductive electrode 12.17 is connected to the input terminal 22. A conductive electrode 11 is formed on the drain region 3 of the P-channel transistor 3, a conductive electrode 18 is formed on the drain region 8 of the N-channel transistor, and the conductive electrode 11.18 is connected to the output terminal 19. It is connected to the.
Pチャンネルトランジスタのソース領域4上には導電性
電極13が形成され、寸だ、N型半導体基板1上に設け
られた高濃度N型不純物領域5上には導電性電極14が
形成され、導電性電極13゜14は高電位電源端子2o
に接続されている。Nチャンネルトランジスタのソース
領域7上には導電性電極16が形成され、低濃度P型不
純物領域2上に設けられた高濃度P型不純物領域6上に
は導電性電極15が形成され、導電性電極15.16は
低電位電源端子21に接続されている。A conductive electrode 13 is formed on the source region 4 of the P-channel transistor, and a conductive electrode 14 is formed on the heavily doped N-type impurity region 5 provided on the N-type semiconductor substrate 1. The sexual electrodes 13 and 14 are high potential power terminals 2o
It is connected to the. A conductive electrode 16 is formed on the source region 7 of the N-channel transistor, and a conductive electrode 15 is formed on the high concentration P-type impurity region 6 provided on the low concentration P-type impurity region 2. Electrodes 15 , 16 are connected to low potential power terminal 21 .
発明が解決しようとする問題点
しかしながら、従来装置では、寄生素子によるラッチア
ップ現象が起こりやすいという欠点がある。以下、この
ラッチアンプ現象を第2図の電気的等価回路である第3
図を用いて説明する。寄生トランジスタQ1はPチャン
ネルトランジスタのソース領域4とN型半導体基板1と
低濃度P型不純物領域2によって形成され、寄生トラン
ジスタQ2はPチャンネルトランジスタのドレイン領域
3、N型半導体基板1及び低濃度P型不純物領域2によ
って形成され、寄生トランジスタQ3はNチャンネルト
ランジスタのソース領域7、低濃度P型不純物領域2及
びN型半導体基板1によって形成され、寄生トランジス
タQ4はNチャンネルトランジスタのドレイン領域8、
低濃度P型不純物領域2及びN型半導体基板1によって
形成される。R1,R3,R5はN型半導体基板1によ
る抵抗であり、R2,R4,R6は低濃度P型不純物領
域2による抵抗である。寄生トランジスタQ1.Q3は
サイリスタを構成している。Problems to be Solved by the Invention However, the conventional device has a drawback in that a latch-up phenomenon due to parasitic elements is likely to occur. Below, we will explain this latch amplifier phenomenon using the third electrically equivalent circuit shown in Figure 2.
This will be explained using figures. The parasitic transistor Q1 is formed by the source region 4 of the P-channel transistor, the N-type semiconductor substrate 1, and the low concentration P-type impurity region 2, and the parasitic transistor Q2 is formed by the drain region 3 of the P-channel transistor, the N-type semiconductor substrate 1, and the low concentration P-type impurity region 2. type impurity region 2, the parasitic transistor Q3 is formed by the source region 7 of the N-channel transistor, the low concentration P-type impurity region 2, and the N-type semiconductor substrate 1, and the parasitic transistor Q4 is formed by the drain region 8 of the N-channel transistor,
It is formed by a low concentration P type impurity region 2 and an N type semiconductor substrate 1. R1, R3, and R5 are resistances due to the N-type semiconductor substrate 1, and R2, R4, and R6 are resistances due to the low concentration P-type impurity region 2. Parasitic transistor Q1. Q3 constitutes a thyristor.
前記説明した第3図の電気的等価回路において、出力端
子19に過電流が流入し、寄生トランジスタQ2がON
すると、この寄生トランジスタQ2のコレクタ電流は抵
抗R6、R4を通り低電位電源端子21に流れる。この
時、抵抗R4の両端に生じる電圧が寄生トランジスタQ
3のベース・工5 ベー/
ミッタ間順方向電圧より大きければ、寄生トランジスタ
Q3はONL、この寄生トランジスタQ3のコレクタ電
流は高電位電源端子2oより抵抗R1、R3を通り流れ
る。さらに、寄生トランジスタQ3のコレクタ電流によ
って抵抗R1の両端に生じる電圧が寄生トランジスタQ
1のエミッタ・ベース間順方向電圧より大きいと寄生ト
ランジスタQ1がONし、寄生トランジスタQ1 、Q
3によって構成されるサイリスタがON状態になり、高
電位電源端子20または低電位電源端子21をオープン
にするまで過電流が流れ、ついには熱により素子を破壊
する。また、出力端子19より過電流が流出し寄生トラ
ンジスタQ4がONすると高電位電源端子20より抵抗
RI R5を通り寄生トランジスタQ4のコレクタへ
電流が流れる。In the electrical equivalent circuit of FIG. 3 described above, an overcurrent flows into the output terminal 19, and the parasitic transistor Q2 is turned on.
Then, the collector current of this parasitic transistor Q2 flows to the low potential power supply terminal 21 through the resistors R6 and R4. At this time, the voltage generated across the resistor R4 is the parasitic transistor Q
If the base-to-mitter forward voltage is larger than the base-to-mitter forward voltage of 5, the parasitic transistor Q3 is ONL, and the collector current of the parasitic transistor Q3 flows from the high potential power supply terminal 2o through the resistors R1 and R3. Furthermore, the voltage generated across the resistor R1 due to the collector current of the parasitic transistor Q3 is
1, the parasitic transistor Q1 turns on, and the parasitic transistors Q1, Q
The thyristor constituted by 3 is turned on, and an overcurrent flows until the high potential power supply terminal 20 or the low potential power supply terminal 21 is opened, and the element is finally destroyed by heat. Further, when an overcurrent flows out from the output terminal 19 and the parasitic transistor Q4 is turned on, a current flows from the high potential power supply terminal 20 through the resistor RI R5 to the collector of the parasitic transistor Q4.
この時、抵抗R1の両端に生じる電圧が寄生トランジス
タQ1のエミッタ・ベース間順方向電圧より大きければ
寄生トランジスタQ1はONし、寄生トランジスタQ1
のコレクタ電流は抵抗R2゜R4を通り低電位電源21
に流れる。さらに、寄6 、;−。At this time, if the voltage generated across the resistor R1 is larger than the forward voltage between the emitter and base of the parasitic transistor Q1, the parasitic transistor Q1 is turned on, and the parasitic transistor Q1
The collector current of passes through the resistor R2゜R4 and is connected to the low potential power supply 21.
flows to Furthermore, 6, ;-.
生トランジスタQ1のコレクタ電流によって抵抗R4の
両端に生じる電圧が寄生トランジスタQ3のベース・エ
ミッタ間順方向電圧より太きければ寄生トランジスタQ
3がONとなり、寄生トランジスタQ1及びQ3で構成
されるサイリスクがONと々って上述したと同じように
高電位電源端子20,4たは低電位電源端子21をオー
ブンにするまで過電流が流れ熱によって素子を破壊する
。If the voltage generated across the resistor R4 due to the collector current of the parasitic transistor Q1 is greater than the forward voltage between the base and emitter of the parasitic transistor Q3, the parasitic transistor Q
3 turns ON, and the SIRISK made up of parasitic transistors Q1 and Q3 turns ON, and an overcurrent flows until the high potential power supply terminals 20, 4 or the low potential power supply terminal 21 are turned on in the same way as described above. The heat destroys the element.
問題点を解決するだめの手段
本発明は、上記問題点を解決するため、0MOSICを
構成する互に異なるチャンネルのMOS型電界効果トラ
ンジスタの間の半導体基板に凹部を形成し、前記凹部の
上に半導体基板と同じ導電型の高濃度不純物領域を形成
し、前記高濃度不純物領域の上に導電性電極を作り、前
記導電性電極を0MOSICの電源に接続するものであ
る。Means for Solving the Problems In order to solve the above-mentioned problems, the present invention forms recesses in a semiconductor substrate between MOS field effect transistors with different channels constituting an OMOSIC, and forms a recess on the recess. A high concentration impurity region of the same conductivity type as the semiconductor substrate is formed, a conductive electrode is formed on the high concentration impurity region, and the conductive electrode is connected to the power source of the 0MOSIC.
作用
本発明は上記した構造により、高電位電源と低濃度P型
不純物領域との間に新だに低抵抗を作ることとなり、寄
生トランジスタのベース・エミッ7 ペー。Operation The present invention creates a new low resistance between the high potential power supply and the low concentration P-type impurity region due to the above-described structure, thereby reducing the base emitter of the parasitic transistor.
り間を結ぶ半導体基板による寄生抵抗を等価的に小さく
、才だ、半導体基板をベース領域とする寄生トランジス
タのベース幅が広くなり電流増幅率を小さくする事から
ラッチアップ現象が起こりにくくなる。This effectively reduces the parasitic resistance caused by the semiconductor substrate that connects the semiconductor substrate, and the base width of the parasitic transistor that uses the semiconductor substrate as a base region becomes wider, which reduces the current amplification factor, making it difficult for latch-up to occur.
実施例 本発明を実施例に従って図面を用いて説明する。Example The present invention will be explained according to an embodiment using the drawings.
第1図は本発明の一実施例を示すaMos工aの断面図
である。N型半導体基板1上に低濃度P型不純物領域2
及び高濃度P型不純物領域であるPチャンネルトランジ
スタのソース領域4、ドレイン領域3を形成する。そし
て、低濃度P型不純物領域2上には高濃度N型不純物領
域であるNチャンネルトランジスタのソース領域7、ド
レイン領域8、及び高濃度P型不純物領域6が形成され
る。FIG. 1 is a sectional view of an aMos process a showing an embodiment of the present invention. Low concentration P type impurity region 2 on N type semiconductor substrate 1
Then, a source region 4 and a drain region 3 of a P channel transistor, which are high concentration P type impurity regions, are formed. Then, on the lightly doped P type impurity region 2, a source region 7, a drain region 8, and a heavily doped P type impurity region 6 of the N channel transistor, which are heavily doped N type impurity regions, are formed.
また、PチャンネルトランジスタとNチャンネルトラン
ジスタの間のN型半導体基板1の表面に凹部を形成し、
前記凹部の表面に高濃度N型不純物領域23を形成する
。Pチャンネルトランジスタのドレイン領域3とソース
領域4とを結ぶゲート酸化膜9上にはゲート電極12が
形成され、また、Nチャンネルトランジスタのソース領
域子とドレイン領域8とを結ぶゲート酸化膜1o上には
ゲート電極17が形成される。そして、ゲート電極12
.17は入力端子22に接続される。Pチャンネルトラ
ンジスタのドレイン領域3上には導電性電極11が形成
され、また、Nチャンネルトランジスタのドレイン領域
8上には導電性電極18が形成される。導電性電極11
.18は出力端子19に接続される。N型半導体基板に
形成した凹部の表面に形成された高濃度N型不純物領域
23上には導電性電極24が形成され、また、Pチャン
ネルトランジスタのソース領域4上には導電性電極13
が形成される。導電性電極13.24は高電位電源端子
2oに接続される。高濃度P型不純物領域6上には導電
性電極15が形成され、また、Nチャンネルトランジス
タのソース領域7上には導電性電極16が形成される。Further, a recess is formed on the surface of the N-type semiconductor substrate 1 between the P-channel transistor and the N-channel transistor,
A heavily doped N-type impurity region 23 is formed on the surface of the recess. A gate electrode 12 is formed on the gate oxide film 9 that connects the drain region 3 and source region 4 of the P-channel transistor, and a gate electrode 12 is formed on the gate oxide film 1o that connects the source region and the drain region 8 of the N-channel transistor. A gate electrode 17 is formed. And gate electrode 12
.. 17 is connected to the input terminal 22. A conductive electrode 11 is formed on the drain region 3 of the P-channel transistor, and a conductive electrode 18 is formed on the drain region 8 of the N-channel transistor. Conductive electrode 11
.. 18 is connected to an output terminal 19. A conductive electrode 24 is formed on a high concentration N-type impurity region 23 formed on the surface of a recess formed in an N-type semiconductor substrate, and a conductive electrode 13 is formed on a source region 4 of a P-channel transistor.
is formed. Conductive electrodes 13.24 are connected to high potential power supply terminal 2o. A conductive electrode 15 is formed on the heavily doped P-type impurity region 6, and a conductive electrode 16 is formed on the source region 7 of the N-channel transistor.
導電性電極15.16は低電位電源端子21に接続され
る。Conductive electrodes 15 , 16 are connected to low potential power terminal 21 .
以上述べたような構造にすれば第3図において9 べ−
7
寄生トランジスタQ1のベースと高電位電源端子20と
の間に抵抗R1と並列に低抵抗を接続したことになり、
等価的には抵抗R1を小さくしたのと同じになる。等価
的に抵抗R1が小さくなるので寄生トランジスタQ1を
ONするのに必要な電流が犬きくなる。また、寄生トラ
ンジスタQ1゜Q2のベース幅が実効的に広くなり電流
増幅率が下る為、寄生トランジスタQ3をONするのに
必要な寄生トランジスタQ1またばQ2のコレクタ電流
を得ようとすれば、高電位電源端子20−またけ出力端
子19から従来例より大きな電流を流入させなければ々
らない。以上のことからラッチアンプ現象が起こりにく
くなる。If the structure is as described above, 9 bases will be obtained in Fig. 3.
7 A low resistance is connected in parallel with the resistance R1 between the base of the parasitic transistor Q1 and the high potential power supply terminal 20,
Equivalently, this is the same as reducing the resistance R1. Equivalently, since the resistance R1 becomes smaller, the current required to turn on the parasitic transistor Q1 becomes smaller. In addition, since the base width of the parasitic transistors Q1 and Q2 effectively widens and the current amplification factor decreases, if you try to obtain the collector current of the parasitic transistors Q1 or Q2 necessary to turn on the parasitic transistor Q3, a high It is necessary to allow a larger current to flow from the potential power supply terminal 20 to the output terminal 19 than in the conventional example. Because of the above, the latch amplifier phenomenon is less likely to occur.
以上の説明はN型基板で行なったがP型基板の0MOS
ICにも適用されるのは明白である。The above explanation was made with an N-type substrate, but 0MOS with a P-type substrate
Obviously, it also applies to ICs.
発明の効果
以上述べてきたように本発明によれば、寄生トランジス
タによるラッチアップ現象が起こりにくい0MOSIc
を提供することができる。Effects of the Invention As described above, according to the present invention, the latch-up phenomenon due to parasitic transistors is less likely to occur.
can be provided.
10 ペー。
第1図は本発明の一実施例における0MO5I Cの構
造断面図、第2図は従来の0MOSICの断面図、第3
図は従来の0MOSICの電気的等価回路図である。
1・・・・N型半導体基板、2・・・・・・低濃度P型
不純物領域、3,4.6・ ・高濃度P型不純物領域、
7.8.23・・・・高濃度N型不純物領域、11゜1
3.115,16,18.24・・・・・導電性電極、
12.17・・・・・・ゲート電極、19 ・・・・出
力端子、20・・・・高電位電源端子、21・・・・・
・低電位電源端子、22 ・・・・入力端子。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名f
−−−Nり51帽不11不反
”−”’IdX F ’l f k’JTJ443.4
.8−逼濃痕7ゲ
f9−−一出714>
QO−一壜a鉾変遼鳩1
21−低電位ゲ
22−−一人か輔贋ト
第2図
第3図
p64 Rz 、g、 o、
2、上人兵≠。10 pages. Figure 1 is a cross-sectional view of the structure of 0MO5IC in one embodiment of the present invention, Figure 2 is a cross-sectional view of a conventional 0MOSIC, and Figure 3 is a cross-sectional view of a conventional 0MOSIC.
The figure is an electrical equivalent circuit diagram of a conventional 0MOSIC. 1...N-type semiconductor substrate, 2...Low concentration P-type impurity region, 3,4.6...High concentration P-type impurity region,
7.8.23...High concentration N-type impurity region, 11°1
3.115, 16, 18.24... conductive electrode,
12.17... Gate electrode, 19... Output terminal, 20... High potential power supply terminal, 21...
-Low potential power supply terminal, 22...Input terminal. Name of agent: Patent attorney Toshio Nakao and 1 other person
---Nri 51 hat 11 ru"-"'IdX F 'l f k'JTJ443.4
.. 8-Tenoku mark 7ge f9--Ichide 714> QO-One bottle ahokohen Liao pigeon 1 21-Low potential game 22--One person or helper Fig. 2 Fig. 3 p64 Rz, g, o, 2. Joninhei≠.
Claims (1)
ジスタを形成し、前記半導体基板上に半導体基板とは反
対の導電型の不純物領域を形成し、前記不純物領域に前
記第1のMOS型電界効果トランジスタと反対チャネル
の第2のMOS型電界トランジスタを形成し、前記第1
のMOS型電界効果トランジスタと前記第2のMOS型
電界効果トランジスタとの間の前記半導体基板上に凹部
を作り、この凹部の表面に前記半導体基板と同一導電型
の高濃度の不純物領域を作り、前記半導体基板と同じ導
電型の高濃度不純物領域の上に導電性電極を作り、この
導電性電極を電源に接続することを特徴とする半導体集
積回路装置。A first MOS field effect transistor is formed on a semiconductor substrate of one conductivity type, an impurity region of a conductivity type opposite to that of the semiconductor substrate is formed on the semiconductor substrate, and the first MOS field effect transistor is formed in the impurity region. forming a second MOS field transistor with a channel opposite to that of the effect transistor;
A recess is formed on the semiconductor substrate between the MOS field effect transistor and the second MOS field effect transistor, and a highly concentrated impurity region of the same conductivity type as the semiconductor substrate is formed on the surface of the recess; A semiconductor integrated circuit device characterized in that a conductive electrode is formed on a high concentration impurity region of the same conductivity type as the semiconductor substrate, and the conductive electrode is connected to a power source.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61261293A JPS63115364A (en) | 1986-10-31 | 1986-10-31 | Semiconductor integrated circuit device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61261293A JPS63115364A (en) | 1986-10-31 | 1986-10-31 | Semiconductor integrated circuit device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63115364A true JPS63115364A (en) | 1988-05-19 |
Family
ID=17359787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61261293A Pending JPS63115364A (en) | 1986-10-31 | 1986-10-31 | Semiconductor integrated circuit device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63115364A (en) |
-
1986
- 1986-10-31 JP JP61261293A patent/JPS63115364A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4672584A (en) | CMOS integrated circuit | |
JPS63115364A (en) | Semiconductor integrated circuit device | |
JPH06151744A (en) | Semiconductor input-output protection device | |
JPS5819137B2 (en) | Complementary MOS transistor | |
JPH05315552A (en) | Semiconductor protective device | |
JPS63142848A (en) | Semiconductor integrated circuit device | |
JPH02210862A (en) | Semiconductor device | |
JPS63102249A (en) | Semiconductor integrated circuit device | |
JPS6388857A (en) | Semiconductor integrated circuit device | |
JPS60123053A (en) | Semiconductor device | |
JPH01185971A (en) | Insulated gate semiconductor device | |
JPH0319231Y2 (en) | ||
JPS6366971A (en) | Semiconductor device | |
JPS6146988B2 (en) | ||
JPH03229469A (en) | Vertical mos field effect transistor | |
JPS6336145B2 (en) | ||
JPS6255308B2 (en) | ||
JPS6132463A (en) | Complementary mos device | |
JPS62169469A (en) | Semiconductor integrated circuit device | |
JPS61208864A (en) | C-mos integrated circuit device | |
JPS60154554A (en) | Complementary type insulated gate field effect semiconductor device | |
JPH0536913A (en) | Semiconductor device | |
JPH0795572B2 (en) | CMOS type semiconductor integrated circuit | |
JPH01117055A (en) | Complementary insulated gate field-effect semiconductor device | |
JPS61150264A (en) | Semiconductor device |