JPH01108762A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH01108762A
JPH01108762A JP62266764A JP26676487A JPH01108762A JP H01108762 A JPH01108762 A JP H01108762A JP 62266764 A JP62266764 A JP 62266764A JP 26676487 A JP26676487 A JP 26676487A JP H01108762 A JPH01108762 A JP H01108762A
Authority
JP
Japan
Prior art keywords
transistor
trench
channel
layer
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62266764A
Other languages
Japanese (ja)
Other versions
JP2506830B2 (en
Inventor
Masanori Fukumoto
正紀 福本
Takashi Osone
隆志 大曽根
Mitsuo Yasuhira
光雄 安平
Toshiki Yabu
藪 俊樹
Yoshiyuki Iwata
岩田 栄之
Yohei Ichikawa
洋平 市川
Kazuhiro Matsuyama
和弘 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62266764A priority Critical patent/JP2506830B2/en
Publication of JPH01108762A publication Critical patent/JPH01108762A/en
Application granted granted Critical
Publication of JP2506830B2 publication Critical patent/JP2506830B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/39DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor and the transistor being in a same trench
    • H10B12/395DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor and the transistor being in a same trench the transistor being vertical

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To facilitate the setting of impurity concentration and the prediction of characteristics by uniformly introducing impurity to determine transistor characteristics into a part of side wall surface of a trench formed in a semiconductor, which part turns to a channel, by a means such as oblique ion implantation from the side wall surface. CONSTITUTION:A deep trench is formed on a substrate composed of P-type silicon 1 of high concentration and a P-type epitaxial layer 2. A storage capacitor part is formed in the inside of the trench, by using polycrystalline silicon electrode 4 to store electric charge and an SiO2 film 3. Further, an N-type layer 5 and a buried contact layer 6 turning to the source.drain of a vertical type transistor are formed. The inside of the trench is oxidized, and an SiO2 film 11 is grown on the side wall surface at which a channel 9 of the transistor is positioned. Boron ion 12 to determine transistor characteristics is ion- implanted obliquely to a channel regin 9, through the SiO2 film 11 from a trench aperture part. By this implantation, an impurity layer of uniform concentration is introduced in the region 9. Thereby a structure which is not different from usual transistors is realized in spite of a vertical type transistor.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置、特に半導体基板に形成した溝の側
壁をチャンネル領域として用いるMO8形トランジスタ
の構造およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor device, and particularly to a structure of an MO8 type transistor in which the sidewall of a trench formed in a semiconductor substrate is used as a channel region, and a method for manufacturing the same.

従来の技術 大容量、高集積度を可能にするダイナミックRAMのメ
モリーセル構造の一つとして第4図に示すものがある。
BACKGROUND OF THE INVENTION One of the memory cell structures of a dynamic RAM that enables large capacity and high degree of integration is shown in FIG.

このメモリーセルの各部構成は次のようである。すなわ
ち、高濃度のP形シリコン1上にP形エピタキシャル層
2を成長させた基板を貫いて深い溝が形成される。4は
リンを含むN形多結晶シリコンよ構成る記憶用電荷蓄積
電極、3は極く薄いS X02膜であって、高濃度P形
シリコン基板1をプレート電極とし、3と4で記憶容量
をつくっている。一方スイツチングトランジスタは、エ
ピタキシャル層表面に形成されたN形層6および、溝側
壁に多結晶シリコン4を接触させ、4からリンを拡散し
て得たN形埋め込みコンタクト層6をソース・ドレイン
、薄い5lo2膜8をゲート酸化膜、多結晶シリコン配
線7をゲート電極として、通常のトランジスタとは異な
シ縦方向に構成されている。従って溝側壁表面の6と6
ではさまれた部分9がこのトランジスタのチャンネル領
域となっているのである。またトランジスタと記憶容量
は6で接続されており、多結晶シリコン電極4の記憶用
電荷は、埋込みコンタクト層6を通じ、上記縦型トラン
ジスタによシその出し入れが制御されるようになってい
る。これかられかるように多結晶シリコン配線7はワー
ド線、N形層6はビット線としての役目を持つものであ
る。
The configuration of each part of this memory cell is as follows. That is, a deep groove is formed through the substrate on which the P-type epitaxial layer 2 is grown on the highly doped P-type silicon 1. 4 is a storage charge storage electrode made of N-type polycrystalline silicon containing phosphorus, 3 is an extremely thin S be making. On the other hand, in the switching transistor, polycrystalline silicon 4 is brought into contact with the N-type layer 6 formed on the surface of the epitaxial layer and the trench sidewall, and the N-type buried contact layer 6 obtained by diffusing phosphorus from 4 is used as the source, drain, The thin 5LO2 film 8 is used as a gate oxide film, and the polycrystalline silicon wiring 7 is used as a gate electrode, and the transistor is configured in a vertical direction, which is different from a normal transistor. Therefore, 6 and 6 on the groove side wall surface
The portion 9 sandwiched between the two serves as the channel region of this transistor. Further, the transistor and the storage capacitor are connected through 6, and the storage charge of the polycrystalline silicon electrode 4 is controlled to enter and exit the vertical transistor through the buried contact layer 6. As will be seen from now on, the polycrystalline silicon wiring 7 serves as a word line, and the N-type layer 6 serves as a bit line.

以上のメモリーセルでは、一つの溝中に記憶容量と共に
トランジスタも縦形に形成して入れることができるので
、セルの占有面積が減少し、高集積化に有利である。従
来縦形トランジスタのしきい電圧vTなど電気的緒特性
は、チャンネル領域9を含むエピタキシャル層2の不純
物濃度分布を深さ方向に制御することによって決定され
ていた。
In the above memory cell, since the transistor as well as the storage capacitor can be vertically formed and placed in one trench, the area occupied by the cell is reduced, which is advantageous for high integration. Conventionally, electrical characteristics such as the threshold voltage vT of a vertical transistor have been determined by controlling the impurity concentration distribution of the epitaxial layer 2 including the channel region 9 in the depth direction.

従っである決まった深さでの濃度は水平方向に一定であ
る。第3図は、第4図におけるA−A断面における深さ
方向不純物濃度分布の一例である。
Therefore, the concentration at a certain depth is constant in the horizontal direction. FIG. 3 is an example of the depth direction impurity concentration distribution in the AA cross section in FIG. 4.

基板表面付近のヒ素(八8)による高濃度層は、6によ
るものであシ、その接合深さは約0.8μmである。こ
れよシ下、2.0μm付近までが縦形トランジスタのチ
ャンネル領域が存在する位置であり、そのボロン(B)
濃度分布が電気的特性を決定しているのである。ボロン
濃度は、深さ〜0.8μmで〜5 X 10  /cd
 、深さ2.0μm!lでは〜5 X 10’ ”/c
yfである。
The high concentration layer of arsenic (88) near the substrate surface is formed by arsenic 6, and its junction depth is about 0.8 μm. Below this, up to around 2.0 μm, is the position where the channel region of the vertical transistor exists, and its boron (B)
The concentration distribution determines the electrical characteristics. The boron concentration is ~5 X 10 /cd at a depth of ~0.8 μm
, depth 2.0μm! In l ~5 X 10'”/c
It is yf.

発明が解決しようとする問題点 以上のように従来技術では、縦型トランジスタのチャン
ネル領域でボロン濃度に深さ方向分布が出る、すなわち
、チャンネル方向にボロン濃度が連続的に変化すること
になるため、チャンネル部の不純物濃度が一定となって
いる通常の水平構造を持つトランジスタと比較し、所望
の特性を得るための不純物濃度設定が複雑になること、
またそうしたトランジスタの電気的特性の予想が難しく
なるという欠点が存在した。
Problems to be Solved by the Invention As described above, in the conventional technology, the boron concentration has a depth distribution in the channel region of a vertical transistor, that is, the boron concentration changes continuously in the channel direction. , compared to a transistor with a normal horizontal structure in which the impurity concentration in the channel part is constant, it is more complicated to set the impurity concentration to obtain the desired characteristics;
Another drawback was that it became difficult to predict the electrical characteristics of such transistors.

問題点を解決するための手段 本発明は、上記従来技術に見られる欠点を解決する縦形
トランジスタ構造、および羊の製造方法を提供するもの
である。本発明においては、半導体基板に形成した溝の
側壁表面のチャンネルとなる部分に、斜めイオン注入な
どの手段によシ、側壁表面から、トランジスタ特性を決
定する不純物を均一に導入し、チャンネル方向に−様な
不純物濃度を持った構造にするのである。
SUMMARY OF THE INVENTION The present invention provides a vertical transistor structure and a method of manufacturing a sheep that overcomes the drawbacks of the prior art described above. In the present invention, an impurity that determines transistor characteristics is uniformly introduced from the sidewall surface of a groove formed in a semiconductor substrate into a portion of the sidewall surface that will become the channel by means such as oblique ion implantation, and then -The structure is made to have a similar impurity concentration.

作  用 斜めイオン注入などによシ、溝側壁表面から不純物を導
入すると、側壁表面のどの部分にも同一量だけ不純物が
導入されるから、チャンネル方向の不純物濃度が均一と
なシ、通常の水平構造トランジスタと同じ構造になる。
Effect When impurities are introduced from the groove sidewall surface by oblique ion implantation, the same amount of impurity is introduced into every part of the sidewall surface, so the impurity concentration in the channel direction is not uniform, and the normal horizontal It has the same structure as a transistor.

従って、従来から確立された方法を用いてトランジスタ
の不純物濃度設定、特性予測ができる。
Therefore, it is possible to set the impurity concentration and predict the characteristics of the transistor using conventionally established methods.

実施例 第1図a、bは、本発明による製造工程に従ってダイナ
ミックRAMのメモリーセル内の縦形トランジスタを形
成する時の工程断面図である。第1図aにおいて、先ず
従来の方法によシ、高濃度P形シリコン1とP形エピタ
キシャル層2よシ成る基板に深い溝を形成し、溝内部に
電荷蓄積用多結晶シリコン電極4とSiO□膜3で記憶
容量部を形成し、さらに縦形トランジスタのソース・ド
レインとなるN形層5と埋込みコンタクト層6を形成し
ておく。次に、溝内部を酸化し、トランジスタのチャン
ネル部9が位置する側壁表面に厚さ10〜20 nmの
8102膜11を成長させる。このようにして後、溝開
口部から8102膜11を通し、チャンネル領域9へ斜
めにトランジスタ特性を決定するボロンイオン12の注
入を行う。注入角度は、溝開口部から入射したイオンが
十分溝底面まで達するように選択すればよい。注入によ
って、領域9には−様な濃度の不純物層13が導入され
ることがわかるが、この過程は、通常の水平構造トラン
ジスタの製造における過程と同一のものである。ポロン
イオン12はN影領域4,5.6にも注入される。しか
し、注入は主としてしきい電圧制御用であるから、ボロ
ン注入層の濃度は、〜1017/cIIであり、領域4
,5.6のN形不純物濃図示されている2面と、それら
に直角な方向に2面の合計4面あるので、斜めイオン注
入はボロンのビーム方向をそれぞれの面に向けて4回行
なわねばならない。イオン注入後は、S 102膜11
をフッ酸系の液で除去し、再び溝側壁表面を酸化して厚
さ10〜15nmのゲート酸化膜8を成長させ、さらに
ゲート電極となる多結晶シリコン配線7を形成すれば第
1図すのようにメモリーセル内に縦形トランジスタが完
成する。
Embodiment FIGS. 1a and 1b are cross-sectional views showing the process of forming a vertical transistor in a memory cell of a dynamic RAM according to the manufacturing process according to the present invention. In FIG. 1a, first, a deep groove is formed in a substrate consisting of a highly doped P-type silicon 1 and a P-type epitaxial layer 2 by a conventional method, and a polycrystalline silicon electrode 4 for charge storage and an SiO2 layer are formed inside the groove. □ A memory capacitor portion is formed using the film 3, and an N-type layer 5 and a buried contact layer 6, which will become the source and drain of the vertical transistor, are also formed. Next, the inside of the trench is oxidized, and an 8102 film 11 with a thickness of 10 to 20 nm is grown on the side wall surface where the channel portion 9 of the transistor is located. After this, boron ions 12, which determine transistor characteristics, are implanted diagonally from the trench opening through the 8102 film 11 into the channel region 9. The implantation angle may be selected so that the ions incident from the trench opening sufficiently reach the trench bottom. It can be seen that the impurity layer 13 having a −-like concentration is introduced into the region 9 by implantation, and this process is the same as that in manufacturing a normal horizontal structure transistor. Poron ions 12 are also implanted into the N shadow regions 4, 5.6. However, since the implantation is mainly for threshold voltage control, the concentration of the boron implanted layer is ~1017/cII, and the region 4
, 5.6, there are four surfaces in total, the two shown in the diagram with N-type impurity concentration and two surfaces perpendicular to these, so the oblique ion implantation was performed four times with the boron beam direction facing each surface. Must be. After ion implantation, S102 film 11
is removed with a hydrofluoric acid solution, the trench sidewall surface is oxidized again to grow a gate oxide film 8 with a thickness of 10 to 15 nm, and a polycrystalline silicon wiring 7 that will become a gate electrode is formed, as shown in Figure 1. A vertical transistor is completed in the memory cell as shown in the figure.

溝側壁のチャンネル領域に一様なボロンの不純物分布を
得るには、第2図に示すようにBSG膜を用いることも
可能である。第2図において、14は約30〜50nm
程度の厚さを有する多結晶シリコン膜であシ、深い溝を
形成する際エツチングマスクの一部として使われたもの
である。溝側壁9を露出した後、所定濃度のボロンを含
むBSG膜16を被着し、高温マボロンを9の表面に一
様な濃度に拡散することができる。拡散後、BSG膜1
6をフッ酸系エツチング液で除去する際、多結晶シリコ
ン膜14が厚いS 102膜10を保護する。最後に膜
14を除き、第1図すの如く、ゲート酸化膜、ゲート電
極を形成すればよいのである。
In order to obtain a uniform boron impurity distribution in the channel region of the trench sidewall, it is also possible to use a BSG film as shown in FIG. In Figure 2, 14 is approximately 30-50 nm
This is a polycrystalline silicon film with a certain thickness and was used as part of an etching mask when forming deep grooves. After exposing the trench sidewalls 9, a BSG film 16 containing boron at a predetermined concentration is deposited, and high-temperature Mabolon can be diffused onto the surface of the trenches 9 at a uniform concentration. After diffusion, BSG film 1
The polycrystalline silicon film 14 protects the thick S102 film 10 when the S102 film 6 is removed using a hydrofluoric acid etching solution. Finally, the film 14 is removed and a gate oxide film and a gate electrode are formed as shown in FIG.

溝側壁に一様に不純物導入する方法として他にプラズマ
ドーピング法のような気相からの拡散も可能である。し
かし、しきい電圧設定のような低濃度不純物導入を正確
にかつ制御よく行なうためKは斜めイオン注入法が最も
優れている。
Another method for uniformly introducing impurities into the trench sidewalls is diffusion from a gas phase such as plasma doping. However, the oblique ion implantation method is most suitable for K in order to accurately and controllably introduce low concentration impurities such as setting a threshold voltage.

本発明は、実施例に示したメモリーセル内の縦形トラン
ジスタだけでなく、他のデバイスに組込まれた縦形トラ
ンジスタにも適用できることはいうまでもない。
It goes without saying that the present invention can be applied not only to the vertical transistors in the memory cells shown in the embodiments, but also to vertical transistors incorporated in other devices.

発明の効果 以上述べたように、本発明では、斜めイオン注入などの
簡単な手段によシ溝の側壁にも一様に不純物導入できる
ため、トランジスタが縦形であっても通常のトランジス
タと変シない構造が実現され、従って不純物濃度設定、
特性予測も困難なくでき、その効果を発揮するものであ
る。
Effects of the Invention As described above, in the present invention, impurities can be uniformly introduced into the sidewalls of the trench by simple means such as oblique ion implantation, so even if the transistor is vertical, it is different from a normal transistor. No structure is realized, therefore impurity concentration setting,
Characteristics can be predicted without difficulty, and its effects are demonstrated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に基いて縦形トランジスタを製造する第
1実施例を説明する断面図、第2図は本発明の第2実施
例を説明する断面図、第3図は従来の縦形トランジスタ
における不純物分布図、第4図は従来の縦形トランジス
タの断面図である。 1・・・・・・高濃度P形シリコン、2・・・・・・P
形エピタキシャル層、3,10,11・・・・・・51
02膜、4・・・・・・多結晶シリコン電極、6・・・
・・・N形層、6・・・・・・埋込みコンタクト層、7
・・・・・・多結晶シリコン配線、8・・・・・・ゲー
ト酸化膜、9・・・・・・チャンネル領域、12・・・
・・ボロンイオン、13・・・・・・ボロン注入層、1
4・・・・・・多結晶シリコン膜、16・・・・・・B
SG膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第3
図 第4&!J
FIG. 1 is a cross-sectional view explaining a first embodiment of manufacturing a vertical transistor according to the present invention, FIG. 2 is a cross-sectional view explaining a second embodiment of the present invention, and FIG. 3 is a cross-sectional view of a conventional vertical transistor. The impurity distribution diagram, FIG. 4, is a cross-sectional view of a conventional vertical transistor. 1...High concentration P type silicon, 2...P
Type epitaxial layer, 3, 10, 11...51
02 film, 4...polycrystalline silicon electrode, 6...
... N-type layer, 6 ... Buried contact layer, 7
...Polycrystalline silicon wiring, 8...Gate oxide film, 9...Channel region, 12...
...Boron ion, 13...Boron implanted layer, 1
4...Polycrystalline silicon film, 16...B
SG membrane. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 3
Figure 4 &! J

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板に形成された溝の側壁表面領域をチャ
ンネルとして用いる縦形トランジスタを含み、前記チャ
ンネル領域に導入された不純物の分布が前記側壁表面方
向に均一である半導体装置。
(1) A semiconductor device including a vertical transistor that uses a sidewall surface region of a trench formed in a semiconductor substrate as a channel, and in which impurities introduced into the channel region are uniformly distributed in the direction of the sidewall surface.
(2)半導体基板に形成された溝の側壁表面領域のうち
、トランジスタのチャンネルとなるべき部分に、前記側
壁表面の方向に均一な分布となるように不純物を導入し
てなる半導体装置の製造方法。
(2) A method for manufacturing a semiconductor device in which impurities are introduced into a portion of the sidewall surface region of a trench formed in a semiconductor substrate, which is to become a channel of a transistor, so as to have a uniform distribution in the direction of the sidewall surface. .
(3)不純物導入の方法が斜めイオン注入である特許請
求の範囲第2項に記載の半導体装置の製造方法。
(3) The method for manufacturing a semiconductor device according to claim 2, wherein the impurity introduction method is oblique ion implantation.
JP62266764A 1987-10-21 1987-10-21 Method for manufacturing semiconductor device Expired - Lifetime JP2506830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62266764A JP2506830B2 (en) 1987-10-21 1987-10-21 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62266764A JP2506830B2 (en) 1987-10-21 1987-10-21 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH01108762A true JPH01108762A (en) 1989-04-26
JP2506830B2 JP2506830B2 (en) 1996-06-12

Family

ID=17435380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62266764A Expired - Lifetime JP2506830B2 (en) 1987-10-21 1987-10-21 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2506830B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997000536A1 (en) * 1995-06-14 1997-01-03 Totem Semiconductor Ltd Semiconductor device fabrication
JP2008218846A (en) * 2007-03-06 2008-09-18 Rohm Co Ltd Nitride semiconductor element and manufacturing method of nitride semiconductor element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61239658A (en) * 1985-04-16 1986-10-24 Toshiba Corp Semiconductor memory device
JPS62140456A (en) * 1985-12-16 1987-06-24 Toshiba Corp Semiconductor storage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61239658A (en) * 1985-04-16 1986-10-24 Toshiba Corp Semiconductor memory device
JPS62140456A (en) * 1985-12-16 1987-06-24 Toshiba Corp Semiconductor storage

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997000536A1 (en) * 1995-06-14 1997-01-03 Totem Semiconductor Ltd Semiconductor device fabrication
US6274437B1 (en) 1995-06-14 2001-08-14 Totem Semiconductor Limited Trench gated power device fabrication by doping side walls of partially filled trench
JP2008218846A (en) * 2007-03-06 2008-09-18 Rohm Co Ltd Nitride semiconductor element and manufacturing method of nitride semiconductor element

Also Published As

Publication number Publication date
JP2506830B2 (en) 1996-06-12

Similar Documents

Publication Publication Date Title
US5017504A (en) Vertical type MOS transistor and method of formation thereof
US4845537A (en) Vertical type MOS transistor and method of formation thereof
US4116720A (en) Method of making a V-MOS field effect transistor for a dynamic memory cell having improved capacitance
KR900007607B1 (en) Semiconductor memory device and manufacturing method thereof
JP2002110693A (en) Diagonal injection method for execution of doping to sidewall of deep porous trench
US20070202638A1 (en) Vertical misfet manufacturing method, vertical misfet, semiconductor memory device manufacturing method, and semiconductor memory device
US5593906A (en) Method of processing a polysilicon film on a single-crystal silicon substrate
US4225879A (en) V-MOS Field effect transistor for a dynamic memory cell having improved capacitance
JP2524002B2 (en) Method of manufacturing bipolar dynamic RAM having vertical structure and structure of the dynamic RAM
JPH03278457A (en) Memory cell array
JPH01108762A (en) Semiconductor device and manufacture thereof
JPH0831568B2 (en) Method for manufacturing semiconductor memory device
KR930005738B1 (en) Mist type dynamic random access memory cell and method for fabricating thereof
JPS63227050A (en) Semiconductor memory device and manufacture thereof
JPH02111062A (en) Manufacture of semiconductor memory
JPH04155932A (en) Production of semiconductor device
JPS61119075A (en) Manufacture of semiconductor device
JPH02303049A (en) Semiconductor device and manufacture thereof
KR930011544B1 (en) Method of fabricating for stacked cell
JPS61144059A (en) Semiconductor memory storage
JPH0235766A (en) Manufacture of semiconductor device
KR900000991B1 (en) Method of producing dram
JPH01251715A (en) Manufacture of semiconductor device
JPH0235714A (en) Manufacture of semiconductor device
JPS61288462A (en) Manufacture of semiconductor device