JPH0235714A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0235714A
JPH0235714A JP63185952A JP18595288A JPH0235714A JP H0235714 A JPH0235714 A JP H0235714A JP 63185952 A JP63185952 A JP 63185952A JP 18595288 A JP18595288 A JP 18595288A JP H0235714 A JPH0235714 A JP H0235714A
Authority
JP
Japan
Prior art keywords
resist film
side wall
recessed part
recess
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63185952A
Other languages
Japanese (ja)
Inventor
Hisashi Ogawa
久 小川
Haruhide Fuse
玄秀 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63185952A priority Critical patent/JPH0235714A/en
Publication of JPH0235714A publication Critical patent/JPH0235714A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control leak current by a method wherein the part of a gate controlled diode is made an LDD structure by forming a high concentration PN junction on the side wall of a recessed part, and at the same time by setting a gradient in the concentration of a diffusion layer, only in the bottom of the recessed part. CONSTITUTION:After a first resist film 6 is flatly spread on a silicon substrate 1 on which a step-difference is formed, a first oxide film 2 is formed thereon; after a second resist film 8 is spread thereon, the film 8 is patterned; by using this resist film as a mask, the oxide film 2 is etched; by using this oxide film as a mask, the resist film 6 is etched so as to be left only in the bottom of a recessed part 3, and a mask for ion implantation is formed; then oblique ion implantation of As<+> and B<+> with respect to the normal of the substrate is performed, thereby forming an N<+> diffusion layer on the side wall of the recessed part, and forming a P<+> layer on the side wall and in the bottom. As the result of this process, as to the recessed part bottom side wall, its impurity concentration of the part masked by the resist film 6 decrease toward the depth direction of the recessed part, and an N<+> region and a P<-> region are formed. Thus, in the self alignment manner, an LLD structure is formed in the recessed part bottom side wall.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置の製造方法に関し、特にトレンチキ
ャパシタを用いたDRAMのメモリセルの製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a DRAM memory cell using a trench capacitor.

従来の技術 従来のトレンチキャパシタを用いたDRAMのメモリセ
ルの製造方法の一部を第4図に示す。まず、シリコン基
板1にシリコンエツチング及びイオン注入のマスクとな
る第1の酸化膜2を形成した後シリコン基板1をエツチ
ングし凹部3を形成する。さらにこの凹部3の側壁及び
底部にストレージノードとなるn+拡散層4を形成する
ためAs+イオンを斜めイオン注入する。さらにHi−
〇構造とするためB+イオンを凹部3の側壁及び底部に
イオン注入する。その後セル間分離を行うために、さら
に凹部を掘り下げて凹部3底部のn+拡散層を取り除い
た垂B+イオンを垂直に注入し、凹部底部にp+拡散層
を形成する。その後第5図に示すように、容量酸化膜9
を形成後、ポリシリコン埋め込み電極10を形成した後
、スイッチングトランジスタを形成してメモリーセルを
完成する。ところが、従来の技術ではセル間分離を行う
たの基板凹部の再掘り下げ工程の制御性が悪くなる。さ
らに、第5図(B )に示すように凹部底部にゲートコ
ントロ・−ルドダイオードが形成されており、ストレー
ジノードであるn+拡散層4から基板1へのリーク電流
が問題となる。
2. Description of the Related Art A part of a conventional method for manufacturing a DRAM memory cell using a trench capacitor is shown in FIG. First, a first oxide film 2 serving as a mask for silicon etching and ion implantation is formed on a silicon substrate 1, and then the silicon substrate 1 is etched to form a recess 3. Furthermore, As+ ions are obliquely implanted into the sidewalls and bottom of the recess 3 to form an n+ diffusion layer 4 that will serve as a storage node. Furthermore, Hi-
B+ ions are implanted into the side walls and bottom of the recess 3 to obtain the structure. Thereafter, in order to perform cell isolation, the recess is further dug down and vertical B+ ions from which the n+ diffusion layer at the bottom of the recess 3 has been removed are injected vertically to form a p+ diffusion layer at the bottom of the recess. After that, as shown in FIG.
After forming a polysilicon buried electrode 10, a switching transistor is formed to complete a memory cell. However, in the conventional technique, the controllability of the step of re-digging the recessed portions of the substrate for performing cell separation becomes poor. Further, as shown in FIG. 5B, a gate control diode is formed at the bottom of the recess, and leakage current from the n+ diffusion layer 4, which is a storage node, to the substrate 1 becomes a problem.

発明が解決しようとする課題 上記のように、従来技術では基板四部底部にゲートコン
ドロールドダイオードが形成される。さらに、素子の高
集積化にともない凹部側壁のpn接合の空乏層の伸びに
よるスイッチングトランジスタの電気的な浮き上がりを
防ぐために、p+層5及びn+層4の濃度も高くして、
空乏層の伸びを抑えなければならないという制約がある
。この高濃度のpn接合は前記のゲートコンドロールド
ダイオードの観点から見ると、リーク電流を増やす方向
にある。
Problems to be Solved by the Invention As described above, in the prior art, gate-controlled diodes are formed at the bottom of the four parts of the substrate. Furthermore, in order to prevent the electrical floating of the switching transistor due to the elongation of the depletion layer of the pn junction on the side wall of the recess as devices become highly integrated, the concentrations of the p+ layer 5 and the n+ layer 4 are also increased.
There is a constraint that the growth of the depletion layer must be suppressed. This highly doped pn junction tends to increase leakage current from the viewpoint of the gate-controlled diode.

本発明はかかる点に鑑み、凹部側壁の高濃度のpn接合
を達成すると同時に凹部底部にのみ拡散層の濃度に勾配
を付けてゲートコンドロールドダイオードの部分をLD
D構造とすることにより、リーク電流を押さえることを
目的とする。
In view of these points, the present invention achieves a high concentration pn junction on the side wall of the recess, and at the same time creates a gradient in the concentration of the diffusion layer only at the bottom of the recess, thereby converting the gate conductor diode into an LD.
The purpose of the D structure is to suppress leakage current.

課題を解決するための手段 本発明は、基板に形成された凹部を含め基板全面に第1
のレジスト膜を均一塗布する工程と、上記レジスト膜の
上に酸化けい素膜を形成する工程と、さらにE記酸化け
い素膜の上に第2のレジスト膜をホトリソ法により形成
する工程と、上記レジスト膜をマスクとして前記酸化け
い素膜をエツチングする工程と、上記工程により残った
酸化けい素膜をマスクとして訂記第2のレジスト膜をエ
ツチングし前記基板四部において、底部にのみレジスト
膜を工程と、さらにE記工程により新たに生じた凹部側
壁及び底部に不純物イオンを斜めイオン注入する工程を
含んでなる半導体装置の製造方法である。
Means for Solving the Problems The present invention provides a method in which a first layer is formed on the entire surface of the substrate including the recesses formed in the substrate.
a step of uniformly applying a resist film, a step of forming a silicon oxide film on the resist film, and a step of forming a second resist film on the silicon oxide film of E by photolithography, etching the silicon oxide film using the resist film as a mask; and etching a second resist film using the silicon oxide film remaining from the above process as a mask to form a resist film only on the bottom of the four parts of the substrate. This is a method of manufacturing a semiconductor device, which further includes a step of obliquely implanting impurity ions into the sidewall and bottom of the recess newly created in step E.

作   用 本発明は前記した工程により容易に凹部底部に自己整合
的にLDD構造を形成でき、凹部底部側壁での接合リー
ク電流を抑制することが可能である。さらに三層レジス
トを用いることにより、非注入領域をマスクすると同時
に凹部底部にレジスト膜を形成できることより、実際の
デバイス特にトレンチキャパシタをもつDRAMへの適
用が可能である。
Function: According to the present invention, an LDD structure can be easily formed in a self-aligned manner at the bottom of a recess through the steps described above, and junction leakage current on the sidewalls of the bottom of the recess can be suppressed. Furthermore, by using a three-layer resist, a resist film can be formed at the bottom of the recess while masking the non-implanted region, making it possible to apply the present invention to actual devices, particularly DRAMs having trench capacitors.

実  施  例 本発明の1実施例について第1図及び第2図の工程断面
図をもとにして説明を行う。まず第3図に示す段差の形
成されたシリコン基板1に第1のレジスト膜6を平坦に
塗布後、上記レジスト膜6の上に第1の酸化膜2を形成
しさらにその上に第2のレジスト膜8を塗布後上記レジ
スト膜8をバターニングする(第2図(a))。続いて
第2図すに示す如(上記レジスト膜をマスクとして第1
の酸化膜2をエツチングする。さらに第2図(C)に示
す如(上記酸化膜をマスクとして第1のレジスト膜6が
凹部3の底部のみに残るようにエツチングを行う。これ
で、イオン注入に対するマスクが形成された。その後、
第1図(a)に示す如(全面にAs+及びB+イオンを
基板法線に対して7°で斜めイオン注入を行い、凹部側
壁にn+拡散層、側壁及び底部にp+層を形成する。前
記工程により凹部底部側壁は第1図(b)に示すように
レジスト膜6でマスクされている部分の不純物濃度が四
部深さ方向に行くに従い減少し、n+領領域びp−領域
が形成される。このようにして、自己整合的に凹部底部
側壁にLDD構造を形成する。
Embodiment An embodiment of the present invention will be explained based on the process cross-sectional views of FIGS. 1 and 2. First, a first resist film 6 is evenly applied to a silicon substrate 1 having a step shown in FIG. 3, and then a first oxide film 2 is formed on the resist film 6, and then a second After coating the resist film 8, the resist film 8 is patterned (FIG. 2(a)). Next, as shown in Figure 2 (using the above resist film as a mask, the first
The oxide film 2 is etched. Further, as shown in FIG. 2(C), etching is performed using the oxide film as a mask so that the first resist film 6 remains only at the bottom of the recess 3. This forms a mask for ion implantation. ,
As shown in FIG. 1(a), As+ and B+ ions are implanted obliquely at 7 degrees to the substrate normal to the entire surface to form an n+ diffusion layer on the sidewalls of the recess and a p+ layer on the sidewalls and bottom. As a result of the process, the impurity concentration of the portion of the bottom sidewall of the recess that is masked by the resist film 6 decreases as it goes in the depth direction, as shown in FIG. 1(b), forming an n+ region and a p- region. In this way, an LDD structure is formed on the bottom side wall of the recess in a self-aligned manner.

以上本発明は、基板凹部の底部のみにレジスト膜を形成
して凹部側壁に不純物イオン注入を行った際、四部底部
のレジスト膜によりマスクされたg4壁部分の不純物濃
度を他の側壁部分より少なくすることにより、ゲートコ
ンドロールドダイオードのリーク電流の抑制を行うもの
である。凹部側壁への不純物注入の際、直接入射したイ
オンが凹部底部のレジスト膜の効果によりレジスト膜で
マスクされた側壁部分へ到達する量は凹部底部へ向うに
従い減少する。さらに狭い凹部の側壁に対して斜めイオ
ン注入を行った場合、イオンが直接入射する反対の側壁
にもかなりの濃度でドーピングされることが実験により
明らかとなった。第3図にアスペクト比15の凹部側壁
に対して7.5゜の角度でAs+イオンを加速エネルギ
ー150kevl ドーズ量1.07X10  /cJ
で注入した場合のイオンの直接入射領域および反対側壁
上の1〜3の3点でSIMS分析した結果のAs+イオ
ン濃度の深さ方向プロファイルを示す。このようにイオ
ンの入射していないはずの反対側壁上にもがなりの濃度
でドーピングされていることがわかる。従ってこの効果
も考慮に入れると前記凹部側壁とレジスト膜でマスクさ
れた側壁とにはかなりの濃度差が発生し、自己整合的に
LDD構造が形成される。
As described above, in the present invention, when a resist film is formed only at the bottom of a substrate recess and impurity ions are implanted into the side walls of the recess, the impurity concentration in the g4 wall portion masked by the resist film at the bottom of the four parts is lowered than in the other side wall parts. By doing so, the leakage current of the gate-controlled diode is suppressed. When implanting impurities into the sidewalls of the recess, due to the effect of the resist film at the bottom of the recess, the amount of directly incident ions reaching the sidewall portion masked by the resist film decreases toward the bottom of the recess. Furthermore, experiments have revealed that when oblique ion implantation is performed on the sidewall of a narrow recess, the opposite sidewall where ions are directly incident is also doped at a considerable concentration. Figure 3 shows As+ ions being accelerated at an angle of 7.5° to the side wall of a recess with an aspect ratio of 15 at an energy of 150 kevl and a dose of 1.07 x 10 /cJ.
The depth direction profile of the As+ ion concentration is shown as a result of SIMS analysis at three points 1 to 3 on the direct incidence region of the ions and the opposite side wall when the ions are implanted. It can be seen that the opposite side wall, on which ions should not be incident, is also doped at a certain concentration. Therefore, if this effect is also taken into account, a considerable concentration difference will occur between the side wall of the recess and the side wall masked by the resist film, and an LDD structure will be formed in a self-aligned manner.

また、パターニングにレジスト膜、酸化けい素膜、レジ
スト膜を重ねた三層レジストを用いることにより、効果
的に非注入領域をマスクすると共に凹部底部にレジスト
膜を形成することが可能となる。
Further, by using a three-layer resist in which a resist film, a silicon oxide film, and a resist film are stacked for patterning, it is possible to effectively mask the non-implanted region and form a resist film at the bottom of the recess.

発明の詳細 な説明したように、本発明によればきわめて容易な工程
で凹部底部側壁に1、DD構造を形成でき、その後キャ
パシタを形成したときに生じるゲーhコンドロールドダ
イオードによるリーク電流を抑制することが可能となる
。さらに、三層レジストを用いて非注入領域をマスクで
きるためその実用的効果は大きい。
As described in detail, according to the present invention, a DD structure can be formed on the bottom side wall of a recess through an extremely easy process, and leakage current caused by a gate conductor diode that occurs when a capacitor is subsequently formed can be suppressed. It becomes possible to do so. Furthermore, the non-implanted region can be masked using the three-layer resist, which has a great practical effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の一実施例を示す一部製造工程
断面図、第3図は凹部側壁・\斜めイオン注入を行った
場合の入射イオンの直接入射する領域及びその反対側壁
の不純物濃度プロフォイルを示す特性図、第4図、第5
図は従来の方法の一部製造工程断面図である。 4・・・・・・n+拡散層、4゛・・・・・・n −+
n−拡散層、5・・・・・・p+拡散層、5′・・・・
・・p+−”p−拡散層、6・・・・・・第1のレジス
ト膜、7・・・・・・第2の酸化膜、8・・・・・・第
2のレジスト膜。 代理人の氏名 弁理士 粟野重孝 はか1名1図 /−シ1ノコン基板 第 図 7−・第2[酸化膜 8−一一第2のレジスト膜
Figures 1 and 2 are cross-sectional views of a part of the manufacturing process showing an embodiment of the present invention, and Figure 3 is a side wall of the recess, a region where incident ions are directly incident when performing oblique ion implantation, and the opposite side wall. Characteristic diagrams showing the impurity concentration profile of
The figure is a sectional view of a part of the manufacturing process of a conventional method. 4...n+diffusion layer, 4゛...n-+
n− diffusion layer, 5...p+ diffusion layer, 5'...
...p+-"p- diffusion layer, 6...first resist film, 7...second oxide film, 8...second resist film. Substitute Person's name: Patent attorney Shigetaka Awano 1 person 1 Figure/-1 PC board Figure 7- 2nd [Oxide film 8-11 2nd resist film

Claims (1)

【特許請求の範囲】[Claims] 基板に形成された凹部を含め基板全面に第1のレジスト
膜を均一塗布する工程と、上記レジスト膜の上に酸化け
い素膜を形成する工程と、さらに上記酸化けい素膜の上
に第2のレジスト膜をホトリソ法により形成する工程と
、上記レジスト膜をマスクとして前記酸化けい素膜をエ
ッチングする工程と、上記工程により残った酸化けい素
膜をマクスとして前記第2のレジスト膜をエッチングし
前記基板凹部において、底部にのみレジスト膜を残す工
程と、さらに上記工程により新たに生じた凹部側壁及び
底部に不純物イオンを斜めイオン注入する工程を含んで
なる半導体装置の製造方法。
A step of uniformly applying a first resist film over the entire surface of the substrate including the recesses formed in the substrate, a step of forming a silicon oxide film on the resist film, and a step of forming a second resist film on the silicon oxide film. a step of forming a resist film by photolithography, a step of etching the silicon oxide film using the resist film as a mask, and etching the second resist film using the silicon oxide film remaining from the above step as a mask. A method for manufacturing a semiconductor device, comprising the steps of leaving a resist film only on the bottom of the substrate recess, and further obliquely implanting impurity ions into the side walls and bottom of the recess newly created by the above step.
JP63185952A 1988-07-26 1988-07-26 Manufacture of semiconductor device Pending JPH0235714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63185952A JPH0235714A (en) 1988-07-26 1988-07-26 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63185952A JPH0235714A (en) 1988-07-26 1988-07-26 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0235714A true JPH0235714A (en) 1990-02-06

Family

ID=16179748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63185952A Pending JPH0235714A (en) 1988-07-26 1988-07-26 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0235714A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6913955B1 (en) * 2002-10-01 2005-07-05 T-Ram, Inc. Method of manufacturing a thyristor device with a control port in a trench

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6913955B1 (en) * 2002-10-01 2005-07-05 T-Ram, Inc. Method of manufacturing a thyristor device with a control port in a trench

Similar Documents

Publication Publication Date Title
US4116720A (en) Method of making a V-MOS field effect transistor for a dynamic memory cell having improved capacitance
US5888887A (en) Trenchless buried contact process technology
US5292676A (en) Self-aligned low resistance buried contact process
US5372950A (en) Method for forming isolation regions in a semiconductor memory device
US4679299A (en) Formation of self-aligned stacked CMOS structures by lift-off
KR0168194B1 (en) Method for forming isolation film on a semiconductor device
KR0119961B1 (en) Fabrication method for capacitor of semiconductor device
US4290186A (en) Method of making integrated semiconductor structure having an MOS and a capacitor device
US4225879A (en) V-MOS Field effect transistor for a dynamic memory cell having improved capacitance
KR100244271B1 (en) semiconductor device and method for manufacturing the same
JPH02143456A (en) Manufacture of lamination type memory cell
JPH0235714A (en) Manufacture of semiconductor device
JP3253846B2 (en) Semiconductor device and manufacturing method thereof
KR950012551B1 (en) Structure of dram cell and manufacturing method thereof
KR0169599B1 (en) Semiconductor device and manufacturing thereof
KR0161728B1 (en) Method of manufacturing transistor
JPH06342887A (en) Mist-type dynamic random-access memory cell and its manufacture
JP2581302B2 (en) Method for manufacturing semiconductor device
KR930009588B1 (en) Method for manufacturing a semiconductor memory device
KR100460704B1 (en) Method for fabricating bottom gate-type tft of sram to increase capacitance of node
KR100251983B1 (en) The fabricating method of capacitor
KR100223811B1 (en) Semiconductor device and process for fabricating the same
KR930009578B1 (en) Method for manufacturing a lsi mos device with capacitor
KR100262401B1 (en) Well of semiconductor device and method of forming the same
JPH01108762A (en) Semiconductor device and manufacture thereof