JPS59954A - Semiconductor integrated device - Google Patents

Semiconductor integrated device

Info

Publication number
JPS59954A
JPS59954A JP10970782A JP10970782A JPS59954A JP S59954 A JPS59954 A JP S59954A JP 10970782 A JP10970782 A JP 10970782A JP 10970782 A JP10970782 A JP 10970782A JP S59954 A JPS59954 A JP S59954A
Authority
JP
Japan
Prior art keywords
region
bipolar transistor
conductivity type
base region
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10970782A
Other languages
Japanese (ja)
Inventor
Isao Akitake
秋武 勇夫
Shuzo Matsumoto
脩三 松本
Kazuo Kondo
和夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10970782A priority Critical patent/JPS59954A/en
Publication of JPS59954A publication Critical patent/JPS59954A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To increase the curent amplification factor of a bipolar transistor larger than that of a parasitic bipolar transistor by forming the impurity density of the second conductive type base region in such a manner that the part near the surface is in low density and the part isolated from the surface is in high density. CONSTITUTION:A bipolar transistor is composed of a base region 22, a collector region 8 and an emitter region 9. A parasitic bipolar transistor is formed of a semiconductor substrate 1 to become a collector region, the emitter region 9 and a base region 3. The density of the region 22 is formed to be lower than the density of the region 3 by utilizing the fact that the current amplification factor of the bipolar transistor is inversely proportional to the density of the region 22. Accordingly, the current amplification factor of the bipolar transistor becomes larger than that of a parasitic bipolar transistor.

Description

【発明の詳細な説明】 本発明は絶縁ゲート型電界効果トランジスタの製造工程
で双極トランジスタを形成する半導体集積装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor integrated device in which a bipolar transistor is formed in the manufacturing process of an insulated gate field effect transistor.

第1図に従来の絶縁ゲート型電界効果トランジスタ(以
後MOSトランジスタとする)の製造プロセスで形成さ
れた双極トランジスタを含む半導体装置の断面図を示す
。また第2図は上記双極トランジスタの部分を拡大した
断面図である。
FIG. 1 shows a cross-sectional view of a semiconductor device including a bipolar transistor formed by a conventional insulated gate field effect transistor (hereinafter referred to as MOS transistor) manufacturing process. FIG. 2 is an enlarged cross-sectional view of the bipolar transistor.

第1図において半導体基板1はn形シリコン単結晶、6
,7,8,9はn影領域、2,3゜4.5はp影領域、
11.13は酸化膜、10.12は多結晶シリコンであ
る。4,5.10および11でp形MO8)ランジスタ
を構成し、2 、6 、7゜12および13でn形MO
8)ランジスタを構成する。そして3,8.9で双極ト
ランジスタを構成する。ここで3は上記双極トランジス
タの限−大領域を、8はコレクタ領域を、9はエミッタ
領域を形成する。
In FIG. 1, a semiconductor substrate 1 is an n-type silicon single crystal, 6
, 7, 8, 9 are n shadow regions, 2, 3° 4.5 are p shadow regions,
11.13 is an oxide film, and 10.12 is polycrystalline silicon. 4, 5, 10 and 11 constitute a p-type MO transistor, and 2, 6, 7, 12 and 13 constitute an n-type MO transistor.
8) Configure transistors. 3,8.9 constitute a bipolar transistor. Here, 3 forms the maximum region of the bipolar transistor, 8 forms the collector region, and 9 forms the emitter region.

以上のようにMOSトランジスタ製造工程により双極ト
ランジスタを同一半導体基板上で構成できる。しかし上
述した従来の製造プロセス・・で形成した双極トランジ
スタには電流増幅率(以後hrgとする)が小さいとい
う欠点がある。
As described above, bipolar transistors can be constructed on the same semiconductor substrate through the MOS transistor manufacturing process. However, the bipolar transistor formed by the conventional manufacturing process described above has a drawback of having a small current amplification factor (hereinafter referred to as hrg).

第2図、第3図を用いてこの欠点iこついて詳しく説明
する。第2図、第3図において第1図と同一部分は同一
番号を記す。第2図において、16.17.18は双極
トランジスタ14のそれぞれベース端子、コレクタ端子
、エミッタ端子である。
This drawback will be explained in detail with reference to FIGS. 2 and 3. In FIGS. 2 and 3, the same parts as in FIG. 1 are designated by the same numbers. In FIG. 2, 16, 17, and 18 are the base terminal, collector terminal, and emitter terminal of the bipolar transistor 14, respectively.

また19は半導体基板1の端子を示す。通常半導体基板
1はp影領域と絶縁するため正極電源20を印加する。
Further, 19 indicates a terminal of the semiconductor substrate 1. Normally, a positive power source 20 is applied to the semiconductor substrate 1 to insulate it from the p-shade region.

上述してきた双極トランジスタ14には構成上、半導体
基板1をコレクタ、n影領域9をエミッタ、p影領域3
をベースとする寄生双極トランジスタ15が存在し、そ
のベース、エミッタ領域は双極トランジスタ14のベー
ス、エミッタ領域と同一である。そして第3図にその等
何回路を動作状態で示した。
The bipolar transistor 14 described above has a structure in which the semiconductor substrate 1 is the collector, the n-shade region 9 is the emitter, and the p-shade region 3 is the collector.
There is a parasitic bipolar transistor 15 based on , whose base and emitter regions are the same as those of the bipolar transistor 14 . FIG. 3 shows these circuits in operation.

、第3図において双極トランジスタ14、寄生双極トラ
ンジスタ15の共通エミッタ端子18を接地し、同共通
ベース端子16をバイアス電圧21に接続する。そして
双極トランジスタ14のコレクタ・端子17は他の回路
へ接続される。また寄生双極・トランジスタ15のコレ
クタは正極電源20に接続する。上記回路において寄生
双極トランジスタ15の電流増幅率(hrgx )と双
極トランジスタ14゜の電流増幅率(hrgt )を比
らべると、第2図の構造よりhrzt〉hrE2となる
。よって寄生双極トランジスタ15が先に動作を初めし
かもコレクタ電流は正極電源20より大電流が流れる。
, the common emitter terminal 18 of the bipolar transistor 14 and the parasitic bipolar transistor 15 is grounded, and the common base terminal 16 of the bipolar transistor 14 and the parasitic bipolar transistor 15 is connected to a bias voltage 21 in FIG. The collector/terminal 17 of the bipolar transistor 14 is then connected to other circuits. Further, the collector of the parasitic bipolar transistor 15 is connected to the positive power supply 20. Comparing the current amplification factor (hrgx) of the parasitic bipolar transistor 15 and the current amplification factor (hrgt) of the bipolar transistor 14° in the above circuit, it is found that hrzt>hrE2 from the structure shown in FIG. Therefore, the parasitic bipolar transistor 15 starts operating first, and a larger collector current flows than the positive power supply 20.

以上述べて来たように従来の半導体集積装置の双極トラ
ンジスタ14を動作させると寄生双極トランジスタ15
に大電流が流れてしまうという欠点が生じる。
As described above, when the bipolar transistor 14 of the conventional semiconductor integrated device is operated, the parasitic bipolar transistor 15
The disadvantage is that a large current flows through the

そこで本発明の目的は双極トランジスタ14の電流増幅
率(hrgs )を寄生双極トランジスタ15の電流増
幅率(hrgt )より′も大きい半導体集積装置を提
供するにある。
Therefore, an object of the present invention is to provide a semiconductor integrated device in which the current amplification factor (hrgs) of the bipolar transistor 14 is larger than the current amplification factor (hrgt) of the parasitic bipolar transistor 15.

本発明は双極トランジス゛りの電流増幅率がベース領域
の濃度に反比例することを利用し、双極トランジスタの
ベース領域(n影領域)へp形不純物を加えてベース領
域の濃度を低くするδ以下、本発明の一実施例を第4図
に示し詳しく説明する。ここで第2図と同一部分は同一
番号を記す。第4図において、22は低濃度のp影領域
(以後p−とする)であり、p影領域3よりも低濃度で
ある。一般に双極トランジスタの電流増幅率hrgは下
記の式で表わせる。
The present invention takes advantage of the fact that the current amplification factor of a bipolar transistor is inversely proportional to the concentration of the base region, and adds p-type impurities to the base region (n shadow region) of the bipolar transistor to lower the concentration of the base region. An embodiment of the present invention is shown in FIG. 4 and will be described in detail. Here, the same parts as in FIG. 2 are indicated by the same numbers. In FIG. 4, reference numeral 22 denotes a low-density p shadow region (hereinafter referred to as p-), which has a lower density than the p shadow region 3. Generally, the current amplification factor hrg of a bipolar transistor can be expressed by the following formula.

ここでρB二ベース領域の抵抗率。where ρB is the resistivity of the two base regions.

ρE:エミツタ領域の抵抗率、XB:ベース厚さ。ρE: Resistivity of emitter region, XB: Base thickness.

LE:エミッタの拡散長 (り式でわかるようにベース領域の抵抗率を大きくする
とhrgは増大する。すなわちベース領域の不純物濃度
を低くするとhpgは増大する。
LE: Diffusion length of emitter (As can be seen from the equation, hrg increases as the resistivity of the base region increases. In other words, hpg increases as the impurity concentration of the base region decreases.

そこで双極トランジスタ14および寄生双極トランジス
タ15の共通ベース領域であるp影領域3の表面だけに
n形不純物を加える。これによりp影領域3の表面より
浅い部分だけが低濃度のp影領域22となる。すなわち
p影領域22は双極トランジスタ14のベース領域であ
る。よって双極トランジスタ14のベース領域22と寄
生双極トランジスタ15のベース領域3の濃度を比較す
ると、(ベース領域22の濃度)〈(ベース領域3)と
なり、双極トランジスタ14の電流増幅率(hpg2)
を寄生双極トランジスタ15の電流増幅率(hrEt)
よりも大きくすることができる。
Therefore, n-type impurities are added only to the surface of the p shadow region 3, which is the common base region of the bipolar transistor 14 and the parasitic bipolar transistor 15. As a result, only a portion shallower than the surface of the p shadow region 3 becomes a low density p shadow region 22. That is, the p shadow region 22 is the base region of the bipolar transistor 14. Therefore, when comparing the concentrations of the base region 22 of the bipolar transistor 14 and the base region 3 of the parasitic bipolar transistor 15, (concentration of the base region 22) <(base region 3), the current amplification factor of the bipolar transistor 14 (hpg2)
is the current amplification factor (hrEt) of the parasitic bipolar transistor 15
can be made larger than.

以上、上述して来たように本発明によれば一般的にディ
ジタル回路用集積回路製造プロセスであるMOS)ラン
ジスタ製造プロセスで、双極トランジスタを同一基板上
に形成させたときに問題となる寄生双極トランジスタの
影響を小さくすることができる。
As described above, according to the present invention, the parasitic bipolar problem that occurs when bipolar transistors are formed on the same substrate in the MOS (MOS) transistor manufacturing process, which is generally an integrated circuit manufacturing process for digital circuits. The influence of the transistor can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】 1、第1導電屋半導体基板中に互いに隔離されて形成さ
れた1対の第2導電型ソース・ドレ  3イン領域を有
する第1の絶縁ゲート型電界効果トランジスタと該第1
導電型半導体基板中に形成された第2導電型の半導体領
域中に互いに隔離されて形成された1対の第1導電型ソ
ース・ドレイン領域を有する第2の絶縁ゲート型電界効
果トランジスタと該第1導電型半導体奉板中に該第2導
電型半導体領域と同時形成された第2導電型ベース領域
とこのベース領域中に互いに隔離されて該第2の絶縁ゲ
ート屋電界効果トランジスタのソース・ドレイン領域と
同時に形成された第1導電型コレクタ領域とエミッタ領
域とから成る双極トランジスタを具備してなり、該第2
導電型ベース領域の不純物濃度を表面に近い部分を低濃
度に、表面から離れた部分を高濃度にしたことを特徴と
する半導体集積装置。 2、第2導電瀧ベース領域に該第1導電型不純物が印加
されていることを特徴とする特許請求の範囲第1項記載
の半導体集積装置。
[Claims] 1. A first insulated gate field effect transistor having a pair of second conductivity type source/drain regions formed in a first conductive semiconductor substrate and isolated from each other; 1
a second insulated gate field effect transistor having a pair of first conductivity type source/drain regions separated from each other in a second conductivity type semiconductor region formed in a conductivity type semiconductor substrate; a second conductivity type base region formed simultaneously with the second conductivity type semiconductor region in a first conductivity type semiconductor substrate; and a source/drain of the second insulated gate field effect transistor separated from each other in the base region. a bipolar transistor comprising a first conductivity type collector region and an emitter region formed simultaneously with the second conductivity type collector region;
1. A semiconductor integrated device characterized in that the impurity concentration of a conductive base region is low in a portion close to the surface and high in a portion remote from the surface. 2. The semiconductor integrated device according to claim 1, wherein the first conductivity type impurity is applied to the second conductive base region.
JP10970782A 1982-06-28 1982-06-28 Semiconductor integrated device Pending JPS59954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10970782A JPS59954A (en) 1982-06-28 1982-06-28 Semiconductor integrated device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10970782A JPS59954A (en) 1982-06-28 1982-06-28 Semiconductor integrated device

Publications (1)

Publication Number Publication Date
JPS59954A true JPS59954A (en) 1984-01-06

Family

ID=14517176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10970782A Pending JPS59954A (en) 1982-06-28 1982-06-28 Semiconductor integrated device

Country Status (1)

Country Link
JP (1) JPS59954A (en)

Similar Documents

Publication Publication Date Title
JPS60247974A (en) Semiconductor device
JPS59954A (en) Semiconductor integrated device
US3936862A (en) MISFET and method of manufacture
JPH04225238A (en) Lateral transistor and current mirror circuit using same
JP2845544B2 (en) Method for manufacturing semiconductor device
JPS5949702B2 (en) Semiconductor integrated circuit device
JPH02294063A (en) Semiconductor integrated circuit
JPH01185971A (en) Insulated gate semiconductor device
JPH0321055A (en) Semiconductor integrated circuit device and manufacture of the same
JPS58122780A (en) Semiconductor device
JPH0245972A (en) Semiconductor device
JPH11345889A (en) Semiconductor device and manufacture thereof
JPS62293767A (en) Semiconductor integrated circuit
JPS6212665B2 (en)
JPH01273346A (en) Semiconductor device
JPH03145163A (en) Thyristor
JPH02237058A (en) Semiconductor integrated circuit and manufacture thereof
JPS6349912B2 (en)
JPH05864B2 (en)
JPS59200459A (en) Complementary type semiconductor device and manufacture thereof
JPS61260674A (en) Voltage-control variable current amplification factor bipolar transistor
JP2678081B2 (en) Semiconductor integrated circuit device
JP3260009B2 (en) Semiconductor device and manufacturing method thereof
JPS6276775A (en) Semiconductor device
JPS5910256A (en) Semiconductor integrated circuit device