JPS6372114A - Manufacture of memory cell - Google Patents

Manufacture of memory cell

Info

Publication number
JPS6372114A
JPS6372114A JP61217451A JP21745186A JPS6372114A JP S6372114 A JPS6372114 A JP S6372114A JP 61217451 A JP61217451 A JP 61217451A JP 21745186 A JP21745186 A JP 21745186A JP S6372114 A JPS6372114 A JP S6372114A
Authority
JP
Japan
Prior art keywords
trench
diffused layers
around
sidewalls
kev
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61217451A
Other languages
Japanese (ja)
Inventor
Yoshiharu Hidaka
義晴 日高
Katsuya Ishikawa
克也 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP61217451A priority Critical patent/JPS6372114A/en
Publication of JPS6372114A publication Critical patent/JPS6372114A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To make depths of diffused layers on sidewalls and on the bottom of a trench equal and prevent leakage due to aftertreatment with heat from developing between two trenches that are adjacent each other by causing a wafer to be rotated in sequence in a state where ion beams of impurities are slant at a prescribed angle to the sidewalls of the trench and performing ion implantation with a high energy of 100 keV or above. CONSTITUTION:A trench 3 of approximately 1.0X1.0mum<2> and at a depth of 4mum is formed in a single crystal silicon substrate 2 with a dry etching process. What is more, ions such as of As are implanted by causing ion beams 6 to be rotated at an accelerated energy of around 100 keV as well as a dose of around 1X10<15> cm<-2> in a state where the ion beams are slant at an angle of inclination x of around 10 deg. to the sidewall of the trench 3. Subsequently, an annealing is carried out and in such a case depths of diffused layers come to 1000-2000 Angstrom at the sidewall part and 1500-2500 Angstrom at a bottom part, resulting in the formation of a nearly uniform depth of the diffused layers 1. Thus, such an application of ion implantation where its density controllability is highly efficient makes it possible to form the reproducible and uniform diffused layers in the trench.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、イオン注入を用いたトレンチ型メモリーセル
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a trench type memory cell using ion implantation.

従来の技術 4メガビットダイナミックRAM以上の集積度を持った
メモリー素子においては、α線等の放射線が入射して電
荷が逃げたシするためにおきる誤動作(ソフトエラー)
に対する対策として、セルキャパシタの容量を大きくす
る必要がある。しかし、プレーナー型のキャパシタでは
、チップ面積が大きくなり、集積度を上げる点で問題が
ある。
Conventional technology In memory devices with an integration density of 4 megabits dynamic RAM or higher, malfunctions (soft errors) occur due to radiation such as alpha rays entering and charge escaping.
As a countermeasure against this, it is necessary to increase the capacity of the cell capacitor. However, planar capacitors require a large chip area, which poses a problem in increasing the degree of integration.

そのため、トレンチキャパシタ技術が必要不可欠なもの
である。トレンチキャパシタにおいては、トレンチ側壁
に一様な不純物拡散層を形成しなければ、近接トレンチ
間におけるリーク等の不良の原因となる。従来、トレン
チキャパシタにおけるトレンチ側壁へのドーピング法と
して、気相拡散法や、固相拡散法が検討されている。気
相拡散法は、第3図aに示すように、半導体基板2にド
ライエツチング工程によりトレンチ3を形成した後に同
図すのように、高温雰囲気中で、P 、 As 。
Therefore, trench capacitor technology is essential. In a trench capacitor, if a uniform impurity diffusion layer is not formed on the trench sidewalls, defects such as leakage between adjacent trenches may occur. Conventionally, vapor phase diffusion and solid phase diffusion have been studied as methods for doping trench sidewalls in trench capacitors. In the vapor phase diffusion method, as shown in FIG. 3a, a trench 3 is formed in a semiconductor substrate 2 by a dry etching process, and then P and As are formed in a high temperature atmosphere as shown in the same figure.

B系のガス4を流し、気相から半導体基板2中へ拡散さ
せ、不純物拡散層1を形成する方法である。
This is a method of flowing a B-based gas 4 and diffusing it from the vapor phase into the semiconductor substrate 2 to form the impurity diffusion layer 1.

固相拡散法は、第4図aに示すように半導体基板2にド
ライエツチング工程によりトレンチ3を形成した後に、
同図りのように1)レンチ内部へ、P、As、Bなどの
不純物の含まれたSi系ガラス5を一様に形成し、つい
で、同図Cのように、後の熱処理工程により、Si系ガ
ラスを介し、トレンチ側壁へ固相から拡散させ不純物拡
散層1を形成する方法である。
In the solid phase diffusion method, as shown in FIG. 4a, after forming a trench 3 in a semiconductor substrate 2 by a dry etching process,
As shown in the same figure, 1) Si-based glass 5 containing impurities such as P, As, and B is uniformly formed inside the wrench, and then, as shown in C of the same figure, Si is In this method, the impurity diffusion layer 1 is formed by diffusing impurity from a solid phase to the sidewall of a trench through a base glass.

発明が解決しようとする問題点 トレンチキャパシタにおいては、トレンチ側壁への制御
性の良い不純物の注入が重要な技術となっている。特に
、濃度制御の問題が重要である。
Problems to be Solved by the Invention In trench capacitors, an important technique is to implant impurities into trench sidewalls with good controllability. In particular, the problem of concentration control is important.

気相拡散法は、不純物の入ったガス4をトレンチ底部ま
で一様に流すという面で難しさが存在する。
The vapor phase diffusion method has difficulty in uniformly flowing the impurity-containing gas 4 to the bottom of the trench.

固相拡散法は、St系ガラス5中の不純物濃度のばらつ
きが存在する点に難しさがある。その上、プロセス的に
も、専用の新しい装置が必要となったり、複雑になると
いった問題が存在する。イオン注入法は、製造プロセス
は簡単であるが、通常のプレーナー型での注入条件では
、第2図に示すように、不純物イオンビーム6がトレン
チ側壁で弾性散乱され、その散乱ビーム7がトレンチ底
部に多量に注入される。実際のメモリー素子においては
、トレンチが近接して存在するために、第2図に示すよ
うなトレンチ底部の深い不純物拡散層1の形状をしてい
ると、後の熱処理工程により不純物の拡散が起こシ隣接
セル間のトレンチでリ−りを起こすというような問題が
存在する。
The solid phase diffusion method has a difficulty in that there are variations in the impurity concentration in the St-based glass 5. Furthermore, there are problems in terms of the process, such as the need for new dedicated equipment and the complexity. The ion implantation method has a simple manufacturing process, but under normal implantation conditions for a planar type, as shown in FIG. is injected in large quantities. In actual memory devices, trenches are located close to each other, so if the shape of the deep impurity diffusion layer 1 at the bottom of the trench is as shown in Figure 2, impurity diffusion will occur during the subsequent heat treatment process. There are problems such as leakage in trenches between adjacent cells.

問題点を解決するための手段 この問題点を解決するために本発明は不純物イオンビー
ムをトレンチ側壁に対して所定の角度傾けた状態で、ウ
ェハーを逐次回転させ、100KeV以上の高エネルギ
ーで注入する方法を用いる。
Means for Solving the Problem In order to solve this problem, the present invention sequentially rotates the wafer while tilting the impurity ion beam at a predetermined angle with respect to the trench sidewall, and implants the impurity ion beam at a high energy of 100 KeV or more. Use methods.

作  用 100KeV以上の高エネルギーで注入することによっ
て、イオンビームが高エネルギーであるためにトレンチ
側壁が、不純物イオンによってアモルファス化され、側
壁での散乱効果が著しく減少し、トレンチ底部への注入
量が減少する。このことにより、トレンチの側壁部と底
部とで、同程度の拡散層の深さが可能となり、後の熱処
理による近接したトレンチ間のリークがなくなる。
Effect By implanting at a high energy of 100 KeV or more, the trench sidewalls are made amorphous by the impurity ions due to the high energy of the ion beam, the scattering effect on the sidewalls is significantly reduced, and the amount of implantation to the trench bottom is reduced. Decrease. This allows the depth of the diffusion layer to be comparable between the sidewalls and the bottom of the trench, eliminating leakage between adjacent trenches due to subsequent heat treatment.

実施例 本発明のイオン注入によるトレンチ型メモリーセルの製
造方法を第1図の一実施例によシ説明する。単結晶シリ
コン基板2に1.OXl、Oμ扉で深さ4μm程度のト
レンチ3をドライ′エッチング工程によシ形成し、イオ
ンビーム6をトレンチ側壁に対して、傾斜角Xを100
程度傾けた状態で、加速エネルギー1oo KeV程度
、ドーズ量1×10 C!n 程度で、90’ずつ4回
、回転させる方法によって、  Asイオンを注入する
。その底部で1000人〜2500人となり、第1図に
示すようなほぼ均等な深さの拡散層1を得ることができ
る。また、4MDRAMレベルのセルキャパシタにおい
ても、隣接トレンチ間のリークもなく、ンフトエラー的
にも良好な結果を得ることができる。
Embodiment A method of manufacturing a trench type memory cell by ion implantation according to the present invention will be explained with reference to an embodiment shown in FIG. 1 on the single crystal silicon substrate 2. A trench 3 with a depth of about 4 μm is formed using a dry etching process using the OXl and Oμ doors, and the ion beam 6 is set at an inclination angle of 100 to the side wall of the trench.
In a tilted state, the acceleration energy is about 100 KeV, and the dose is 1×10 C! As ions are implanted by rotating the wafer by 90' four times at an angle of about n. At the bottom, there are 1,000 to 2,500 people, and it is possible to obtain a diffusion layer 1 of approximately uniform depth as shown in FIG. Further, even in a cell capacitor of 4M DRAM level, there is no leakage between adjacent trenches, and good results can be obtained in terms of noise and noise.

発明の効果 以上のように本発明によれば、イオン注入という濃度制
御性の最も良い方法を利用して、再現性よく、一様な拡
散層をトレンチ内部に形成することができる。このこと
により、近接セル間リークのなく、高集積化に寄与する
トレンチキャパシタの製造方法として有効である。
Effects of the Invention As described above, according to the present invention, a uniform diffusion layer can be formed inside a trench with good reproducibility by using ion implantation, which is the method with the best concentration controllability. This is effective as a method for manufacturing a trench capacitor that contributes to high integration without leakage between adjacent cells.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるトレンチキャパシタにおける側壁
へのドーピングを行った時の断面図、第2図は従来のイ
オン注入のエネルギーでトレンチ側壁へドーピングした
時の断面図、第3図は気相拡散法による・トレンチへの
不純物ドーピング法の工程順断面図、第4図は固相拡散
法によるトレンチへの不純物のドーピング法の工程順断
面図である。 1・・・・・・不純物拡散層、2・・・・・・半導体基
板、3・・・・・・トレンチ、4・・・・・・不純物系
ガス、5・・・・・・Si系ガラス、6・・・・・・イ
オンビーム、7・・・・・・散乱ビーム。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名G−
4χンビ゛−4 6−−−イλンt:’< 第 3 図 3  ”−+に*T−,°°″
Figure 1 is a cross-sectional view when the sidewall of a trench capacitor according to the present invention is doped, Figure 2 is a cross-sectional view when the sidewall of the trench is doped using conventional ion implantation energy, and Figure 3 is a gas-phase diffusion FIG. 4 is a step-by-step sectional view of a method for doping impurities into a trench by a solid-phase diffusion method. DESCRIPTION OF SYMBOLS 1... Impurity diffusion layer, 2... Semiconductor substrate, 3... Trench, 4... Impurity-based gas, 5... Si-based Glass, 6...Ion beam, 7...Scattered beam. Name of agent: Patent attorney Toshio Nakao and one other person G-
4χ Bin-4 6---In λ int:'< Figure 3 ``-+ to *T-, °°''

Claims (1)

【特許請求の範囲】[Claims]  基板表面にトレンチを形成した後に、イオンビームを
、トレンチ側壁に対して所定の角度傾けた状態で、同基
板を逐次回転させて、前記トレンチ側壁へ100KeV
以上の高エネルギーで打ち込むことを特徴とするメモリ
ーセルの製造方法。
After forming a trench on the substrate surface, the ion beam is tilted at a predetermined angle with respect to the trench sidewall, and the substrate is sequentially rotated to apply 100 KeV to the trench sidewall.
A method for manufacturing a memory cell characterized by implanting with high energy as described above.
JP61217451A 1986-09-16 1986-09-16 Manufacture of memory cell Pending JPS6372114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61217451A JPS6372114A (en) 1986-09-16 1986-09-16 Manufacture of memory cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61217451A JPS6372114A (en) 1986-09-16 1986-09-16 Manufacture of memory cell

Publications (1)

Publication Number Publication Date
JPS6372114A true JPS6372114A (en) 1988-04-01

Family

ID=16704440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61217451A Pending JPS6372114A (en) 1986-09-16 1986-09-16 Manufacture of memory cell

Country Status (1)

Country Link
JP (1) JPS6372114A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4985368A (en) * 1987-03-23 1991-01-15 Mitsubishi Denki Kabushiki Kaisha Method for making semiconductor device with no stress generated at the trench corner portion
US5112762A (en) * 1990-12-05 1992-05-12 Anderson Dirk N High angle implant around top of trench to reduce gated diode leakage
US5372950A (en) * 1991-05-18 1994-12-13 Samsung Electronics Co., Ltd. Method for forming isolation regions in a semiconductor memory device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61202426A (en) * 1985-03-05 1986-09-08 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61202426A (en) * 1985-03-05 1986-09-08 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4985368A (en) * 1987-03-23 1991-01-15 Mitsubishi Denki Kabushiki Kaisha Method for making semiconductor device with no stress generated at the trench corner portion
US5112762A (en) * 1990-12-05 1992-05-12 Anderson Dirk N High angle implant around top of trench to reduce gated diode leakage
US5372950A (en) * 1991-05-18 1994-12-13 Samsung Electronics Co., Ltd. Method for forming isolation regions in a semiconductor memory device

Similar Documents

Publication Publication Date Title
JP2002110693A (en) Diagonal injection method for execution of doping to sidewall of deep porous trench
JPS63166220A (en) Manufacture of semiconductor device
JP2003163224A (en) Method for manufacturing mos transistor
JPH0727877B2 (en) Ion implantation method
JPS6372114A (en) Manufacture of memory cell
JPS63239939A (en) Method and apparatus for introducing impurity into semiconductor substrate
JPS63133664A (en) Manufacture of semiconductor device
JPH0194667A (en) Manufacture of semiconductor device
JPS63115359A (en) Manufacture of trench type capacitor
JPS62285470A (en) Manufacture of semiconductor device
JPH11191613A (en) Manufacture of capacity electrode
JPH04119631A (en) Manufacture of semiconductor device
JPH02111062A (en) Manufacture of semiconductor memory
JPS63271972A (en) Manufacture of thin film transistor
JP2694957B2 (en) Method for manufacturing semiconductor device
JPH0393233A (en) Manufacture of semiconductor device
JPS63133562A (en) Manufacture of groove type capacitor
JPH01108762A (en) Semiconductor device and manufacture thereof
JPS63245955A (en) Manufacture of memory cell
JPH0210864A (en) Manufacture of semiconductor device
JPH09260301A (en) Ion implanting method
JPS61119075A (en) Manufacture of semiconductor device
JPH07268663A (en) Formation of capacitor insulating film, formation of semiconductor memory device and apparatus for producing semiconductor
JPS61288462A (en) Manufacture of semiconductor device
JP2774535B2 (en) Method for manufacturing semiconductor device