JPH02111062A - Manufacture of semiconductor memory - Google Patents

Manufacture of semiconductor memory

Info

Publication number
JPH02111062A
JPH02111062A JP63264539A JP26453988A JPH02111062A JP H02111062 A JPH02111062 A JP H02111062A JP 63264539 A JP63264539 A JP 63264539A JP 26453988 A JP26453988 A JP 26453988A JP H02111062 A JPH02111062 A JP H02111062A
Authority
JP
Japan
Prior art keywords
trench
substrate
impurity
region
epitaxial growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63264539A
Other languages
Japanese (ja)
Inventor
Takahiro Yamada
隆博 山田
Tadashi Sugaya
菅谷 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63264539A priority Critical patent/JPH02111062A/en
Publication of JPH02111062A publication Critical patent/JPH02111062A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To form a region whose impurity distribution is uniform and where damage to a substrate is not caused by a method wherein a p<+>n<+> double diffusion layer is formed by a selective epitaxial method. CONSTITUTION:A substrate 101 is etched; a first trench 105 is formed. Then, a first half of a selective epitaxial growth operation to make a conductivity type identical to that of the substrate 101 is executed while an impurity of B is being doped; a p<+> region 106 is formed; a second half of the selective epitaxial growth operation to make the conductivity type opposite to that of the substrate 101 is executed while an impurity of P or As is being doped; an n<+> region 107 is formed; a second trench 108 whose size is smaller than that of the first trench 105 is formed. Then, an insulating film 109 for capacitor use is formed; after that, polycrystalline Si 110 is deposited; a cell plate is formed. A gap part remaining in the trench part 108 is filled and flattened by polycrystalline Si 111. Thereby, an impurity distribution is made uniform; it is possible to form a good impurity region where damage to the substrate 101 is not caused.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、トレンチ構造のメモリセルを有する半導体メ
モリの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a semiconductor memory having a trench-structured memory cell.

従来の技術 第3図は、トレンチ構造のメモリセルを示し、同図(、
)が平面図、同図(b)が断面図である(参考文献:日
経マグロウヒル社発行、”実用化に向けて始動する4 
M D RA Mの全貌″、日経マイクロデバイス、別
冊屋1.1987年)。
Conventional technology FIG. 3 shows a memory cell with a trench structure.
) is a plan view, and (b) is a cross-sectional view.
``The Complete Story of MDRAM'', Nikkei Microdevices, Bessatsuya 1. 1987).

このメモリセルは、P基板301上のPウェル302内
に形成したn 領域303とp 領域304の二重拡散
層を持つトレンチ・キャパシタ・セルである。ここで、
ワード線306は多結晶シリコン305Aと裏打ち用の
A7配線306Bとから成り、ピット線306はポリサ
イドから成る。
This memory cell is a trench capacitor cell having a double diffusion layer of an n region 303 and a p region 304 formed in a p well 302 on a p substrate 301. here,
The word line 306 is made of polycrystalline silicon 305A and a backing A7 wiring 306B, and the pit line 306 is made of polycide.

このメモリセルの製造方法を第4図に示す(前記文献参
照)。
A method for manufacturing this memory cell is shown in FIG. 4 (see the above-mentioned document).

(1)第4図(−)に示すように、P基板301にPウ
ェル302および素子分離領域303を形成する。
(1) As shown in FIG. 4(-), a P well 302 and an element isolation region 303 are formed on a P substrate 301.

(2)第4図(b)ニ示すようK、CV D  S i
 02膜401をマスクにして、RI E (Reac
tiveIon ttching )でSiのエツチン
グを行い、トレンチ402を形成する。
(2) As shown in Fig. 4(b), K, CV D Si
02 film 401 as a mask, RI E (Reac
A trench 402 is formed by etching Si using a tiveIon ttching method.

(3)M4図(C)に示すようにB S G (Bor
o 5ilicateGlass)膜403を堆積して
から熱処理を行ない、BSG膜403から、Bを拡散し
てトレンチ402の周囲にp+層304を形成する。な
おりSG膜のかわりにBのイオン打ち込み法を用いる事
もある。
(3) As shown in M4 diagram (C), B S G (Bor
After depositing the BSG film 403, heat treatment is performed to diffuse B from the BSG film 403 to form a p+ layer 304 around the trench 402. In place of the SG film, a B ion implantation method is sometimes used.

(4)第4図(d)に示すように、トレンチ402内部
(!I]lI壁、底部)にAsのイオン打ち込みを行い
、引き続き熱処理で浅いn土層303を形成する。なお
、イオン打ち込みのかわりに、A s −3OG (5
pin On Glass )膜+ ”5G(Arse
nicSilicate Glags) 漢を用いて固
相拡散すル方法を用いる事もある。
(4) As shown in FIG. 4(d), As ions are implanted into the inside of the trench 402 (!I]lI wall, bottom), and then a shallow n-soil layer 303 is formed by heat treatment. Note that instead of ion implantation, A s -3OG (5
pin On Glass) film + “5G (Arse
(nicSilicate Glags) A solid phase diffusion method is sometimes used.

(6)第4図(e)に示すように、キャパシタ用の絶縁
膜404を形成した後で、多結晶5iaosを堆積して
セル・プレートを形成する。まだ、トレンチに生じた空
隙部分は、埋め込み多結晶5i406によって平坦化を
行なう。
(6) As shown in FIG. 4(e), after forming an insulating film 404 for a capacitor, polycrystalline 5iaos is deposited to form a cell plate. The void portion still formed in the trench is flattened by the buried polycrystal 5i 406.

発明が解決しようとする課題 然しなから、上記の様な製造方法ではイオン打ち込み法
またはSOG膜、SG膜を用いた固相拡散法によりトレ
ンチ内部(側壁、底部)に不純物ドープしてメモリセル
部のn+p−二重拡散層を形成しているが、次のような
課題を抱えている。
Problems to be Solved by the Invention However, in the above manufacturing method, the inside of the trench (side walls, bottom) is doped with impurities by ion implantation method or solid phase diffusion method using SOG film or SG film to form the memory cell part. However, it has the following problems.

■ イオン打ち込み法は、トレンチ開口部面積が一定で
トレンチが深くなると共にイオン打ち込み角度がウェハ
に対して垂直に近くなり、イオンの前方散乱の確率が高
くなるためトレンチ側壁部よりトレンチ底部の不純物ド
ーズ量が増大し、しかも不純物分布が不均一になるとい
う問題を有していた。さらに、イオン打ち込みに伴なう
基板へのダメージも無視できない。
■ In the ion implantation method, the trench opening area is constant, and as the trench gets deeper, the ion implantation angle becomes closer to perpendicular to the wafer, increasing the probability of forward scattering of ions, so the impurity dose is lower at the trench bottom than at the trench sidewalls. There were problems in that the amount increased and impurity distribution became non-uniform. Furthermore, damage to the substrate due to ion implantation cannot be ignored.

■ SOG膜、SG膜などを用いた固相拡散法は、ドー
プする不純物量の制御が難しく、また不純物分布を均一
にするためにSOG膜、  SG嘆を均一に形成するこ
とが難しいという間厘を有していた。
■ The solid phase diffusion method using SOG films, SG films, etc. has the disadvantage that it is difficult to control the amount of doped impurities, and it is difficult to uniformly form the SOG film and SG film in order to make the impurity distribution uniform. It had

本発明はこうした従来技術の課題に省察を加え、トレン
チ内部にドープする不縫物量の制御が容易で、基板への
ダメージもなく、かつ不純物分布が均一となる様な半導
体メモリの製造方法を提供する事を目的とする。
The present invention takes into consideration the problems of the prior art, and provides a method for manufacturing a semiconductor memory that allows easy control of the amount of non-sewn materials doped inside the trench, causes no damage to the substrate, and provides a uniform impurity distribution. The purpose is to do.

課題を解決するための手段 本発明は半導体基板をエツチングして第1のトレンチを
形成する第1の工程と、前記第1のトレンチ内部(側壁
、底部)にエピタキシャル成長して前S己第1のトレン
チより小さな第2のトレンチを形成する第2の工程と、
前記第2のトレンチ表面にゲート酸化膜を形成する第3
の工程と、前記酸化膜で被われた@記第2のトレンチに
′市価用のポリシリコンを形成する第4の工程とを含む
半導体メモリの一製造方法である。
Means for Solving the Problems The present invention includes a first step of etching a semiconductor substrate to form a first trench, and epitaxial growth inside the first trench (side wall, bottom) to form a first trench. a second step of forming a second trench smaller than the trench;
a third step of forming a gate oxide film on the surface of the second trench;
This is a method of manufacturing a semiconductor memory including the steps of 1 and 4, and a fourth step of forming commercially available polysilicon in the second trench covered with the oxide film.

作   川 本発明は前記した製造方法により、エピタキシャル成長
でnp 不純物層を形成するため不純物分布が均一とな
り、不純物濃度制御の自白度も大キく、基板へのダメー
ジもない等、トレンチメモリセルの性能向上をもたらす
Sakukawa The present invention uses the above-described manufacturing method to form an np impurity layer by epitaxial growth, resulting in uniform impurity distribution, greater control over impurity concentration, and no damage to the substrate, improving the performance of trench memory cells. bring about.

実施例 以下に本発明の詳細な説明する。Example The present invention will be explained in detail below.

第1図体)〜(d)は本発明の第1の実施例て於ける半
導体メモリの製造方法の工程図である。
1) to (d) are process diagrams of a method for manufacturing a semiconductor memory in a first embodiment of the present invention.

(1)第1図(a)に示すように、P基板101icP
ウェル302および素子分離領域103を形成する。
(1) As shown in FIG. 1(a), a P substrate 101icP
A well 302 and an element isolation region 103 are formed.

(2)第1図(b)に示すように、絶縁膜104をマス
クにして、RI E (Reactive Ion E
tching)でStのエツチングを行ない、第1のト
レンチ105を形成する。
(2) As shown in FIG. 1(b), using the insulating film 104 as a mask, RIE (Reactive Ion E)
First trenches 105 are formed by etching St.

(3)第1図(c)に示すように、選択エピタキシャル
成長の前半を基板と同一導電型とするためB全不純物ド
ーピング(濃度N=1017〜1o20d3)しながら
行っでp+領域106を形成し、選択エピタキシャル成
長の後半は基板と反対導電型とするだめP又はAsを不
純物ドーピング(N1017〜1020cm−3) L
ながら行ってn+領域107を形成し、第1のトレンチ
105よシ小さい寸法の第2のトレンチ108が残され
ている。
(3) As shown in FIG. 1(c), in order to make the first half of the selective epitaxial growth the same conductivity type as the substrate, a p+ region 106 is formed by doping the entire B impurity (concentration N = 1017 to 1020d3), In the second half of the selective epitaxial growth, impurity doping is performed with P or As (N1017-1020 cm-3) to make the conductivity type opposite to that of the substrate.
n+ region 107 is formed, leaving a second trench 108 smaller in size than the first trench 105.

(4)第1図(d)に示すように、キャパシタ用の絶縁
膜109を形成したあとで、多結晶5i110を堆積し
てセル・プレートを形成する。また、トレンチ部に残っ
た空隙部分は、埋込み多結晶Si 111によって平坦
化を行なう。
(4) As shown in FIG. 1(d), after forming the insulating film 109 for the capacitor, polycrystalline 5i 110 is deposited to form a cell plate. Furthermore, the void remaining in the trench portion is flattened with buried polycrystalline Si 111.

以上のように、本実施例シてよれば、p+ n+拡散二
重層をエピタキシャル成長で形成する為、不純物分布は
均一になり、基板へのダメージもない良好な不純物領域
が形成される。
As described above, according to this embodiment, since the p+n+ diffusion double layer is formed by epitaxial growth, the impurity distribution becomes uniform and a good impurity region is formed without causing damage to the substrate.

なお、エピタキシャル成長を行なう際、高濃度の不純物
ドープに伴なう格子歪に対しては、電λ的に不活性な■
族元素で歪補正を行ない、また不要なオートドーピング
を防ぐ為には減圧エピタキシャル成長(100Torr
以下)が必要であり、プロセス低温化の為には光照射(
但し照射波長はトレンチ108の最小径よシ小さくする
)又は、プリベークが有効である。
In addition, when performing epitaxial growth, an electrically inactive ■
Low pressure epitaxial growth (100 Torr) is used to correct strain with group elements and to prevent unnecessary autodoping.
(below) is required, and light irradiation (
However, it is effective to make the irradiation wavelength smaller than the minimum diameter of the trench 108) or to pre-bake.

第1図(C′)〜(e′)は、第1図(c)のp+領域
106が素子分離、大容量化が目的で高濃度の固相拡散
の不純物分布は均一である事を利用した第1図(a)〜
(d)の変形例である。
Figures 1(C') to (e') utilize the fact that the p+ region 106 in Figure 1(c) has a uniform impurity distribution due to high concentration solid phase diffusion for the purpose of element isolation and large capacity. Figure 1 (a) ~
This is a modification of (d).

(1)−(2)  第1図(a)、 (b)と同一プロ
セスでSiにトレンチ106が形成される。
(1)-(2) A trench 106 is formed in Si using the same process as in FIGS. 1(a) and 1(b).

(3′)第1図(C′)に示すように、BSG膜123
を堆積してから熱処理を行ない、BSG膜123からB
を拡散してトレンチ105の周囲にp+領域124を形
成する。
(3') As shown in FIG. 1 (C'), the BSG film 123
After depositing BSG film 123, heat treatment is performed, and BSG film 123 is
is diffused to form p+ region 124 around trench 105.

(4′)第1図(d′)に示すように、P又はAsの不
純物ドーピング(N=1017〜1020cTrT3)
シながら選択エピタキシャル成長を行ってn+領域12
7を形成する。0時、第1のトレンチ106より小さい
寸法の第2のトレンチ128が残されている。
(4') As shown in Figure 1 (d'), doping with P or As impurity (N=1017~1020cTrT3)
Selective epitaxial growth is performed while keeping the n+ region 12
form 7. At time 0, a second trench 128 of smaller dimensions than the first trench 106 remains.

(5′)第1図(e′)に示すように、キャパシタ用の
絶縁膜129を形成した後、多結晶5i130を堆積し
てセル・プレートを形成する。まだ。
(5') As shown in FIG. 1(e'), after forming an insulating film 129 for a capacitor, polycrystalline 5i 130 is deposited to form a cell plate. still.

トレンチ部に残った空隙部分は、埋込み多結晶St  
131によって平坦化を行なう。
The void remaining in the trench is filled with buried polycrystalline St.
Planarization is performed by step 131.

第2図(a)〜(d)は、本発明の第2の実、怖例を示
す半導体メモリの製造方法の工程図である。
FIGS. 2(a) to 2(d) are process diagrams of a method for manufacturing a semiconductor memory showing a second example of the present invention.

エピタキシャル膜の成長速度は面指数<110)。The growth rate of the epitaxial film is surface index <110).

<100>、<111>の順に速い。そこでトレンチ底
部の面指数が<111>、  )レンチ上部側壁部の面
指数が(110)の場合を次ンζ示す。
The speed is faster in the order of <100> and <111>. Therefore, the case where the surface index of the bottom of the trench is <111> and the surface index of the upper side wall of the trench is (110) is shown below.

(1)第2図(、)に示すようにP基板201にPウェ
ル202および素子分離領域203を形成する。。
(1) As shown in FIG. 2(,), a P well 202 and an element isolation region 203 are formed on a P substrate 201. .

(2)第2図(′b)に示すように、絶縁膜204をマ
スクにしてRIEでSiのエツチングを行い、第1のト
レンチ205を形成する(トレンチのl11U壁と底部
との角度は9o0より大きい)。
(2) As shown in FIG. 2('b), Si is etched by RIE using the insulating film 204 as a mask to form a first trench 205 (the angle between the l11U wall and the bottom of the trench is 9o0). larger).

(3)第2図(c)に示すように、選択エピタキシャル
成長の前半をBを不純物ドーピング(N=1o17〜1
o20d3)シながら行ってp+領域206を形成し、
選択エピタキシャル成長の後半はP又はAs を不純物
ドーピング(N=1d7〜1020i3)しながら行っ
てn+領域207を形成し、第1のトレンチより寸法の
小さい第2のトレンチ208が残されている。
(3) As shown in Figure 2(c), the first half of the selective epitaxial growth is doped with B as an impurity (N=1o17~1
o20d3) forming a p+ region 206 while
The second half of the selective epitaxial growth is performed while impurity doping with P or As (N=1d7 to 1020i3) to form an n+ region 207, leaving a second trench 208 smaller in size than the first trench.

(4)第2図(d)に示すように、キャパシタ用の;絶
縁膜209を形成したあとで、多結晶Si 210を堆
積してセル・プレートを形成する。
(4) As shown in FIG. 2(d), after forming an insulating film 209 for the capacitor, polycrystalline Si 210 is deposited to form a cell plate.

以上のように本実旋例によれば、結晶面の面指数の違い
を考慮して側壁と底部のなす角が9oO以上のトレンチ
を用いてp+ n−二重拡散層をエピタキシャル成長で
形成する為、面指数の違い;て伴なうエピタキシャル成
長速度の違いを補償することができ、かつ不純物分布は
均一で基板へのダメージもない良質の不純物領域が形成
される。
As described above, according to this practical example, a p + n - double diffusion layer is formed by epitaxial growth using a trench in which the angle between the side wall and the bottom is 9oO or more, taking into account the difference in the plane index of the crystal plane. It is possible to compensate for the difference in epitaxial growth rate caused by the difference in surface index, and to form a high-quality impurity region with a uniform impurity distribution and no damage to the substrate.

発明の詳細 な説明した様に、本発明によればトレンチ構造のメモリ
セルの性能に関:bるp+n−二重拡散層ヲ通択エピタ
キシャル法で形成する事により、不純物分布が均一で、
基板へのダメージの々い領域とする事ができ、その実用
的効果は大きい。
As described in detail, according to the present invention, the performance of the trench-structured memory cell is improved by forming the p+n- double diffusion layer by the selective epitaxial method, so that the impurity distribution is uniform, and the impurity distribution is uniform.
It can be used as an area where damage to the substrate is high, and its practical effect is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1j;iは本発明に於ける一実施例の半導体メモリの
製造方法の工目図、第2図は本発明に於ける他の実施例
の半導体メモリの製造方法の工程図、第3図は従来の半
導体メモリのトレンチメモリセル図、第4図はp+n−
二重拡散層をトレンチ内部に有する従来の半導体メモリ
の製造方法の工程図である。 105.205・・・・・第1のトレンチ、108゜1
28.208・・・・・第2のトレンチ、106゜12
4.206・・・・・・p+領領域107,127゜2
07・・・・・・n+領領域 代理人の氏名 弁理士 粟 野 重 孝 ほか1名(d
) 第1図 (a) (b) (d′) 第1図 (e) (d) 第2図 (a) (b) 第3図 (a) 4.6靭 第 4図 (a) (b) 第 4図 (C) (d)
1j;i is a process diagram of a method for manufacturing a semiconductor memory according to one embodiment of the present invention; FIG. 2 is a process diagram of a method for manufacturing a semiconductor memory according to another embodiment of the present invention; FIG. is a diagram of a trench memory cell of a conventional semiconductor memory, and FIG. 4 is a diagram of a trench memory cell of a conventional semiconductor memory.
1 is a process diagram of a conventional method for manufacturing a semiconductor memory having a double diffusion layer inside a trench; FIG. 105.205...First trench, 108°1
28.208...Second trench, 106°12
4.206...p+ region 107,127°2
07・・・・・・n+Name of territorial agent Patent attorney Shigetaka Awano and 1 other person (d
) Figure 1 (a) (b) (d') Figure 1 (e) (d) Figure 2 (a) (b) Figure 3 (a) 4.6 Toughness Figure 4 (a) (b ) Figure 4 (C) (d)

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板をエッチングして第1のトレンチを形
成する第1の工程と、前記第1のトレンチ内部にエピタ
キシャル成長して前記第1のトレンチより小さな第2の
トレンチを形成する第2の工程と、前記第2のトレンチ
表面にゲート酸化膜を形成する第3の工程と、前記酸化
膜で被われた前記第2のトレンチに電極用のポリシリコ
ンを形成する第4の工程とを含むことを特徴とする半導
体メモリの製造方法。
(1) A first step of etching a semiconductor substrate to form a first trench, and a second step of forming a second trench smaller than the first trench by epitaxial growth inside the first trench. and a third step of forming a gate oxide film on the surface of the second trench, and a fourth step of forming polysilicon for an electrode on the second trench covered with the oxide film. A method for manufacturing a semiconductor memory characterized by:
(2)第2の工程がエピタキシャル成長の前半に前記半
導体基板と同一導電型の不純物ドーピングを行なう第5
の工程と、エピタキシャル成長の後半に基板と反対導電
型の不純物ドーピングを行なう第6の工程とを含むこと
を特徴とする請求項1記載の半導体メモリの製造方法。
(2) A fifth step in which the second step is doping with an impurity of the same conductivity type as the semiconductor substrate in the first half of epitaxial growth.
2. The method of manufacturing a semiconductor memory according to claim 1, further comprising a sixth step of doping with an impurity of a conductivity type opposite to that of the substrate in the latter half of epitaxial growth.
JP63264539A 1988-10-20 1988-10-20 Manufacture of semiconductor memory Pending JPH02111062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63264539A JPH02111062A (en) 1988-10-20 1988-10-20 Manufacture of semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63264539A JPH02111062A (en) 1988-10-20 1988-10-20 Manufacture of semiconductor memory

Publications (1)

Publication Number Publication Date
JPH02111062A true JPH02111062A (en) 1990-04-24

Family

ID=17404672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63264539A Pending JPH02111062A (en) 1988-10-20 1988-10-20 Manufacture of semiconductor memory

Country Status (1)

Country Link
JP (1) JPH02111062A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162667A (en) * 1990-10-25 1992-06-08 Nec Corp Semiconductor storage circuit device
US5292679A (en) * 1992-04-23 1994-03-08 Nippon Steel Corporation Process for producing a semiconductor memory device having memory cells including transistors and capacitors
WO1997040527A1 (en) * 1996-04-22 1997-10-30 Siemens Aktiengesellschaft Process for producing a doped area in a semiconductor substrate
EP0949684A2 (en) * 1998-04-06 1999-10-13 Siemens Aktiengesellschaft Trench capacitor with epitaxial buried layer
US7063751B2 (en) 2000-06-05 2006-06-20 Denso Corporation Semiconductor substrate formed by epitaxially filling a trench in a semiconductor substrate with a semiconductor material after smoothing the surface and rounding the corners

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162667A (en) * 1990-10-25 1992-06-08 Nec Corp Semiconductor storage circuit device
US5292679A (en) * 1992-04-23 1994-03-08 Nippon Steel Corporation Process for producing a semiconductor memory device having memory cells including transistors and capacitors
US5410503A (en) * 1992-04-23 1995-04-25 Nippon Steel Corporation Semiconductor memory device having memory cells including transistors and capacitors
WO1997040527A1 (en) * 1996-04-22 1997-10-30 Siemens Aktiengesellschaft Process for producing a doped area in a semiconductor substrate
EP0949684A2 (en) * 1998-04-06 1999-10-13 Siemens Aktiengesellschaft Trench capacitor with epitaxial buried layer
EP0949684A3 (en) * 1998-04-06 2000-04-05 Siemens Aktiengesellschaft Trench capacitor with epitaxial buried layer
US7063751B2 (en) 2000-06-05 2006-06-20 Denso Corporation Semiconductor substrate formed by epitaxially filling a trench in a semiconductor substrate with a semiconductor material after smoothing the surface and rounding the corners

Similar Documents

Publication Publication Date Title
JPH07321341A (en) Structure of thin film transistor and its preparation
JPH0680724B2 (en) Method of manufacturing isolated CMOS FET integrated device
JPH0365905B2 (en)
JPS60223165A (en) Manufacture of semiconductor device
JPH0348656B2 (en)
JPH02111062A (en) Manufacture of semiconductor memory
EP0793265A2 (en) Method of processing a polysilicon film
JPH0194667A (en) Manufacture of semiconductor device
JP3084047B2 (en) Method of forming element isolation structure
JPH0294564A (en) Manufacture of semiconductor device
JPS58220443A (en) Manufacture of semiconductor device
JP3253846B2 (en) Semiconductor device and manufacturing method thereof
JPS58200554A (en) Manufacture of semiconductor device
JP3027743B2 (en) Manufacturing method of stacked capacitor for DRAM
JPH01114042A (en) Manufacture of semiconductor device
JPH0479336A (en) Production of semiconductor device
JPS61288462A (en) Manufacture of semiconductor device
JPH01143358A (en) Manufacture of mos semiconductor integrated circuit device
JPS62206870A (en) Forming method for channel capacity
JPH01108762A (en) Semiconductor device and manufacture thereof
JPS60752A (en) Manufacture of semiconductor device
JPH04338650A (en) Semiconductor device and manufacture thereof
JPS61160976A (en) Manufacture of semiconductor device
JPS622664A (en) Semiconductor memory device and manufacture thereof
JPH0235766A (en) Manufacture of semiconductor device