JPS6212665B2 - - Google Patents

Info

Publication number
JPS6212665B2
JPS6212665B2 JP53095241A JP9524178A JPS6212665B2 JP S6212665 B2 JPS6212665 B2 JP S6212665B2 JP 53095241 A JP53095241 A JP 53095241A JP 9524178 A JP9524178 A JP 9524178A JP S6212665 B2 JPS6212665 B2 JP S6212665B2
Authority
JP
Japan
Prior art keywords
semiconductor region
type semiconductor
region
channel
sitl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53095241A
Other languages
Japanese (ja)
Other versions
JPS5521187A (en
Inventor
Yasutaka Horiba
Takao Nakano
Shuichi Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9524178A priority Critical patent/JPS5521187A/en
Publication of JPS5521187A publication Critical patent/JPS5521187A/en
Publication of JPS6212665B2 publication Critical patent/JPS6212665B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0214Particular design considerations for integrated circuits for internal polarisation, e.g. I2L
    • H01L27/0218Particular design considerations for integrated circuits for internal polarisation, e.g. I2L of field effect structures
    • H01L27/0225Charge injection in static induction transistor logic structures [SITL]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Logic Circuits (AREA)

Description

【発明の詳細な説明】 本発明は半導体集積回路装置、特に横形バイポ
ーラトランジスタと静電誘導形トランジスタ
(Static Induction Transistor以下SITという。)
との複合構成から成る静電誘導形半導体論理回路
装置(Static Induction Transistor Logic以下
SITLと言う。)に関するものである。
[Detailed Description of the Invention] The present invention relates to semiconductor integrated circuit devices, particularly lateral bipolar transistors and static induction transistors (hereinafter referred to as SIT).
Static Induction Semiconductor Logic Circuit Device (Static Induction Transistor Logic)
It's called SITL. ).

本発明の対象となる上述のSITLはインテグレ
イテツド・インジエクシヨン・ロジツク
(Integrated Injection Logic;以下I2Lという。)
における逆動作のバイポーラトランジスタをエン
ハンスメント接合形SITで置換したものであり、
その原理はDigest of Technical Papers The
8th Confevence on Solid State Devices’76
(Tokyo)A―2―6、PP53〜54に紹介されてい
る。第1図は、その基本ゲートの一般的な等価回
路図である。図において、101はPNPトランジ
スタ、102はNチヤネル接合形SIT、1は
SITLの電源端子となるPNPトランジスタ101
のエミツタ端子、2は前記PNPトランジスタ10
1のコレクタおよびNチヤネル接合形SIT102
のゲートに接続されている入力端子、3は前記
PNPトランジスタ101のベースおよびNチヤネ
ルSIT102のソースに接続された接地端子、4
は前記Nチヤネル接合形SIT102のドレインに
接続された出力端子である。なお、PNPトランジ
スタ101は上記Nチヤネル接合形SITのゲート
バイアス用定電流源およびその前段に接続される
SITLの負荷として動作し、Nチヤネル接合形
SIT102はインバータとして動作する。
The above-mentioned SITL, which is the object of the present invention, is an integrated injection logic (hereinafter referred to as I 2 L).
The reverse-acting bipolar transistor in is replaced with an enhancement junction type SIT,
The principle is Digest of Technical Papers The
8th Confevence on Solid State Devices'76
(Tokyo) A-2-6, introduced in PP53-54. FIG. 1 is a general equivalent circuit diagram of the basic gate. In the figure, 101 is a PNP transistor, 102 is an N-channel junction type SIT, and 1 is a
PNP transistor 101 which becomes the power supply terminal of SITL
2 is the emitter terminal of the PNP transistor 10.
1 collector and N-channel junction type SIT102
3 is the input terminal connected to the gate of
a ground terminal connected to the base of PNP transistor 101 and the source of N-channel SIT 102;
is an output terminal connected to the drain of the N-channel junction type SIT 102. Note that the PNP transistor 101 is connected to the constant current source for gate bias of the N-channel junction type SIT and its preceding stage.
Operates as SITL load, N-channel junction type
SIT102 operates as an inverter.

第2図aは上記SITL構造の基本ゲート部の平
面図、第2図bは、第2図aをb―b線で切
断した断面図である。図において、11は出発物
質である低比抵抗のN形半導体基板、12はこの
基板11の一主面上にエピタキシヤル成長により
形成された高比抵抗のN形半導体領域13および
14はそれぞれ前記N形半導体領域12の所定部
に選択拡散法などにより互に近接して形成された
P形半導体領域であり、その内P形半導体領域1
4は前記N形半導体領域12の一部領域を横方向
から取り囲むようにリング状に形成され、その結
果としてN形半導体領域12が露出したところの
開口部Aが存在した形となる。また15は開口部
A内の前記N形半導体領域12の表面領域内の所
定部にリンなどを拡散することによつて形成され
た低比抵抗のN形半導体領域であり、このN形半
導体領域15は前記P形半導体領域14よりも浅
く形成され、また望ましくは前記P形半導体領域
14に接触しないように形成される。このような
SITL構成において、前記した横形PNPトランジ
スタ101はエミツタ領域となるP形半導体領域
13とベース領域となるN形半導体領域12とコ
レクタ領域となるP形半導体領域14とから構成
される。またNチヤネル接合形SITはソース領域
となるN形半導体領域11とチヤネル領域となる
N形半導体領域12のN形半導体領域15下の部
分12′とゲート領域となるP形半導体領域14
とドレイン領域となるN形半導体領域15とから
構成される。ここで、SIT102のチヤネル領域
となるN形半導体領域部分12′の不純物濃度お
よびチヤネル幅は、ゲート端子2の電位が端子3
に対し零電位あるいは微小電位のときには空乏層
がN形半導体領域のチヤネル部分12′に広く伸
びてチヤネルが十分にピンチオフ状態になり、一
方ゲート電位が正電位(約0.7V)のときには空
乏層が短かくなつてチヤネルが形成されるよう
に、すなわちソース3とドレイン4間が導通状態
になるように設定される。したがつてこのような
構成のSITLにおいては、入力端子2が開放状態
のときにPNPトランジスタ101のエミツタ領域
であるP形半導体領域13からN形半導体領域1
2に注入された正孔によつて、このコレクタ領域
でありかつNチヤネル接合形SIT102のゲート
領域でもあるP形半導体領域14とN形半導体領
域12とからなるPN接合が順方向にバイアスさ
れるため、N形半導体領域12に形成される空乏
層が短かくなり、チヤネルが形成されて、ソース
3とドレイン4間が導通状態になり、このドレイ
ン4に接続された出力端子の電位が低下する。こ
の出力端子は次段のSITLの入力端子、すなわち
次段のNチヤネル接合形SIT(図示せず)のゲー
トに接続されているので、そのゲート電位が低下
する。その結果次段のNチヤネル接合形SITはピ
ンチオフ状態となり、次段の出力端子は負荷によ
つて定まる電位まで上昇する。すなわち、SITL
は反転論理回路構成となつていることがわかる。
FIG. 2a is a plan view of the basic gate portion of the SITL structure, and FIG. 2b is a sectional view of FIG. 2a taken along line bb. In the figure, reference numeral 11 denotes a low resistivity N-type semiconductor substrate which is a starting material, and 12 denotes high resistivity N-type semiconductor regions 13 and 14 formed by epitaxial growth on one main surface of this substrate 11, respectively. These are P-type semiconductor regions formed in predetermined portions of the N-type semiconductor region 12 in close proximity to each other by a selective diffusion method, among which the P-type semiconductor region 1
4 is formed in a ring shape so as to laterally surround a part of the N-type semiconductor region 12, and as a result, an opening A exists where the N-type semiconductor region 12 is exposed. Reference numeral 15 denotes a low resistivity N-type semiconductor region formed by diffusing phosphorus or the like into a predetermined portion of the surface region of the N-type semiconductor region 12 in the opening A, and this N-type semiconductor region 15 is formed shallower than the P-type semiconductor region 14, and desirably is formed so as not to contact the P-type semiconductor region 14. like this
In the SITL configuration, the above-described lateral PNP transistor 101 is composed of a P-type semiconductor region 13 serving as an emitter region, an N-type semiconductor region 12 serving as a base region, and a P-type semiconductor region 14 serving as a collector region. Further, the N-channel junction type SIT includes an N-type semiconductor region 11 that becomes a source region, a portion 12' below the N-type semiconductor region 15 of the N-type semiconductor region 12 that becomes a channel region, and a P-type semiconductor region 14 that becomes a gate region.
and an N-type semiconductor region 15 which becomes a drain region. Here, the impurity concentration and channel width of the N-type semiconductor region portion 12' which becomes the channel region of the SIT 102 are such that the potential of the gate terminal 2 is
On the other hand, when the potential is zero or very small, the depletion layer extends widely into the channel portion 12' of the N-type semiconductor region, and the channel is sufficiently pinched off.On the other hand, when the gate potential is positive (approximately 0.7V), the depletion layer It is set so that it becomes short to form a channel, that is, so that the source 3 and drain 4 are in a conductive state. Therefore, in the SITL having such a configuration, when the input terminal 2 is in an open state, the N-type semiconductor region 1 is connected from the P-type semiconductor region 13, which is the emitter region of the PNP transistor 101.
By the holes injected into 2, the PN junction consisting of the P-type semiconductor region 14 and the N-type semiconductor region 12, which is the collector region and also the gate region of the N-channel junction type SIT 102, is biased in the forward direction. Therefore, the depletion layer formed in the N-type semiconductor region 12 becomes short, a channel is formed, the source 3 and the drain 4 become conductive, and the potential of the output terminal connected to the drain 4 decreases. . Since this output terminal is connected to the input terminal of the next-stage SITL, that is, the gate of the next-stage N-channel junction type SIT (not shown), the gate potential thereof decreases. As a result, the N-channel junction type SIT in the next stage becomes in a pinch-off state, and the output terminal of the next stage rises to a potential determined by the load. That is, SITL
It can be seen that the circuit has an inverted logic circuit configuration.

以上述べたように、SITLはPNPトランジスタ
101を定電流源および負荷として使用している
ので、電源および負荷に抵抗を一切使用しない構
成となつている。また、PNPトランジスタ101
はベース接地、Nチヤネル接合形SIT102はソ
ース接地となるように、通常それぞれの共通領域
であるN形半導体基板11を接地して使用するの
で回路素子相互間の分離が全く不用となる。この
ためSITLは構造的に非常に簡便な構成となり、
従来の一般のバイポーラ構成あるいはMOSFET
構成の半導体集積回路と比較して、集積密度が格
段に優れたものとなる。
As described above, since the SITL uses the PNP transistor 101 as a constant current source and load, it has a configuration in which no resistance is used as a power source or load. In addition, the PNP transistor 101
Since the N-type semiconductor substrate 11, which is usually a common area of each, is grounded so that the base is grounded and the N-channel junction type SIT 102 is grounded, there is no need to separate the circuit elements from each other. For this reason, SITL has a very simple structure,
Conventional general bipolar configuration or MOSFET
The integration density is much higher than that of the semiconductor integrated circuit of this structure.

しかしながら上述したような従来のSITLにお
いては、SITのチヤネル領域をゲート領域である
P形半導体領域14で取り囲んでいるため、ゲー
ト面積が大きく、ゲート・ソースおよびゲート・
ドレイン接合容量が大きく、またSITのゲート・
ソース間が順にバイアスされるため、少数キヤリ
アがN形半導体領域12に蓄積され、それらによ
つてスイツチング速度が制限されるという問題が
ある。
However, in the conventional SITL as described above, the channel region of the SIT is surrounded by the P-type semiconductor region 14 which is the gate region, so the gate area is large and the gate-source and gate-source regions are surrounded by the P-type semiconductor region 14.
The drain junction capacitance is large, and the SIT gate and
Because the sources are sequentially biased, there is a problem in that minority carriers accumulate in the N-type semiconductor region 12, thereby limiting the switching speed.

本発明は、上記のような従来のSITLの問題点
を解決するために成されたものであり、従来の
SITLの利点をそのまゝ活かし、しかもスイツチ
ング速度を大幅に改善し、高速動作を可能ならし
める改良されたSITLを提供しようとするもので
ある。
The present invention was made in order to solve the problems of the conventional SITL as described above.
The aim is to provide an improved SITL that takes advantage of the advantages of SITL, significantly improves the switching speed, and enables high-speed operation.

以下本発明の一実施例を第3図を用いて詳細に
説明する。第3図aは平面図、同図bはそのb
―b断面図、同図cはそのc―c断面図で
ある。第3図において、第2図と同一符号はそれ
ぞれ同一または相当する部分を示すものであり、
その重複説明は省略し、第2図に示した従来のも
のと本質的に異なる点について説明する。
An embodiment of the present invention will be described in detail below with reference to FIG. Figure 3 a is a plan view, and Figure 3 b is the plan view.
-b sectional view, and figure c is the cc sectional view. In FIG. 3, the same symbols as in FIG. 2 indicate the same or corresponding parts,
The redundant explanation will be omitted, and the points that are essentially different from the conventional one shown in FIG. 2 will be explained.

まず本実施例においては、Nチヤネル接合形
SIT102のチヤネル領域がゲート領域であるP
形半導体領域14と酸化物からなる絶縁物17で
取り囲まれていること、およびドレイン領域であ
るN形半導体領域15の直下のチヤネル領域の一
部にゲート領域の一部となるP形半導体領域16
がP形半導体領域14に接続するように形成され
ていることである。ここでチヤネル領域は先に述
べたようにP形半導体領域14および16と絶縁
物17で囲まれたN形半導体領域12となるがこ
の実施例においてはチヤネル領域がP形半導体領
域16により2つに分かれている。そしてまたP
形半導体領域14および16がゲート領域として
働らくが、そのゲートによりSITのチヤネルを制
御するための条件は次の通りである。まずゲート
電位が零ボルトまたは微小電位のときにはP形半
導体領域16から絶縁物17に向い、かつ絶縁物
17に達するように空乏層が伸びてチヤネル領域
12′,12″全体が空乏層で覆われ、Nチヤネル
接合形SITが遮断状態となるように、また一方ゲ
ート電位が正電位のときにはP形半導体領域16
から伸びた空乏層が短かくなり、チヤネルが形成
されて、Nチヤネル接合形SITが導通状態となる
ようにP形半導体領域16と絶縁物17との間隔
およびN形半導体領域12の濃度等が設定され
る。
First, in this example, the N-channel junction type
P where the channel region of SIT102 is the gate region
type semiconductor region 14 and is surrounded by an insulator 17 made of oxide, and a P type semiconductor region 16 which becomes part of the gate region is located in a part of the channel region directly under the N type semiconductor region 15 which is the drain region.
is formed so as to be connected to the P-type semiconductor region 14. Here, the channel region is the N-type semiconductor region 12 surrounded by the P-type semiconductor regions 14 and 16 and the insulator 17 as described above, but in this embodiment, the channel region is divided into two by the P-type semiconductor region 16. It is divided into And again P
The shaped semiconductor regions 14 and 16 serve as gate regions, and the conditions for controlling the SIT channel by the gates are as follows. First, when the gate potential is zero volts or a minute potential, the depletion layer extends from the P-type semiconductor region 16 toward the insulator 17 and reaches the insulator 17, and the entire channel regions 12' and 12'' are covered with the depletion layer. , so that the N-channel junction type SIT is in the cutoff state, and on the other hand, when the gate potential is positive, the P-type semiconductor region 16
The distance between the P-type semiconductor region 16 and the insulator 17, the concentration of the N-type semiconductor region 12, etc. are adjusted so that the depletion layer extending from the P-type semiconductor region 16 and the insulator 17 becomes short, a channel is formed, and the N-channel junction type SIT becomes conductive. Set.

以上本発明の一実施例として1個のドレインを
もつたSITを用いたSITLについてその構造を説
明したが、本発明は1個のドレインを持つたSIT
に限らず2個以上のドレインをもつたいわゆるマ
ルチ・ドレイン構造のSITを用いたSITLにも、
さらに有効に適用することができる。このような
本発明にかゝるSITLにおいては、ゲート領域1
4,16の面積を大幅に削減することができるた
め、各接合容量を大幅に低減することができる。
また、チヤネルおよびゲート領域14,16の大
部分が酸化物17で囲われるため、ゲート領域か
らN形半導体領域12へ注入される少数キヤリア
が大幅に低減する。したがつて、SITLのスイツ
チング速度は大幅に向上し、高速動作が可能な
SITLを得ることができる。
The structure of an SITL using an SIT with one drain has been described above as an embodiment of the present invention.
In addition to SITL using a so-called multi-drain structure SIT with two or more drains,
It can be applied more effectively. In such a SITL according to the present invention, the gate region 1
Since the area of 4 and 16 can be significantly reduced, each junction capacitance can be significantly reduced.
Furthermore, since most of the channel and gate regions 14 and 16 are surrounded by the oxide 17, minority carriers injected from the gate region into the N-type semiconductor region 12 are significantly reduced. Therefore, the switching speed of SITL is greatly improved and high-speed operation is possible.
You can get SITL.

以上、本発明にかゝるSITLの構造の実施例に
ついて説明したが、かゝる構成のSITLは以上に
説明するような方法により当業者であれば容易に
作ることができる。
The embodiments of the structure of the SITL according to the present invention have been described above, but a person skilled in the art can easily create a SITL with such a structure by the method described above.

まず、低比抵抗のN形半導体領域11の一主面
上にエピタキシヤル成長法により不純物濃度が
1013〜1014/cm3程度のN形半導体層12を形成
し、次いでN形半導体領域12の所定部をエツチ
ング除去した後、SiO2等の絶縁物17を埋め込
み法または選択酸化法等により形成する。次にN
形半導体領域12の所定部にP形半導体領域13
および14を拡散法等により形成する。
First, an impurity concentration is increased on one main surface of the low resistivity N-type semiconductor region 11 by epitaxial growth.
After forming an N-type semiconductor layer 12 with a thickness of about 10 13 to 10 14 /cm 3 and then removing a predetermined portion of the N-type semiconductor region 12 by etching, an insulator 17 such as SiO 2 is filled by a burying method or a selective oxidation method. Form. Then N
A P-type semiconductor region 13 is formed in a predetermined portion of the P-type semiconductor region 12.
and 14 are formed by a diffusion method or the like.

このとき、P形半導体領域14と絶縁物17で
チヤネル部を取り囲むと同時に、P形半導体領域
14の一側がN形半導体領域12を介してP形半
導体領域13と対向するように形成する。次い
で、チヤネル領域の所定部に高エネルギーのイオ
ン注入法等により、P形半導体領域16をその一
端がP形半導体領域14と連結するように形成し
た後、ドレイン領域であるN形半導体領域15を
拡散法等により形成する。ここで、P形半導体領
域16はN形半導体領域15および11と直接接
触しないように所定の間隔を介して形成すること
が望ましい。その後は第2図で説明した従来のも
のと同様である。
At this time, the channel portion is surrounded by the P-type semiconductor region 14 and the insulator 17, and at the same time, one side of the P-type semiconductor region 14 is formed to face the P-type semiconductor region 13 with the N-type semiconductor region 12 in between. Next, a P-type semiconductor region 16 is formed in a predetermined portion of the channel region by high-energy ion implantation or the like so that one end thereof is connected to the P-type semiconductor region 14, and then an N-type semiconductor region 15, which is a drain region, is formed. Formed by a diffusion method or the like. Here, it is desirable that the P-type semiconductor region 16 be formed at a predetermined interval so as not to be in direct contact with the N-type semiconductor regions 15 and 11. After that, the process is similar to the conventional one explained in FIG.

以上説明したように、本発明は従来のようにチ
ヤネル領域を、ゲート領域のみで取り囲むのでな
く、ゲート領域と絶縁縁物で取り囲むとともにド
レイン領域の直下に帯状のゲート領域を形成し、
さらにゲート領域の一部も絶縁物で取り囲むこと
によつて、各接合容量、蓄積キヤリア等を減少さ
せ、高周波特性を向上させることができるという
効果を得るものであるから、上記SITLに限定さ
れず、SIT自体として実施することができ、さら
には、ゲート電圧が零電位または微小電位のとき
にチヤネルとしての導通路が形成されるような一
般のデプレツシヨン形接合形電界効果トランジス
タにも適用し得るものである。
As explained above, the present invention does not surround the channel region only with the gate region as in the conventional case, but surrounds the channel region with the gate region and an insulating material, and forms a band-shaped gate region directly under the drain region.
Furthermore, by surrounding part of the gate region with an insulating material, the effect of reducing each junction capacitance, accumulated carriers, etc. and improving high frequency characteristics is not limited to the above-mentioned SITL. , which can be implemented as the SIT itself, and can also be applied to general depletion junction field effect transistors in which a conductive path as a channel is formed when the gate voltage is zero potential or minute potential. It is.

また上記実施例においては、PNPトランジスタ
とNチヤネル形SITとの組合せ構造のSITLにつ
いて説明したがNPNトランジスタとPチヤネル
形SITとの組合せ構造のSITLについても実施し
得ることも明らかである。
Further, in the above embodiment, an SITL having a combination structure of a PNP transistor and an N-channel type SIT has been described, but it is clear that an SITL having a combination structure of an NPN transistor and a P-channel type SIT can also be implemented.

また上記実施例においては、ソース領域を半導
体基板11によつて構成した例について説明した
が、半導体基板としてP形半導体を用い、その表
面に部分的にN+形半導体から成るソース領域を
形成し、上記1つの部分的ソース領域に多数の
SITLを互にアイソレーシヨンしないで形成し、
上記基板表面の他の部分にSITLとは異なる半導
体装置をアイソレーシヨンして集積するようにし
てもよい。
Further, in the above embodiment, an example was explained in which the source region was formed by the semiconductor substrate 11, but it is also possible to use a P-type semiconductor as the semiconductor substrate and form a source region partially made of an N + type semiconductor on the surface of the P-type semiconductor. , a large number of
SITL is formed without mutual isolation,
A semiconductor device other than the SITL may be isolated and integrated on another portion of the surface of the substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はSITLの等価回路図、第2図は従来の
SITLの構造を示す平面図および断面図、第3図
は本発明の一実施例としてのSITLの構造を示す
平面図および断面図である。 1……エミツタ端子、2……入力端子、3……
接地端子(ソース)、4……出力端子(ドレイ
ン)、11……N形半導体基板、12……N形半
導体領域、12′,12″……チヤネル領域、13
……P形半導体領域、14……P形半導体領域、
15……N形半導体領域、16……P形半導体領
域、17……絶縁物、101……PNPトランジス
タ、102……Nチヤネル接合形SIT。
Figure 1 is the equivalent circuit diagram of SITL, Figure 2 is the conventional
FIG. 3 is a plan view and a sectional view showing the structure of the SITL as an embodiment of the present invention. 1... Emitter terminal, 2... Input terminal, 3...
Ground terminal (source), 4... Output terminal (drain), 11... N-type semiconductor substrate, 12... N-type semiconductor region, 12', 12''... Channel region, 13
... P-type semiconductor region, 14 ... P-type semiconductor region,
15...N-type semiconductor region, 16...P-type semiconductor region, 17...Insulator, 101...PNP transistor, 102...N-channel junction type SIT.

Claims (1)

【特許請求の範囲】[Claims] 1 第1導電形を有する半導体基板と、この半導
体基板上に形成され、上記半導体基板より低不純
物濃度の第1導電形を有する第1半導体領域と、
この第1半導体領域の主表面に所定間隔だけ隔て
相互に対向して形成され、ともに第2導電形を有
する第2及び第3半導体領域と、この第3半導体
領域に対して上記第2半導体領域と反対側の上記
第1半導体領域の主表面に形成され、上記第3半
導体領域よりも浅く、かつ上記第3半導体領域と
離隔すると共に上記第1半導体領域より高不純物
濃度の第1導電形を有する第4半導体領域と、こ
の第4半導体領域と離隔し、かつ上記第3半導体
領域とは接触して上記第4半導体領域を取り囲む
ように形成され、上記半導体基板と接触する絶縁
物領域と、上記第4半導体領域と離隔し、上記第
4半導体領域の下方において、一部が上記第4半
導体領域と対向するように上記第1半導体領域内
に設けられ、上記一部を含む一端が上記第3半導
体領域に接触すると共に、他端が上記第3半導体
領域と対向する上記絶縁物領域に接触する第2導
電形を有する第5半導体領域とを備えたことを特
徴とする半導体装置。
1 a semiconductor substrate having a first conductivity type; a first semiconductor region having a first conductivity type formed on the semiconductor substrate and having a lower impurity concentration than the semiconductor substrate;
second and third semiconductor regions which are formed on the main surface of the first semiconductor region to face each other at a predetermined interval and both have a second conductivity type; a first conductivity type formed on the main surface of the first semiconductor region on the opposite side, shallower than the third semiconductor region, spaced apart from the third semiconductor region, and having a higher impurity concentration than the first semiconductor region. an insulator region formed to surround the fourth semiconductor region, spaced apart from the fourth semiconductor region, in contact with the third semiconductor region, and in contact with the semiconductor substrate; It is provided within the first semiconductor region so as to be spaced apart from the fourth semiconductor region and below the fourth semiconductor region, with a part facing the fourth semiconductor region, and one end including the part is provided in the first semiconductor region. A semiconductor device comprising: a fifth semiconductor region having a second conductivity type, the fifth semiconductor region being in contact with the third semiconductor region, and the other end of the fifth semiconductor region being in contact with the insulator region facing the third semiconductor region.
JP9524178A 1978-08-03 1978-08-03 Semiconductor device Granted JPS5521187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9524178A JPS5521187A (en) 1978-08-03 1978-08-03 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9524178A JPS5521187A (en) 1978-08-03 1978-08-03 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS5521187A JPS5521187A (en) 1980-02-15
JPS6212665B2 true JPS6212665B2 (en) 1987-03-19

Family

ID=14132250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9524178A Granted JPS5521187A (en) 1978-08-03 1978-08-03 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5521187A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6095177U (en) * 1983-12-06 1985-06-28 内田油圧機器工業株式会社 Axial piston type hydraulic motor device
JP2008080812A (en) * 2007-11-09 2008-04-10 Dainippon Printing Co Ltd Bankbook
JP2014126020A (en) * 2012-12-27 2014-07-07 Kawasaki Heavy Ind Ltd Axial piston motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086988A (en) * 1973-11-30 1975-07-12
JPS5425172A (en) * 1977-07-27 1979-02-24 Nippon Gakki Seizo Kk Longitudinal junction field effect transistor
JPS59981A (en) * 1982-06-25 1984-01-06 Nec Corp Drive circuit for laser diode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086988A (en) * 1973-11-30 1975-07-12
JPS5425172A (en) * 1977-07-27 1979-02-24 Nippon Gakki Seizo Kk Longitudinal junction field effect transistor
JPS59981A (en) * 1982-06-25 1984-01-06 Nec Corp Drive circuit for laser diode

Also Published As

Publication number Publication date
JPS5521187A (en) 1980-02-15

Similar Documents

Publication Publication Date Title
US6713794B2 (en) Lateral semiconductor device
US5146298A (en) Device which functions as a lateral double-diffused insulated gate field effect transistor or as a bipolar transistor
US6657262B2 (en) Monolithically integrated electronic device and fabrication process therefor
KR920005513B1 (en) Semiconductor device having a structure which makes parasitic transistor hard to operate and its manufacturing method
JPH01198076A (en) Semiconductor device
KR910006672B1 (en) Semiconductor integrated circuit device and its manufacturing method
JPS63141375A (en) Insulated gate field effect transistor
JPS6212665B2 (en)
JPS6228586B2 (en)
JP2808882B2 (en) Insulated gate bipolar transistor
JPH03145163A (en) Thyristor
JPS59198749A (en) Complementary type field effect transistor
CA1097408A (en) Inverter in an integrated injection logic structure
US4656498A (en) Oxide-isolated integrated Schottky logic
JPS6020571A (en) Semiconductor device
JPH08172100A (en) Semiconductor device
JPS6225267B2 (en)
JPS6381862A (en) Insulated-gate bipolar transistor
JPS59980B2 (en) Electrostatic induction type semiconductor logic circuit device
JPS62104068A (en) Semiconductor integrated circuit device
JPH0321055A (en) Semiconductor integrated circuit device and manufacture of the same
JP3071819B2 (en) Insulated gate type semiconductor device
JPS5910592B2 (en) Semiconductor device and its manufacturing method
JPS6129550B2 (en)
Reif et al. PMOS input merged bipolar/sidewall MOS transistors (PBiMOS transistors)