KR100460704B1 - Method for fabricating bottom gate-type tft of sram to increase capacitance of node - Google Patents

Method for fabricating bottom gate-type tft of sram to increase capacitance of node Download PDF

Info

Publication number
KR100460704B1
KR100460704B1 KR1019960076383A KR19960076383A KR100460704B1 KR 100460704 B1 KR100460704 B1 KR 100460704B1 KR 1019960076383 A KR1019960076383 A KR 1019960076383A KR 19960076383 A KR19960076383 A KR 19960076383A KR 100460704 B1 KR100460704 B1 KR 100460704B1
Authority
KR
South Korea
Prior art keywords
source
bottom gate
gate electrode
drain
ion implantation
Prior art date
Application number
KR1019960076383A
Other languages
Korean (ko)
Other versions
KR19980057113A (en
Inventor
공명국
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1019960076383A priority Critical patent/KR100460704B1/en
Publication of KR19980057113A publication Critical patent/KR19980057113A/en
Application granted granted Critical
Publication of KR100460704B1 publication Critical patent/KR100460704B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78678Polycrystalline or microcrystalline silicon transistor with inverted-type structure, e.g. with bottom gate

Abstract

PURPOSE: A method for fabricating a bottom gate-type TFT(thin film transistor) of an SRAM(static random access memory) is provided to increase capacitance of a node by forming a source even under a gate electrode at the side of the source. CONSTITUTION: A bottom gate electrode(31) is formed on a predetermined interlayer dielectric(30). Photoresist is formed on the resultant structure having the bottom gate electrode. A photoresist pattern is formed by a photolithography process using a source/drain ion implantation mask. The interlayer dielectric is wet-etched by using the photoresist pattern as an etch barrier to form an undercut portion under the bottom gate electrode at the side of a source(34). A gate insulation layer is formed on the surface of the exposed bottom gate electrode. A polysilicon layer is formed along the surface of the resultant structure having the gate insulation layer. A source/drain ion implantation process is performed on the polysilicon layer in a source/drain region to define a source/drain region and a channel region(36).

Description

에스램의 바텀 게이트형 박막 트랜지스터 제조방법SRAM's bottom gate thin film transistor manufacturing method

본 발명은 SRAM(Static Random Access Memory) 제조 공정 중 바텀 게이트(bottom gate)형 박막 트랜지스터 제조방법에 관한 것으로, 특히 게이트와소오스의 면적을 늘려 노드 정전용량(node capacitance)을 증가시킨 박막 트랜지스터 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a bottom gate type thin film transistor during a static random access memory (SRAM) manufacturing process, and more particularly, a method of manufacturing a thin film transistor having increased node capacitance by increasing the area of a gate and a source. It is about.

일반적으로, SRAM의 고집적화에 따라 셀 크기가 작아지며, 이에 따라 셀 내의 노드 정전용량이 감소하게 된다. 이러한 노드 정전용량의 감소는 소프트 에러비(soft error rate, 이하 SER이라 약칭함)를 증가시켜 메모리 장치의 신뢰도를 저하시키는 요인이 된다.In general, the cell size is reduced by the high integration of the SRAM, thereby reducing the node capacitance in the cell. This reduction in node capacitance increases the soft error rate (hereinafter, referred to as SER), which causes a decrease in reliability of the memory device.

첨부된 도면 도 1은 종래 기술에 따라 제조된 바텀 게이트형 박막 트랜지스터를 도시한 것으로, 도면 상에 표시된 도면 부호 10은 층간절연막, 11은 바텀 게이트 전극, 12는 게이트 산화막, 13은 소오스, 14는 드레인, 15는 채널 영역을 각각 나타낸 것이다.1 is a bottom gate type thin film transistor manufactured according to the related art, in which reference numeral 10 denotes an interlayer insulating film, 11 a bottom gate electrode, 12 a gate oxide film, 13 a source, and 14 Drain 15 represents a channel region, respectively.

도 1에 도시된 바와 같이 종래 기술에 따라 제조된 바텀 게이트형 박막 트랜지스터는 소오스/드레인(13,14)과 바텀 게이트 전극(11) 사이의 게이트 산화막(12)을 통해 노드 정전용량이 형성되기 때문에 노드 정전용량 확보에 어려움이 있다.In the bottom gate type thin film transistor manufactured according to the prior art as shown in FIG. 1, the node capacitance is formed through the gate oxide film 12 between the source / drain 13 and 14 and the bottom gate electrode 11. There is difficulty in securing node capacitance.

도 2는 SRAM 셀의 회로도를 나타낸 것으로, 박막 트랜지스터의 게이트와 소오스간에 형성되는 정전용량을 가시화한 것이다. 도면 부호 A는 노드 정전용량을 모델링한 캐패시터를 나타내고 있다.2 shows a circuit diagram of an SRAM cell, which visualizes the capacitance formed between the gate and the source of the thin film transistor. Reference numeral A denotes a capacitor modeling node capacitance.

본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위하여 제안된 것으로, 노드 정전용량을 증가시킨 에스램의 바텀 게이트형 박막 트랜지스터 제조방법을 제공하는데 그 목적이 있다.The present invention has been proposed to solve the above problems of the prior art, and an object thereof is to provide a method of manufacturing a bottom gate type thin film transistor of SRAM having increased node capacitance.

도 1은 종래 기술에 따라 형성된 박막 트랜지스터 단면도.1 is a cross-sectional view of a thin film transistor formed according to the prior art.

도 2는 통상적인 SRAM 셀 및 박막 트랜지스터의 노드 정전용량을 나타낸 회로도.2 is a circuit diagram showing node capacitance of a conventional SRAM cell and thin film transistor.

도 3A 내지 도 3C는 본 발명의 일실시예에 따른 박막 트랜지스터 제조 공정도.3A to 3C are diagrams illustrating a manufacturing process of a thin film transistor according to an embodiment of the present invention.

* 도면의 주요 부분에 대한 부호의 간단한 설명* Brief description of symbols for the main parts of the drawing

10,30 : 층간절연막 11,31 : 바텀 게이트 전극10,30: interlayer insulating film 11,31: bottom gate electrode

12,33 : 게이트 산화막 13,34 : 소오스12,33: gate oxide film 13,34 source

14,35 : 드레인 15,36 : 채널 영역14,35 drain 15,36 channel region

32 : 포토레지스트 패턴32: photoresist pattern

A : 노드 정전용량을 나타낸 캐패시터A: Capacitor showing node capacitance

상기와 같은 목적을 달성하기 위한 본 발명의 일 측면에 따르면, 소정의 층간절연막 상에 바텀 게이트 전극을 형성하는 단계; 상기 바텀 게이트 전극이 형성된 전체구조 상부에 포토레지스트를 도포하는 단계; 소오스/드레인 이온주입 마스크를 사용한 사진 공정을 통해 포토레지스트 패턴을 형성하는 단계; 상기 포토레지스트 패턴을 식각 장벽으로 하여 상기 층간절연막을 습식식각하여 상기 바텀 게이트 전극의 소오스측 하부에 언더컷 부위를 형성하는 단계; 노출된 상기 바텀 게이트 전극의 표면에 게이트 절연막을 형성하는 단계; 상기 게이트 절연막이 형성된 전체구조 표면을 따라 폴리실리콘막을 형성하는 단계; 및 소오스/드레인 영역의 상기 폴리실리콘막에 소오스/드레인 이온주입을 실시하여 소오스/드레인 영역 및 채널 영역을 정의하는 단계를 포함하는 에스램의 바텀 게이트형 박막 트랜지스터 제조방법이 제공된다.According to an aspect of the present invention for achieving the above object, forming a bottom gate electrode on a predetermined interlayer insulating film; Applying a photoresist on the entire structure where the bottom gate electrode is formed; Forming a photoresist pattern through a photolithography process using a source / drain ion implantation mask; Wet etching the interlayer insulating layer using the photoresist pattern as an etch barrier to form an undercut portion under a source side of the bottom gate electrode; Forming a gate insulating film on an exposed surface of the bottom gate electrode; Forming a polysilicon film along an entire structure surface of the gate insulating film; And source / drain ion implantation into the polysilicon film in the source / drain region to define a source / drain region and a channel region.

이하, 본 발명이 속한 기술분야에서 통상의 지식을 가진 자가 본 발명을 보다 용이하게 실시할 수 있도록 하기 위하여 본 발명의 바람직한 실시예를 소개하기로 한다.Hereinafter, preferred embodiments of the present invention will be introduced in order to enable those skilled in the art to more easily carry out the present invention.

도 3A 내지 도 3C는 본 발명의 일실시예에 따른 박막 트랜지스터 제조 공정도이다. 도면 부호 30은 층간절연막, 31은 바텀 게이트 전극, 32는 포토레지스트패턴, 33은 게이트 산화막, 34는 소오스, 35는 드레인, 36은 채널 영역을 각각 나타낸 것이다.3A to 3C are flowcharts illustrating a manufacturing process of a thin film transistor according to an embodiment of the present invention. Reference numeral 30 denotes an interlayer insulating film, 31 a bottom gate electrode, 32 a photoresist pattern, 33 a gate oxide film, 34 a source, 35 a drain, and 36 a channel region.

본 실시예에 따른 박막 트랜지스터 제조 공정은, 먼저 도 3A에 도시된 바와같이 하부에 기형성된 n형 또는 p형 전계 효과 트랜지스터(도시되지 않음)와 그 상부에 형성될 박막 트랜지스터 간의 절연을 위한 층간절연막(30) 상부에 게이트 전극용 폴리실리콘막을 증착하고, 이를 패터닝하여 바텀 게이트 전극(31)을 형성한다.In the thin film transistor manufacturing process according to the present embodiment, as shown in FIG. 3A, an interlayer insulating film for insulation between an n-type or p-type field effect transistor (not shown) previously formed at a lower portion and a thin film transistor to be formed thereon is formed. 30, a polysilicon film for a gate electrode is deposited and patterned to form a bottom gate electrode 31. As shown in FIG.

다음으로, 도 3B에 도시된 바와 같이 전체구조 상부에 포토레지스트를 도포하고, 소오스/드레인 이온주입 마스크를 사용한 노광 및 현상 공정을 통해 채널 영역에 오버랩되는 포토레지스트 패턴(32)을 형성한다. 계속하여, 포토레지스트 패턴(32)을 사용하여 층간절연막(30)을 습식 식각함으로써 게이트 전극(31)의 소오스측 하부에 언더컷(undercut) 부위를 형성한다. 물론, 포토레지스트 패턴(32)은 게이트전극(31)으로부터 드레인 영역까지를 모두 덮도록 형성해도 무방하나, 후속 공정에서 사용되는 소오스/드레인 이온주입 마스크를 사용하면 별도의 포토마스크를 제작하지 않아도 되는 장점이 있다.Next, as shown in FIG. 3B, a photoresist is applied over the entire structure, and a photoresist pattern 32 overlapping the channel region is formed through an exposure and development process using a source / drain ion implantation mask. Subsequently, the interlayer insulating film 30 is wet-etched using the photoresist pattern 32 to form an undercut portion under the source side of the gate electrode 31. Of course, the photoresist pattern 32 may be formed to cover all of the drain region from the gate electrode 31, but it is not necessary to fabricate a separate photomask by using a source / drain ion implantation mask used in a subsequent process. There is an advantage.

이어서, 도 3C에 도시된 바와 같이 포토레지스트 패턴(32)을 제거하고, 전체 구조 표면에 게이트 산화막(33)을 형성한다. 계속하여, 그 상부에 폴리실리콘막을 증착하고, 그 상부에 포토레지스트를 도포한 후, 소오스/드레인 이온주입 마스크를 사용한 노광 및 현상 공정을 실시하여 채널 영역 상에 오버랩되는 포토레지스트 패턴(도시되지 않음)을 형성하고, 이를 이온주입 마스크로 사용하여 불순물 이온주입을 실시하여 소오스(34)/드레인(35) 및 채널 영역(36)을 정의한다. 이때, 언더컷부위를 그리 깊게 형성하지 않는 경우에는 일반적인 이온주입 공정(수직 이온주입)을 수행한 후 도펀트 안정화를 위하여 수행되는 통상의 열공정에서의 도펀트 확산이일어나기 때문에 소오스/드레인 형성에 별 어려움이 없다. 한편, 언더컷 부위가 아주 깊어 도펀트 확산만으로는 불완전하다면 경사 이온주입을 실시하면 된다.Subsequently, as shown in FIG. 3C, the photoresist pattern 32 is removed, and a gate oxide film 33 is formed on the entire structure surface. Subsequently, a polysilicon film is deposited thereon, a photoresist is applied thereon, and an exposure and development process using a source / drain ion implantation mask is performed to overlap the photoresist pattern on the channel region (not shown). ) And impurity ion implantation is used as an ion implantation mask to define the source 34 / drain 35 and the channel region 36. In this case, when the undercut portion is not formed deeply, since the dopant diffusion occurs in a general thermal process performed for stabilization of the dopant after performing a general ion implantation process (vertical ion implantation), it is difficult to form a source / drain. none. On the other hand, if the undercut region is very deep and incomplete by diffusion of dopant, gradient ion implantation may be performed.

상기와 같은 일실시예에 나타난 바와 같이 본 발명은 박막 트랜지스터 형성시 게이트 전극의 소오스측 하부에 언더컷을 형성하여 소오스와 게이트 전극 간의 접촉 면적을 넓힘으로써 정전용량을 증가시켜 SER 특성을 개선한다.As shown in the above embodiment, the present invention improves the SER characteristic by increasing the capacitance by forming an undercut under the source side of the gate electrode when the thin film transistor is formed to widen the contact area between the source and the gate electrode.

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and changes are possible in the art without departing from the technical spirit of the present invention. It will be clear to those of ordinary knowledge.

상기와 같이 본 발명을 실시하면 현재 사용하고 있는 소오스/드레인 이온주입 마스크를 사용하므로 별도의 레티클을 제조하지 않고, 간단한 공정을 추가하여 SRAM 셀의 노드 정전용량을 증가시킴으로써 SER 특성 등을 개선하여 반도체 장치의 신뢰도를 향상시키는 효과가 있다.As described above, the present invention uses a source / drain ion implantation mask that is currently used, so that a semiconductor process is improved by increasing the node capacitance of the SRAM cell by adding a simple process without manufacturing a separate reticle. There is an effect of improving the reliability of the device.

Claims (1)

소정의 층간절연막 상에 바텀 게이트 전극을 형성하는 단계;Forming a bottom gate electrode on a predetermined interlayer insulating film; 상기 바텀 게이트 전극이 형성된 전체구조 상부에 포토레지스트를 도포하는 단계;Applying a photoresist on the entire structure where the bottom gate electrode is formed; 소오스/드레인 이온주입 마스크를 사용한 사진 공정을 통해 포토레지스트 패턴을 형성하는 단계;Forming a photoresist pattern through a photolithography process using a source / drain ion implantation mask; 상기 포토레지스트 패턴을 식각 장벽으로 하여 상기 층간절연막을 습식식각하여 상기 바텀 게이트 전극의 소오스측 하부에 언더컷 부위를 형성하는 단계;Wet etching the interlayer insulating layer using the photoresist pattern as an etch barrier to form an undercut portion under a source side of the bottom gate electrode; 노출된 상기 바텀 게이트 전극의 표면에 게이트 절연막을 형성하는 단계;Forming a gate insulating film on an exposed surface of the bottom gate electrode; 상기 게이트 절연막이 형성된 전체구조 표면을 따라 폴리실리콘막을 형성하는 단계; 및Forming a polysilicon film along an entire structure surface of the gate insulating film; And 소오스/드레인 영역의 상기 폴리실리콘막에 소오스/드레인 이온주입을 실시하여 소오스/드레인 영역 및 채널 영역을 정의하는 단계Source / drain ion implantation into the polysilicon layer of the source / drain region to define a source / drain region and a channel region 를 포함하는 에스램의 바텀 게이트형 박막 트랜지스터 제조방법.SRAM bottom gate type thin film transistor manufacturing method comprising a.
KR1019960076383A 1996-12-30 1996-12-30 Method for fabricating bottom gate-type tft of sram to increase capacitance of node KR100460704B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960076383A KR100460704B1 (en) 1996-12-30 1996-12-30 Method for fabricating bottom gate-type tft of sram to increase capacitance of node

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960076383A KR100460704B1 (en) 1996-12-30 1996-12-30 Method for fabricating bottom gate-type tft of sram to increase capacitance of node

Publications (2)

Publication Number Publication Date
KR19980057113A KR19980057113A (en) 1998-09-25
KR100460704B1 true KR100460704B1 (en) 2005-01-27

Family

ID=37376999

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960076383A KR100460704B1 (en) 1996-12-30 1996-12-30 Method for fabricating bottom gate-type tft of sram to increase capacitance of node

Country Status (1)

Country Link
KR (1) KR100460704B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177353A (en) * 1992-12-02 1994-06-24 Seiko Epson Corp Semiconductor device
KR960005896A (en) * 1994-07-21 1996-02-23 문정환 Method of manufacturing thin film transistor
KR960035905A (en) * 1995-03-24 1996-10-28 김주용 Method for manufacturing thin film transistor with drain offset structure
US5578838A (en) * 1994-05-12 1996-11-26 Lg Semicon Co., Ltd. Structure of and fabricating method for a thin film transistor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177353A (en) * 1992-12-02 1994-06-24 Seiko Epson Corp Semiconductor device
US5578838A (en) * 1994-05-12 1996-11-26 Lg Semicon Co., Ltd. Structure of and fabricating method for a thin film transistor
KR960005896A (en) * 1994-07-21 1996-02-23 문정환 Method of manufacturing thin film transistor
US5547883A (en) * 1994-07-21 1996-08-20 Lg Semicon Co., Ltd. Method for fabricating thin film transistor
KR960035905A (en) * 1995-03-24 1996-10-28 김주용 Method for manufacturing thin film transistor with drain offset structure

Also Published As

Publication number Publication date
KR19980057113A (en) 1998-09-25

Similar Documents

Publication Publication Date Title
KR100610465B1 (en) Method for fabricating semiconductor device
KR960011664B1 (en) Capacitor manufacturing method of semiconductor device
KR100289808B1 (en) Manufacturing method for mos transistor
KR100460704B1 (en) Method for fabricating bottom gate-type tft of sram to increase capacitance of node
KR0135690B1 (en) Fabrication method of contact in semiconductor device
KR100223333B1 (en) Method for forming a contact of semiconductor device
KR100252899B1 (en) Mask rom and method for fabricating the same
KR100321758B1 (en) Method for fabricating semiconductor device
KR100242378B1 (en) Manufacturing method of gate for a field effect transistor
KR100197987B1 (en) Method of manufacturing drain transistor
KR100256259B1 (en) Method of preparing common gate in semiconductor device
KR100525114B1 (en) Manufacturing method of semiconductor device
KR100198637B1 (en) Fabricating method of semiconductor device
KR100192547B1 (en) Semiconductor device and manufacturing method thereof
KR100250728B1 (en) Method for fabricating transistor of semiconductor device
KR100204006B1 (en) Nand type mask rom
KR100668840B1 (en) Method of manufacturing semiconductor device
KR930009590B1 (en) Method for manufacturing a lsi mos device with capacitor
KR100399965B1 (en) Method for forming storage node contact of semiconductor device
KR100252767B1 (en) A semiconductor device and method for fabricating the same
KR100503358B1 (en) Manufacturing method of semiconductor device
KR0136928B1 (en) Manufacture of semiconductor
KR19990004401A (en) Method of manufacturing transistor of semiconductor device
KR20020049934A (en) Method of manufacturing a transistor in a semiconductor device
KR19990074731A (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20101025

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee