JPH01198076A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH01198076A
JPH01198076A JP63023252A JP2325288A JPH01198076A JP H01198076 A JPH01198076 A JP H01198076A JP 63023252 A JP63023252 A JP 63023252A JP 2325288 A JP2325288 A JP 2325288A JP H01198076 A JPH01198076 A JP H01198076A
Authority
JP
Japan
Prior art keywords
region
trench
base layer
electrode
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63023252A
Other languages
Japanese (ja)
Inventor
Hajime Akiyama
肇 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63023252A priority Critical patent/JPH01198076A/en
Publication of JPH01198076A publication Critical patent/JPH01198076A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT

Abstract

PURPOSE:To enable the increase of latchup yield strength, by forming trench to reduce a first conductivity type base on the source side of a vertical gate structure IGBT, and forming a source electrode stretching as far as the trench bottom, or installing, instead of the trench, a first conductivity type diffusion region of high impurity concentration. CONSTITUTION:The source side surface of a vertical gate structure IGBT is flattened, and the source side surface except the exposed region of a P<+> base layer 3 is covered with a resist film 11. By using the resist film 11 as a mask, a second trench 5b is dug, the surface side region of the P<+> base layer 3 is shaved off. The resist film 11 is eliminated, and a source electrode 8 stretching as far as the side surface and the bottom surface of the second trench 5b is formed. A drain electrode 10 is formed, and polysilicon 7 is buried in the second trench 5b to complete a semiconductor device. A P<++> high concentration diffusion region 12 of low resistance is installed instead of the trench 5b, and the series resistance component between the P<+> base layer 3 and the source electrode 8 is reduced. Thereby latchup yield strength can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、例えば大電力高速スイッチング素子をモノ
リシックで実現した半導体装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor device in which, for example, a high-power high-speed switching element is realized monolithically.

〔従来の技術〕[Conventional technology]

平面ゲート形のMOSFET(電界効果トランジスタ)
やI G B T (In5ulated Gate 
BipolarTransistor:絶縁ゲート形電
界効果トランジスタ)に比較して縦型ゲート構造のMO
SFETやI GBTはゲートを集積化することができ
るので、より小形で大きい電流駆動能力が得られる。
Planar gate MOSFET (field effect transistor)
ya I G B T (In5ulated Gate
Bipolar Transistor: MO with vertical gate structure compared to insulated gate field effect transistor
Since the gates of SFETs and IGBTs can be integrated, they can be made smaller and have larger current drive capabilities.

第3図は縦形ゲート構造の従来のNチャンネルIGBT
の構造を示す側断面図である。
Figure 3 shows a conventional N-channel IGBT with a vertical gate structure.
It is a side sectional view showing the structure of.

この図において、21はp形不純物がドープされたp+
ドレイン層となるシリコン基板で、不純物濃度は一般に
高< 10 ”cm−3程度である。22は前記シリコ
ン基板21上にエピタキシャル成長によって形成された
n−ベース層、23は前記n−ベース層22にp形不純
物を拡散して形成したp+ベース層、24は前記p+ベ
ース層3にざらに遭択拡散を行って形成したnゝエミッ
タ層、25はゲート形成用のトレンチ溝で、n9工ミツ
タ層24、p1ベース層23を突き抜けてn−ベース層
22まで達する深さで掘られている。26はゲート酸化
膜で、トレンチ溝25の内壁を酸化するか、または酸化
シリコンを表面成長させることによって形成されている
。27は前記トレンチ溝25を埋め込むポリシリコン、
28はソース電極(エミッタ電極に相当)で、ラッチア
ップ耐量を増加させるためにp+ベース層23、n+エ
ミッタ層24をショートしている。29はゲート電極(
ベース電極に相当)で、ゲート酸化膜26の表面に形成
されている。30はドレイン電極(コレクタ電極に相当
)で、シリコン基板21の裏面全体に形成されている。
In this figure, 21 is p+ doped with p-type impurities.
A silicon substrate serving as a drain layer has an impurity concentration of generally high <10"cm-3. 22 is an n-base layer formed on the silicon substrate 21 by epitaxial growth, and 23 is an n-base layer formed on the n-base layer 22. A p+ base layer formed by diffusing p-type impurities, 24 an n emitter layer formed by rough selective diffusion into the p+ base layer 3, 25 a trench groove for gate formation, and an n9 emitter layer. 24, it is dug to a depth that penetrates through the p1 base layer 23 and reaches the n-base layer 22. 26 is a gate oxide film, which is formed by oxidizing the inner wall of the trench groove 25 or by growing silicon oxide on the surface. 27 is polysilicon that fills the trench groove 25;
28 is a source electrode (corresponding to an emitter electrode), and the p+ base layer 23 and the n+ emitter layer 24 are short-circuited to increase latch-up resistance. 29 is the gate electrode (
(equivalent to a base electrode) is formed on the surface of the gate oxide film 26. Reference numeral 30 denotes a drain electrode (corresponding to a collector electrode), which is formed on the entire back surface of the silicon substrate 21.

また、第4図は第3図に示したI GBTの等価回路図
である。
Further, FIG. 4 is an equivalent circuit diagram of the IGBT shown in FIG. 3.

この図において、第3図と同一符号は同一部分に対応し
、31は前記p+ベース層23中のシリーズ抵抗成分、
32は前記n1工ミツタ層24゜前記p4ベース層23
および前記n−ベース層22から構成されるNPNトラ
ンジスタ、33は前記p+ベース層23.前記n−ベー
ス層22および前記シリコン基板21から構成されるP
NPトランジスタ、34は前記n−ベース層22中の可
変抵抗成分、35は縦形ゲート部分に形成されているM
OSFETである。なお、この縦形ゲートのMOSFE
T35の部分は、例えば特開昭61−26261号公報
に記載されたような工程によって製作される。
In this figure, the same symbols as in FIG. 3 correspond to the same parts, and 31 is a series resistance component in the p+ base layer 23;
32 is the N1 base layer 24° and the P4 base layer 23
and an NPN transistor 33 composed of the n-base layer 22, the p+ base layer 23. P composed of the n-base layer 22 and the silicon substrate 21
NP transistor; 34 is a variable resistance component in the n-base layer 22; 35 is an M transistor formed in the vertical gate portion;
It is an OSFET. In addition, this vertical gate MOSFE
The T35 portion is manufactured by the process described in, for example, Japanese Patent Laid-Open No. 61-26261.

次に動作について説明する。Next, the operation will be explained.

ソース電8i28に対してゲート電8i29を正に電圧
印加すると、p+ベース層23とトレンチ溝25の界面
にN型チャネルが形成され、MOSFET35が導通状
態となる。また、ソース電極28に対して正の電圧がド
レイン電極3oに印加されているので、電子がN型チャ
ネルを通ってn′″エミッタ層24からn−ベース層2
2に流れ込む。これによってn−ベース層22の電位が
低下し、正孔がシリコン基板21のp+ドレイン層から
n−ベース層22に注入される。この結果、n″″ベー
ス層22に多数の正孔と電子が蓄積されn−ベース層2
2の比抵抗値が減少する。等価回路図上では可変抵抗成
分34が減少することになり、ソース電極28とドレイ
ン電極30との間に大電流が流れ、IGBTは導通状態
になる。
When a positive voltage is applied to the gate voltage 8i29 to the source voltage 8i28, an N-type channel is formed at the interface between the p+ base layer 23 and the trench groove 25, and the MOSFET 35 becomes conductive. Further, since a positive voltage is applied to the drain electrode 3o with respect to the source electrode 28, electrons pass through the N type channel from the n'' emitter layer 24 to the n- base layer 2.
Flows into 2. This lowers the potential of the n- base layer 22, and holes are injected into the n- base layer 22 from the p+ drain layer of the silicon substrate 21. As a result, a large number of holes and electrons are accumulated in the n'' base layer 22, and the n-base layer 22
The specific resistance value of 2 decreases. On the equivalent circuit diagram, the variable resistance component 34 decreases, a large current flows between the source electrode 28 and the drain electrode 30, and the IGBT becomes conductive.

この時、p+ドレイン層から注入された正孔の大部分は
n″″ベース層2層内2内いて、ソース電極28から流
れ込む電子と再結合するが、残りの正孔はp+ベース層
23へ流れ込む。この残りに当たる正孔電流は、等価回
路図上のPNPトランジスタ33を経てNPNトランジ
スタ32のベース側とシリーズ抵抗成分31を通ってソ
ース電極28へ流れ込んでいる。このソース電極28は
n0工ミツタ層24とp′″ベース層23をショートし
ているのでシリーズ抵抗成分31は原理的にゼロである
が、p1ベース層23に流れ込んだ正孔電流の経路によ
って寄与される抵抗成分の総和を考えたときのシリーズ
抵抗成分31は無視できない。そして、ソース電極28
とドレイン電極30の間を流れる電流が増加するに従っ
て、シリーズ抵抗成分31を流れる正孔電流も増加する
At this time, most of the holes injected from the p+ drain layer enter the n″″ base layer 2 and recombine with the electrons flowing from the source electrode 28, but the remaining holes flow into the p+ base layer 23. Flow into. The remaining hole current flows into the source electrode 28 via the PNP transistor 33 on the equivalent circuit diagram, the base side of the NPN transistor 32, and the series resistance component 31. Since this source electrode 28 short-circuits the n0 semiconductor layer 24 and the p'' base layer 23, the series resistance component 31 is theoretically zero, but it is contributed by the path of the hole current flowing into the p1 base layer 23. The series resistance component 31 cannot be ignored when considering the total resistance component of the source electrode 28.
As the current flowing between the drain electrode 30 and the drain electrode 30 increases, the hole current flowing through the series resistance component 31 also increases.

その結果、ソース電極28とNPNトランジスタ32の
ベース間の電位差が広がり、ついにはNPNトランジス
タ32をオン状態にしてしまうことになる。この現象を
ラッチアップといい、MOSFET35を経由してドレ
イン電極30からソース電極28へ流れていた電流が、
N P Nトランジスタ32を経由して流れることにな
り、ゲート電極29によるIIHXIが不可能となる。
As a result, the potential difference between the source electrode 28 and the base of the NPN transistor 32 increases, eventually turning the NPN transistor 32 on. This phenomenon is called latch-up, and the current flowing from the drain electrode 30 to the source electrode 28 via the MOSFET 35 is
The current flows through the N P N transistor 32, and IIHXI by the gate electrode 29 becomes impossible.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のような従来の縦形ゲート構造I GBTでは、n
“エミツタ層24とp+ベース層23をショートしてい
るが、これだけではラッチアップを完全に防止できない
ので、電流密度が高くなると等価回路図上のNPNトラ
ンジスタ32がラッチアップし、素子をゲートでコント
ロールできなくなっていた。
In the conventional vertical gate structure IGBT as described above, n
“The emitter layer 24 and the p+ base layer 23 are short-circuited, but this alone cannot completely prevent latch-up, so when the current density increases, the NPN transistor 32 on the equivalent circuit diagram will latch-up, and the device will be controlled by the gate. I couldn't do it anymore.

この発明は、かかる課題を解決するためになされたもの
で、縦形ゲート構造IGBTの利点である大電流駆動能
力と低オン抵抗の特徴を損なうことなく、かつプロセス
に大幅な変更を与えることなしにラッチアップ耐量が従
来のものより格段に増加する半導体装置を得ることを目
的とする。
This invention was made in order to solve such problems, and without impairing the characteristics of large current drive capability and low on-resistance, which are the advantages of vertical gate structure IGBTs, and without making significant changes to the process. An object of the present invention is to obtain a semiconductor device whose latch-up resistance is significantly increased compared to conventional devices.

〔課題を解決するための手段〕[Means to solve the problem]

この発明の第1の発明に係る半導体装置は、第1の導電
型の第1の領域と、この第1の領域の主表面上に形成さ
れた第2の導電型の第2の領域と、この第2の領域の主
表面上に形成された第1の導電型の第3の領域と、この
第3の領域の主表面上から選択的に不純物を拡散して第
3の領域内に形成された第2の導電型の第4の領域と、
この第4の領域の主表面上から形成され、その側面に少
なくとも第4の領域および第3の領域を露出させ、その
底面に第2の領域を露出させる第1のトレンチ溝と、こ
の第1のトレンチ溝の側面および底面に形成された酸化
膜と、この酸化膜上に形成され、第4の領域、第3の領
域および第2の領域と対向する制御電極と、第3の領域
の主表面上から形成され、その側面の一部または全部に
第4の領域を露出させ、その底面に第3の領域を露出さ
せる第2のトレンチ溝と、この第2の゛トレンチ溝の側
面および底面と第4の領域の主表面上に形成された第1
の主電極と、第1の領域の他の主表面上に形成された第
2の主電極とから構成したものである。
A semiconductor device according to a first aspect of the present invention includes: a first region of a first conductivity type; a second region of a second conductivity type formed on the main surface of the first region; A third region of the first conductivity type formed on the main surface of this second region, and a third region formed in the third region by selectively diffusing impurities from the main surface of this third region. a fourth region of a second conductivity type,
a first trench formed on the main surface of the fourth region, exposing at least the fourth region and the third region on the side surfaces thereof, and exposing the second region on the bottom surface; an oxide film formed on the side and bottom surfaces of the trench groove, a control electrode formed on the oxide film and facing the fourth region, the third region, and the second region; a second trench groove formed on the surface, exposing a fourth region on a part or all of the side surface and exposing a third region on the bottom surface; and a side surface and a bottom surface of the second trench groove. and the first region formed on the main surface of the fourth region.
and a second main electrode formed on the other main surface of the first region.

また、この発明の第2の発明に係る半導体装置は、第1
の発明における第2のトレンチ溝の代わりに第3の領域
の主表面上から第1の導電型で高不純物濃度め第5の領
域を形成し、この第5の領域と第4の領域とを第1の主
電極により短絡したものである。
Further, a semiconductor device according to a second aspect of the present invention is a semiconductor device according to a second aspect of the present invention.
In the invention, a fifth region of the first conductivity type and high impurity concentration is formed on the main surface of the third region instead of the second trench, and the fifth region and the fourth region are connected to each other. This is short-circuited by the first main electrode.

〔作用〕[Effect]

この発明の第1の発明においては、第2のトレンチ溝の
形成によって、また第2の発明においては、低抵抗値の
第5の領域の形成によって、第3の領域が縮小されるこ
とにより、第3の領域と第1の主電極間のシリーズ抵抗
成分が小さくなり、第3.の領域をベースとする寄生ト
ランジスタがオンしにくくなる。
In the first aspect of the present invention, the third region is reduced by forming the second trench, and in the second invention, by forming the fifth region having a low resistance value. The series resistance component between the third region and the first main electrode becomes smaller, and the third. The parasitic transistor based on the region becomes difficult to turn on.

(実施例) 第1図(a)〜(C)はこの発明の第1の発明の半導体
装置の一実施例の製造工程を示す側断面図である。
(Embodiment) FIGS. 1A to 1C are side sectional views showing the manufacturing process of an embodiment of a semiconductor device according to the first aspect of the present invention.

これらの図において、1はp形不純物がドープされたp
+ドレイン層(第1の領域)となるシリコン基板、2は
前記シリコン基板1上にエピタキシャル成長によって形
成された第2の領域とじてのn−べ一諷層、3は前記n
−ベース層2にp形不純物を拡散して形成した第3の領
域としてのp0ベース層、4は前記p3ベース層3にさ
らに選択拡散を行って形成した第4の領域としてのn0
工ミツタ層、5aはゲート形成用の第1のトレンチ溝、
5bは第2のトレンチ溝、6はゲート酸化膜で、第1の
トレンチ溝5aの内壁を酸化するか、または酸化シリコ
ンを表面成長させることによって形成されている。7は
前記第1および第2のトレンチ溝5a、5bを埋め込む
ポリシリコン、8は第1の主電極としてのソース電極(
エミッタ電極に相当)で、ラッチアップ耐量を増加させ
るためにp′″ベース層3とn0工ミツタ層4をショー
トしている。9は制御電極としてのゲート電極(ベース
電極に相当)で、ゲート酸化膜6の表面に形成されてい
る。10は第2の主電極としてのドレイン電極(コレク
タ電極に相当)で、シリコン基板1の裏面全体に形成さ
れている。11は前記第2のトレンチ溝5bを形成する
ためのレジスト膜である。
In these figures, 1 is p doped with p-type impurities.
2 is a silicon substrate that will become a drain layer (first region); 2 is an n-base layer that is a second region formed on the silicon substrate 1 by epitaxial growth; 3 is an n
- a p0 base layer as a third region formed by diffusing p-type impurities into the base layer 2, and 4 an n0 region as a fourth region formed by further selectively diffusing the p3 base layer 3;
5a is a first trench groove for gate formation;
5b is a second trench groove, and 6 is a gate oxide film, which are formed by oxidizing the inner wall of the first trench groove 5a or by growing silicon oxide on the surface. 7 is polysilicon that fills the first and second trench grooves 5a and 5b; 8 is a source electrode (as a first main electrode);
9 is a gate electrode (corresponding to a base electrode) as a control electrode, and the p''' base layer 3 and n0 emitter layer 4 are shorted to increase latch-up resistance.9 is a gate electrode (corresponding to a base electrode) as a control electrode. It is formed on the surface of the oxide film 6. Reference numeral 10 is a drain electrode (corresponding to a collector electrode) as a second main electrode, which is formed on the entire back surface of the silicon substrate 1. Reference numeral 11 is the second trench groove. This is a resist film for forming 5b.

次に製造工程について説明する。Next, the manufacturing process will be explained.

まず、第1図(a)に示すように、ソース電極8および
ドレイン電極10の形成前の従来と同じ形の縦形ゲート
構造IGBTのソース側表面を平坦化し、このソース側
表面なp“ベース層3の露出領域を除いてレジスト膜1
1で覆う。
First, as shown in FIG. 1(a), the source side surface of the conventional vertical gate structure IGBT before the formation of the source electrode 8 and drain electrode 10 is planarized, and a p" base layer is formed on this source side surface. Resist film 1 except for the exposed area of 3
Cover with 1.

次に第1図(b)に示すように、レジスト膜11をマス
クとして第2のトレンチ溝5bを掘り、21ベ一ス層3
の表面側領域を削除する。
Next, as shown in FIG. 1(b), a second trench groove 5b is dug using the resist film 11 as a mask, and a second trench groove 5b is dug using the resist film 11 as a mask.
Delete the surface area of .

この後、レジスト膜11を除去し、第1図(C)に示す
ように、第2のトレンチ溝5bの側壁および底面まで伸
長した形でソース電極8を形成し、次いで、ドレイン電
極10を従来と同じ要領で形成するとともに、第2のト
レンチ溝5bをポリシリコン7で埋め込めば半導体装置
が完成する。
Thereafter, the resist film 11 is removed, and as shown in FIG. The semiconductor device is completed by forming the second trench groove 5b in the same manner as above and filling the second trench groove 5b with polysilicon 7.

すなわち、この第1の発明の半導体装置では、第2のト
レンチ溝5bを形成してp4べ5−ス層3を縮小すると
ともに、この第2のトレンチ溝5bの底面まで伸長した
形でソース電極8を形成したので、p+ベース層3とソ
ース電極8間のシリーズ抵抗成分が大幅に小さくなり、
従来のIGBTと同じ電流駆動条件で使用した場合、p
1ベース層3をベースとする寄生トランジスタ(第4図
中のNPNトランジスタ32に対応)にかかるベース駆
動電圧が低下し、同トランジスタがオンしにくくラッチ
アップが生じにくくなることがわかる。
That is, in the semiconductor device of the first invention, the second trench groove 5b is formed to reduce the size of the p4 base layer 3, and the source electrode is extended to the bottom surface of the second trench groove 5b. 8, the series resistance component between the p+ base layer 3 and the source electrode 8 is significantly reduced.
When used under the same current drive conditions as conventional IGBTs, p
It can be seen that the base drive voltage applied to the parasitic transistor (corresponding to the NPN transistor 32 in FIG. 4) based on the 1-base layer 3 is reduced, making it difficult for the transistor to turn on and to cause latch-up.

また、第2図(a)、(b)は、この発明の第2の発明
の半導体装置の一実施例の製造工程を示す側断面図であ
る。
Moreover, FIGS. 2(a) and 2(b) are side sectional views showing the manufacturing process of an embodiment of the semiconductor device of the second invention of the present invention.

これらの図において、第1図(a)〜(C・)と同一符
号は同一のものを示し、12は第5の領域としてのp+
+高濃度拡散領域である。
In these figures, the same reference numerals as in FIGS.
+ High concentration diffusion region.

この発明でも、第2図(a)に示すように、まずソース
側表面を平坦化し、このソース側表面をp+ベース層3
の露出部分を除いてレジスト膜11で覆う。次いで、矢
印のようにp形不純物のデポジションを行い、21ベ一
ス層3の表面領域に第2図(b)に示すようなp+4高
濃度拡散領域12を形成する。なお。この時のデポジシ
ョンおよび拡散の条件によりレジスト膜11のエツジの
位置は微妙に変化する。そして、この後レジスト膜11
を除去し、ソース電極8とドレインt8i10を形成す
れば半導体装置が完成する。
In this invention as well, as shown in FIG.
It is covered with a resist film 11 except for the exposed portion. Next, a p-type impurity is deposited as shown by the arrow to form a p+4 high concentration diffusion region 12 in the surface region of the 21 base layer 3 as shown in FIG. 2(b). In addition. The position of the edge of the resist film 11 changes slightly depending on the deposition and diffusion conditions at this time. After this, the resist film 11
The semiconductor device is completed by removing the source electrode 8 and forming the drain t8i10.

すなわち、この第2の発明では低抵抗値のp0高濃度拡
散領域12を設けてp1ベース層3とソース電極8間の
シリーズ抵抗成分を小さくしているが、上記第1の発明
と同様にラッチアップ耐量を向上させることが可能であ
る。
That is, in this second invention, the p0 high concentration diffusion region 12 with a low resistance value is provided to reduce the series resistance component between the p1 base layer 3 and the source electrode 8, but as in the first invention, the latch It is possible to improve the up resistance.

なお、上記実施例では、縦形IGBTの場合について説
明したが、■字形のIGBTであってもよく、Pチャネ
ル形IGBTにおいても同様の効果を奏することはいう
までもない。
In the above embodiment, a vertical IGBT has been described, but it may be a square-shaped IGBT, and it goes without saying that a P-channel IGBT can also produce the same effect.

〔発明の効果〕〔Effect of the invention〕

この発明の第1の発明は以上説明したとおり、第1の導
電型の第1の領域と、この第1の領域の主表面上に形成
された第2の導電型の第2の領域と、この第2の領域の
主表面上に形成された第1の導電型の第3の領域と、こ
の第3の領域の主表面上から選択的に不純物を拡散して
第3の領域内に形成された第2の導電型の第4の領域と
、この第4の領域の主表面上から形成され、その側面に
少なくとも第4の領域および第3の領域を露出させ、そ
の底面に第2の領域を露出させる第1のトレンチ溝と、
この第1のトレンチ溝の側面および底面に形成された酸
化膜と、この酸化膜上に形成され、第4の領域、第3の
領域および第2の領域と対向する制御電極と、第3の領
域の主表面上から形成され、その側面の一部または全部
に第4の領域を露出させ、その底面に第3の領域を露出
させる第2のトレンチ溝と、この第2のトレンチ溝の側
面および底面と第4の領域の主表面上に形成された第1
の主電極と、第1の領域の他の主表面上に形成された第
2の主電極とから構成し、また、この発明の第2の発明
は、上記の第2のトレンチ溝の代わりに第3の領域の主
表面から第1の導電型で高不純物濃度の第5の領域を形
成し、この第5の領域と第4の領域とを第1の主電極に
より短絡したので、第3の領域と第1の主電極間のシリ
ーズ抵抗成分が小さくなり、第3の領域をベースとする
寄生トランジスタがオンしにくく、ラッチアップの発言
を抑止でき、より大きい電流駆動能力が得られるという
効果がある。
As explained above, the first aspect of the present invention includes a first region of a first conductivity type, a second region of a second conductivity type formed on the main surface of the first region, A third region of the first conductivity type formed on the main surface of this second region, and a third region formed in the third region by selectively diffusing impurities from the main surface of this third region. a fourth region of a second conductivity type formed on the main surface of the fourth region, at least the fourth region and the third region are exposed on the side surfaces thereof, and a second conductivity type is formed on the bottom surface of the fourth region. a first trench exposing the region;
An oxide film formed on the side and bottom surfaces of the first trench groove, a control electrode formed on the oxide film and facing the fourth region, the third region, and the second region; a second trench groove formed on the main surface of the region, exposing the fourth region on a part or all of the side surface thereof, and exposing the third region on the bottom surface thereof; and the side surface of the second trench groove. and a first region formed on the bottom surface and the main surface of the fourth region.
and a second main electrode formed on the other main surface of the first region. A fifth region of the first conductivity type and high impurity concentration was formed from the main surface of the third region, and this fifth region and the fourth region were short-circuited by the first main electrode. The effect is that the series resistance component between the region and the first main electrode is reduced, the parasitic transistor based on the third region is difficult to turn on, latch-up can be suppressed, and a larger current drive capability can be obtained. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1の発明の半導体装置の一実施例
の製造工程を示す側断面図、第2図はこの発明の第2の
発明の一実施例の製造工程を示す側断面図、第3図は従
来の縦形ゲート構造rGBTの構造を示す側断面図、第
4図はIGBTの等価回路図である。 図において、1はシリコン基板、2はn−ベース層、3
はp+ベース層、4はn+エミッタ層、5aは第1のト
レンチ溝、5bは第2のトレンチ溝、6はゲート酸化膜
、7はポリシリコン、8はソース電極、9はゲート電極
、10はドレイン電極、11はレジスト膜、12はp−
高濃度拡散領域である。 なお、各図中の同一符号は同一または相当部分を示す。 第1図 第2図 12、ρ00高漬鷹拡散領域 第3因 第4図 手続補正書(自発)
FIG. 1 is a side sectional view showing the manufacturing process of an embodiment of a semiconductor device according to the first invention of the present invention, and FIG. 2 is a side sectional view showing the manufacturing process of an embodiment of the second invention of the invention. 3 is a side sectional view showing the structure of a conventional vertical gate structure rGBT, and FIG. 4 is an equivalent circuit diagram of the IGBT. In the figure, 1 is a silicon substrate, 2 is an n-base layer, and 3 is a silicon substrate.
is a p+ base layer, 4 is an n+ emitter layer, 5a is a first trench groove, 5b is a second trench groove, 6 is a gate oxide film, 7 is polysilicon, 8 is a source electrode, 9 is a gate electrode, 10 is a Drain electrode, 11 resist film, 12 p-
This is a high concentration diffusion region. Note that the same reference numerals in each figure indicate the same or corresponding parts. Figure 1 Figure 2 Figure 12, ρ00 Takatsuka Diffusion Area 3rd Factor Figure 4 Procedural Amendment (Voluntary)

Claims (2)

【特許請求の範囲】[Claims] (1)第1の導電型の第1の領域と、この第1の領域の
主表面上に形成された第2の導電型の第2の領域と、こ
の第2の領域の主表面上に形成された第1の導電型の第
3の領域と、この第3の領域の主表面上から選択的に不
純物を拡散して第3の領域内に形成された第2の導電型
の第4の領域と、この第4の領域の主表面上から形成さ
れ、その側面に少なくとも第4の領域および前記第3の
領域を露出させ、その底面に前記第2の領域を露出させ
る第1のトレンチ溝と、この第1のトレンチ溝の側面お
よび底面に形成された酸化膜と、この酸化膜上に形成さ
れ、前記第4の領域、前記第3の領域および前記第2の
領域と対向する制御電極と、前記第3の領域の主表面上
から形成され、その側面の一部または全部に前記第4の
領域を露出させ、その底面に前記第3の領域を露出させ
る第2のトレンチ溝と、この第2のトレンチ溝の側面お
よび底面と前記第4の領域の主表面上に形成された第1
の主電極と、前記第1の領域の他の主表面上に形成され
た第2の主電極とから構成したことを特徴とする半導体
装置。
(1) A first region of a first conductivity type, a second region of a second conductivity type formed on the main surface of this first region, and a second region formed on the main surface of this second region. A third region of the first conductivity type is formed, and a fourth region of the second conductivity type is formed within the third region by selectively diffusing impurities from the main surface of the third region. and a first trench formed on the main surface of the fourth region, exposing at least the fourth region and the third region on its side surfaces, and exposing the second region on its bottom surface. a trench, an oxide film formed on the side and bottom surfaces of the first trench trench, and a control layer formed on the oxide film and facing the fourth region, the third region, and the second region. an electrode; and a second trench groove formed on the main surface of the third region, exposing the fourth region on part or all of the side surfaces thereof, and exposing the third region on the bottom surface thereof; , a first trench formed on the side and bottom surfaces of the second trench groove and the main surface of the fourth region.
A semiconductor device comprising: a main electrode; and a second main electrode formed on the other main surface of the first region.
(2)請求項1記載の半導体装置において、第2のトレ
ンチ溝の代わりに第3の領域の主表面上から第1の導電
型で高不純物濃度の第5の領域を形成し、この第5の領
域と第4の領域とを第1の主電極により短絡したことを
特徴とする半導体装置。
(2) In the semiconductor device according to claim 1, a fifth region of the first conductivity type and a high impurity concentration is formed from above the main surface of the third region in place of the second trench, and the fifth region has a high impurity concentration. A semiconductor device characterized in that the region and the fourth region are short-circuited by a first main electrode.
JP63023252A 1988-02-02 1988-02-02 Semiconductor device Pending JPH01198076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63023252A JPH01198076A (en) 1988-02-02 1988-02-02 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63023252A JPH01198076A (en) 1988-02-02 1988-02-02 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH01198076A true JPH01198076A (en) 1989-08-09

Family

ID=12105408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63023252A Pending JPH01198076A (en) 1988-02-02 1988-02-02 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH01198076A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316959A (en) * 1992-08-12 1994-05-31 Siliconix, Incorporated Trenched DMOS transistor fabrication using six masks
US5329142A (en) * 1991-08-08 1994-07-12 Kabushiki Kaisha Toshiba Self turn-off insulated-gate power semiconductor device with injection-enhanced transistor structure
US5385852A (en) * 1993-01-14 1995-01-31 Siemens Aktiengesellschaft Method for manufacturing vertical MOS transistors
EP0654173A1 (en) * 1992-08-07 1995-05-24 Advanced Power Technology Inc. High density power device structure and fabrication process
US5572055A (en) * 1992-11-09 1996-11-05 Fuji Electric Co., Ltd. Insulated-gate bipolar transistor with reduced latch-up
US5578851A (en) * 1994-08-15 1996-11-26 Siliconix Incorporated Trenched DMOS transistor having thick field oxide in termination region
EP0755076A2 (en) * 1995-07-21 1997-01-22 Mitsubishi Denki Kabushiki Kaisha Vertical MOS semiconductor with recessed gate and method of manufacturing the same
US5597765A (en) * 1995-01-10 1997-01-28 Siliconix Incorporated Method for making termination structure for power MOSFET
US5623152A (en) * 1995-02-09 1997-04-22 Mitsubishi Denki Kabushiki Kaisha Insulated gate semiconductor device
US5925899A (en) * 1997-05-27 1999-07-20 Mitsubishi Denki Kabushiki Kaisha Vertical type insulated gate bipolar transistor having a planar gate structure
US6107650A (en) * 1994-02-21 2000-08-22 Mitsubishi Denki Kabushiki Kaisha Insulated gate semiconductor device and manufacturing method thereof
US6118150A (en) * 1996-04-01 2000-09-12 Mitsubishi Denki Kabushiki Kaisha Insulated gate semiconductor device and method of manufacturing the same
WO2001065606A3 (en) * 2000-02-28 2002-02-14 Infineon Technologies Ag Field effect transistor configuration having a high latch-up strength and method for the production thereof
KR100429475B1 (en) * 1998-06-02 2004-05-03 실리코닉스 인코퍼레이티드 Vertical trench-gated power mosfet having stripe geometry and high cell density, and manufacturing method thereof
JP2006140263A (en) * 2004-11-11 2006-06-01 Sanken Electric Co Ltd Semiconductor element and manufacturing method thereof
CN105374859A (en) * 2015-11-10 2016-03-02 株洲南车时代电气股份有限公司 Trench gate type IGBT chip and manufacturing method therefor
US9508596B2 (en) 2014-06-20 2016-11-29 Vishay-Siliconix Processes used in fabricating a metal-insulator-semiconductor field effect transistor
US9614043B2 (en) 2012-02-09 2017-04-04 Vishay-Siliconix MOSFET termination trench
US9842911B2 (en) 2012-05-30 2017-12-12 Vishay-Siliconix Adaptive charge balanced edge termination
US9882044B2 (en) 2014-08-19 2018-01-30 Vishay-Siliconix Edge termination for super-junction MOSFETs
US9887259B2 (en) 2014-06-23 2018-02-06 Vishay-Siliconix Modulated super junction power MOSFET devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165360A (en) * 1980-05-23 1981-12-18 Matsushita Electronics Corp Manufacture of semiconductor device
JPS5772365A (en) * 1980-08-25 1982-05-06 Itt High voltage semiconductor switch
JPS6231167A (en) * 1985-07-30 1987-02-10 イ−トン コ−ポレ−シヨン Bidirectional power fet having on state of bipolar

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165360A (en) * 1980-05-23 1981-12-18 Matsushita Electronics Corp Manufacture of semiconductor device
JPS5772365A (en) * 1980-08-25 1982-05-06 Itt High voltage semiconductor switch
JPS6231167A (en) * 1985-07-30 1987-02-10 イ−トン コ−ポレ−シヨン Bidirectional power fet having on state of bipolar

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5801417A (en) * 1988-05-17 1998-09-01 Advanced Power Technology, Inc. Self-aligned power MOSFET device with recessed gate and source
US5329142A (en) * 1991-08-08 1994-07-12 Kabushiki Kaisha Toshiba Self turn-off insulated-gate power semiconductor device with injection-enhanced transistor structure
US5648283A (en) * 1992-08-07 1997-07-15 Advanced Power Technology, Inc. High density power device fabrication process using undercut oxide sidewalls
EP0654173A1 (en) * 1992-08-07 1995-05-24 Advanced Power Technology Inc. High density power device structure and fabrication process
EP0654173A4 (en) * 1992-08-07 1996-08-14 Advanced Power Technology High density power device structure and fabrication process.
US5316959A (en) * 1992-08-12 1994-05-31 Siliconix, Incorporated Trenched DMOS transistor fabrication using six masks
US5572055A (en) * 1992-11-09 1996-11-05 Fuji Electric Co., Ltd. Insulated-gate bipolar transistor with reduced latch-up
US5624855A (en) * 1992-11-09 1997-04-29 Fuji Electric Co., Ltd. Process of producing insulated-gate bipolar transistor
US5385852A (en) * 1993-01-14 1995-01-31 Siemens Aktiengesellschaft Method for manufacturing vertical MOS transistors
US6323508B1 (en) 1994-02-21 2001-11-27 Mitsubishi Denki Kabushiki Kaisha Insulated gate semiconductor device and manufacturing method thereof
US6107650A (en) * 1994-02-21 2000-08-22 Mitsubishi Denki Kabushiki Kaisha Insulated gate semiconductor device and manufacturing method thereof
US6331466B1 (en) 1994-02-21 2001-12-18 Mitsubishi Denki Kabushiki Kaisha Insulated gate semiconductor device and manufacturing method thereof
US5578851A (en) * 1994-08-15 1996-11-26 Siliconix Incorporated Trenched DMOS transistor having thick field oxide in termination region
US5639676A (en) * 1994-08-15 1997-06-17 Siliconix Incorporated Trenched DMOS transistor fabrication having thick termination region oxide
US5614751A (en) * 1995-01-10 1997-03-25 Siliconix Incorporated Edge termination structure for power MOSFET
US5597765A (en) * 1995-01-10 1997-01-28 Siliconix Incorporated Method for making termination structure for power MOSFET
US5623152A (en) * 1995-02-09 1997-04-22 Mitsubishi Denki Kabushiki Kaisha Insulated gate semiconductor device
EP1237201A3 (en) * 1995-07-21 2003-04-23 Mitsubishi Denki Kabushiki Kaisha Insulated gate semiconductor device and method of manufacturing the same
KR100250350B1 (en) * 1995-07-21 2000-04-01 다니구찌 이찌로오 Manufacturing method of an insulated gate type semiconductor device
EP0755076A2 (en) * 1995-07-21 1997-01-22 Mitsubishi Denki Kabushiki Kaisha Vertical MOS semiconductor with recessed gate and method of manufacturing the same
EP1237201A2 (en) * 1995-07-21 2002-09-04 Mitsubishi Denki Kabushiki Kaisha Insulated gate semiconductor device and method of manufacturing the same
EP0755076A3 (en) * 1995-07-21 1997-02-19 Mitsubishi Electric Corp
KR100272057B1 (en) * 1996-04-01 2000-11-15 다니구찌 이찌로오 Insulated gate semiconductor device and method of manufacturing the same
US6118150A (en) * 1996-04-01 2000-09-12 Mitsubishi Denki Kabushiki Kaisha Insulated gate semiconductor device and method of manufacturing the same
KR100353605B1 (en) * 1996-04-01 2002-09-27 미쓰비시덴키 가부시키가이샤 Isulated Gate Semiconductor Device
USRE38953E1 (en) 1996-04-01 2006-01-31 Mitsubishi Denki Kabushiki Kaisha Insulated gate semiconductor device and method of manufacturing the same
US5925899A (en) * 1997-05-27 1999-07-20 Mitsubishi Denki Kabushiki Kaisha Vertical type insulated gate bipolar transistor having a planar gate structure
KR100429475B1 (en) * 1998-06-02 2004-05-03 실리코닉스 인코퍼레이티드 Vertical trench-gated power mosfet having stripe geometry and high cell density, and manufacturing method thereof
WO2001065606A3 (en) * 2000-02-28 2002-02-14 Infineon Technologies Ag Field effect transistor configuration having a high latch-up strength and method for the production thereof
JP2006140263A (en) * 2004-11-11 2006-06-01 Sanken Electric Co Ltd Semiconductor element and manufacturing method thereof
US9935193B2 (en) 2012-02-09 2018-04-03 Siliconix Technology C. V. MOSFET termination trench
US9614043B2 (en) 2012-02-09 2017-04-04 Vishay-Siliconix MOSFET termination trench
US10229988B2 (en) 2012-05-30 2019-03-12 Vishay-Siliconix Adaptive charge balanced edge termination
US9842911B2 (en) 2012-05-30 2017-12-12 Vishay-Siliconix Adaptive charge balanced edge termination
US9508596B2 (en) 2014-06-20 2016-11-29 Vishay-Siliconix Processes used in fabricating a metal-insulator-semiconductor field effect transistor
US9887259B2 (en) 2014-06-23 2018-02-06 Vishay-Siliconix Modulated super junction power MOSFET devices
US10283587B2 (en) 2014-06-23 2019-05-07 Vishay-Siliconix Modulated super junction power MOSFET devices
US9882044B2 (en) 2014-08-19 2018-01-30 Vishay-Siliconix Edge termination for super-junction MOSFETs
CN105374859B (en) * 2015-11-10 2018-09-14 株洲南车时代电气股份有限公司 A kind of trench gate igbt chip and preparation method thereof
CN105374859A (en) * 2015-11-10 2016-03-02 株洲南车时代电气股份有限公司 Trench gate type IGBT chip and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JPH01198076A (en) Semiconductor device
JP2504862B2 (en) Semiconductor device and manufacturing method thereof
US6118150A (en) Insulated gate semiconductor device and method of manufacturing the same
JP2002353456A (en) Semiconductor device and manufacturing method therefor
JPH0758784B2 (en) Lateral insulated gate bipolar transistor with improved latch-up prevention performance
JPH0687504B2 (en) Semiconductor device
JPH1154748A (en) Semiconductor device and manufacture thereof
US5397905A (en) Power semiconductor device having an insulated gate field effect transistor and a bipolar transistor
JP2000077663A (en) Field-effect semiconductor device
JPS63141375A (en) Insulated gate field effect transistor
US4200879A (en) Integrated semiconductor device including static induction transistor
US5624855A (en) Process of producing insulated-gate bipolar transistor
JP3063278B2 (en) Vertical field-effect transistor
JP3249891B2 (en) Semiconductor device and method of using the same
JPH0654796B2 (en) Composite semiconductor device
JP3163815B2 (en) Semiconductor device
JPH0783113B2 (en) Semiconductor device
JP2808882B2 (en) Insulated gate bipolar transistor
JP2594296B2 (en) Insulated gate field effect transistor
JP3249175B2 (en) Thyristor with insulated gate and high breakdown voltage semiconductor device
JP2508218B2 (en) Complementary MIS integrated circuit
JPH0416443Y2 (en)
JP2629434B2 (en) Semiconductor device with anode short conductivity modulation type MISFET
JP3142009B2 (en) Manufacturing method of electrostatic induction type gate structure
JPH03145163A (en) Thyristor