JPS622664A - Semiconductor memory device and manufacture thereof - Google Patents

Semiconductor memory device and manufacture thereof

Info

Publication number
JPS622664A
JPS622664A JP14221985A JP14221985A JPS622664A JP S622664 A JPS622664 A JP S622664A JP 14221985 A JP14221985 A JP 14221985A JP 14221985 A JP14221985 A JP 14221985A JP S622664 A JPS622664 A JP S622664A
Authority
JP
Japan
Prior art keywords
gate
film
insulating film
memory device
semiconductor memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14221985A
Other languages
Japanese (ja)
Inventor
Chikazumi Tozawa
戸沢 周純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14221985A priority Critical patent/JPS622664A/en
Publication of JPS622664A publication Critical patent/JPS622664A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components

Abstract

PURPOSE:To make it possible to make a second oxide film thin, by providing a floating gate comprising polycrystalline silicon on a first insulating film, providing a second insulating film having high strength against an electric field only at the side wall surface of the floating gate, and providing a third insulating film, which covers the outer parts of the gate and the film. CONSTITUTION:A first gate oxide film 20 is formed on the surface of a substrate 10. A first gate (floating gate) 30 comprising a polycrystalline silicon film is formed on the film 20. A silicon nitride film 40 is formed on the side wall surface of the gate 30. A second gate oxide film 50 is formed around the gate 30 and the film 40. A second gate (control gate) 60 is formed on the film 50. The side wall surface of the floating gate is covered with the insulating film, whose strength against an electric field is sufficiently high. Therefore, electric charge in the floating gate is hard to escape even if a voltage is applied from the control gate. Even if the second gate oxide film is made thin, adverse effects are not imparted to keeping characteristics. Therefore, the second oxide film can be made thin without deteriorating keeping characteristics.

Description

【発明の詳細な説明】 〔発明の技術分野] 本発明は半導体記憶装置およびその製造方法に関するも
ので、特にコントロールゲートとフローティングゲート
を有するSAMO8I造のEPROMに使用されるもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor memory device and a method for manufacturing the same, and in particular is used in a SAMO8I EPROM having a control gate and a floating gate.

〔発明の技術的背景〕[Technical background of the invention]

EPROM装置の一種としてコントロールゲートとフロ
ーティングゲートとを有するSAMO8(Stacke
d gate Avalanche 1njectio
n HO3)構造を有するものが知られている。゛これ
は第3図〜第5図に示すようなセル構成を有している。
SAMO8 (Stacke), which has a control gate and a floating gate, is a type of EPROM device.
d gate Avalanche 1njectio
Those having the n HO3) structure are known. ``This has a cell configuration as shown in FIGS. 3 to 5.

第3図はSAMO3構造の消去書込み可能ROM(EP
ROM)の平面図、第4図は同図におけるx−x’断面
図、第5図は第3図におけるY−Y′断面図である。
Figure 3 shows an erasable and programmable ROM (EP) with a SAMO3 structure.
ROM), FIG. 4 is a sectional view taken along line xx' in the figure, and FIG. 5 is a sectional view taken along line Y-Y' in FIG. 3.

これらによればフィールド酸化膜9で囲まれた素子領域
内の基板1上に第1ゲート絶縁膜2を介してフローティ
ングゲート3が形成され、その上に第2ゲート絶縁膜4
を介してコントロールゲート5が形成され、ゲート周囲
の基板中にソース領域7およびドレイン領域8が形成さ
れている。このような構成ではドレインにおけるなだれ
現象によりフローティングゲート内に電荷を蓄積するこ
とにより記憶作用を生ずる。しかもコントロールゲート
によってなだれ電圧を低くでき書込み速度の向上が図ら
れている。
According to these, a floating gate 3 is formed on a substrate 1 in an element region surrounded by a field oxide film 9 via a first gate insulating film 2, and a second gate insulating film 4 is formed on the floating gate 3.
A control gate 5 is formed through the gate, and a source region 7 and a drain region 8 are formed in the substrate around the gate. Such a configuration produces a memory effect by accumulating charge in the floating gate due to the avalanche phenomenon at the drain. Moreover, the avalanche voltage can be lowered by the control gate, and the writing speed can be improved.

このようなEPROMの製造において、第2ゲート酸化
膜4は不純物としてリンを含む多結晶シリコンを用いて
フローティングゲート3をCVD法による堆積および反
応性イ・オンエツチングによるパターニングで形成した
のち、熱酸化によりこのフローティングゲートを酸化す
ることにより形成するのが一般的である。
In manufacturing such an EPROM, the second gate oxide film 4 is formed using polycrystalline silicon containing phosphorus as an impurity, and the floating gate 3 is formed by CVD deposition and patterning by reactive ion etching, and then thermal oxidation is performed. Generally, this floating gate is formed by oxidizing it.

この第2ゲート酸化膜は800〜1200人程度に形成
されており、メモリセル(フローティングゲート)に電
荷をチャージさせておけばその後電荷の保持には問題は
ない。
This second gate oxide film is formed in a thickness of about 800 to 1200, and if the memory cell (floating gate) is charged with charge, there will be no problem in retaining the charge after that.

〔背景技術の問題点〕[Problems with background technology]

しかし微細化が進むにつれ、EPROM装置の書き込み
特性改善のために、第2ゲート酸化膜を薄くする必要が
生じている。この場合従来の製造方法で第2ゲート酸化
膜を薄く形成して、フローティングゲート中に電荷をチ
ャージした場合、このチャージされた電荷が書き込み時
にコントロールゲートに印加した電圧(以下V1.とい
う)によってコントロールゲート側に扱けてしまう不具
合(以下キープ不良という)が生ずる。
However, as miniaturization progresses, it has become necessary to make the second gate oxide film thinner in order to improve the write characteristics of EPROM devices. In this case, if the second gate oxide film is formed thinly using the conventional manufacturing method and charges are charged in the floating gate, the charged charges are controlled by the voltage (hereinafter referred to as V1) applied to the control gate during writing. A problem occurs in which the gate side can handle the problem (hereinafter referred to as a "keep failure").

これは第2ゲート酸化膜の電気的耐圧が第2図のグラフ
中の破線で示すように第2ゲート酸化膜の厚さ700Å
以下では急激に低下するためである。
This means that the electrical breakdown voltage of the second gate oxide film is 700 Å thick, as shown by the broken line in the graph of FIG.
This is because it decreases rapidly below.

このようにリンを含む多結晶シリコンの熱酸化膜耐圧を
厚さ700八以下においても改善する手法としては、多
結晶シリコン中のリン濃度を4〜8×1020CIIl
−3とし、リン拡散温度を900〜950℃とすること
が提案されている。
As a method for improving the thermal oxide film breakdown voltage of polycrystalline silicon containing phosphorus even when the thickness is less than 700%, the phosphorus concentration in polycrystalline silicon is increased from 4 to 8×1020 CIIl.
-3 and the phosphorus diffusion temperature is proposed to be 900 to 950°C.

しかしこのような手法においても、第2ゲート酸化膜形
成厚さが不純物濃度に依存するために十分な解決とはな
らない、すなわち、フローティングゲートである多結晶
シリコン中のリン濃度は表面付近で高く、基板側で低い
というように深さ方向に異なる濃度分布を有するため、
フローティングゲート電極上部A1における酸化膜耐圧
は向上するが、フローティングゲート側壁側Bにおける
酸化膜耐圧は必ずしら十分には向上しないという問題が
残存する。したがって第2ゲート酸化膜の厚さが500
Å以下になるとやはりキープ不良を生じている。
However, even this method is not a sufficient solution because the thickness of the second gate oxide film depends on the impurity concentration. In other words, the phosphorus concentration in the polycrystalline silicon that is the floating gate is high near the surface. Because it has a different concentration distribution in the depth direction, being lower on the substrate side,
Although the oxide film breakdown voltage on the upper part A1 of the floating gate electrode is improved, the problem remains that the oxide film breakdown voltage on the side wall side B of the floating gate is not always sufficiently improved. Therefore, the thickness of the second gate oxide film is 500 mm.
If it is less than Å, a keeping defect is still occurring.

〔発明の目的〕[Purpose of the invention]

本発明は上述した欠点を除去するためになされたもので
、EPROM装置の70−ティングゲート中に電荷を保
持する能力(以下保持特性という)を劣化させることな
く、EPROM装置の第2ゲート酸化膜をi膜化するこ
とのできる製造方法を提供することを目的とする。
The present invention has been made in order to eliminate the above-mentioned drawbacks, and it is possible to improve the performance of the second gate oxide film of the EPROM device without deteriorating the ability to retain charge (hereinafter referred to as retention characteristic) in the 70-ring gate of the EPROM device. An object of the present invention is to provide a manufacturing method that can form an i-film into an i-film.

〔発明の概要〕 上記目的を達成するため、本発明にがかる半導体装置に
おいては、第1の絶縁膜上に形成された不純物を含む多
結晶シリコンからなるフローティングゲートと、このフ
ローティングゲートの側壁面にのみ形成された耐電界強
度の大きい第2の絶縁膜と、これらの周囲をおおう第3
の絶縁膜と、を備えており、また本発明にかかる半導体
装置の製造方法においては、半導体基板上に第1の絶縁
膜を形成する工程と、この第1の絶縁膜上に第1のゲー
ト電極となる多結晶シリコン膜を形成し、これに不純物
を拡散させた後、所定の形成にパターニングする工程と
、全面に耐電界強度の大ぎい第2の絶縁膜を形成し、こ
れを異方性エツチングによりエツチングして多結晶シリ
コン膜の側壁面のみを残存させるようにする工程と、全
面に第3の絶縁膜を形成する工程と、多結晶シリコン膜
の上方の第3の絶縁膜上に第2のゲー]−電極を形成す
る工程と、を備えている。
[Summary of the Invention] In order to achieve the above object, a semiconductor device according to the present invention includes a floating gate made of polycrystalline silicon containing impurities formed on a first insulating film, and a side wall surface of the floating gate. A second insulating film with high electric field strength is formed only on
An insulating film, and a method for manufacturing a semiconductor device according to the present invention includes a step of forming a first insulating film on a semiconductor substrate, and a step of forming a first gate on the first insulating film. A process of forming a polycrystalline silicon film to serve as an electrode, diffusing impurities into it, and then patterning it into a predetermined shape, forming a second insulating film with high electric field strength over the entire surface, and anisotropically a step of etching the polycrystalline silicon film so that only the side wall surface remains; a step of forming a third insulating film on the entire surface; and a step of forming a third insulating film on the polycrystalline silicon film. a step of forming a second gate electrode.

このような方法で製造された上記半導体記憶装置は保持
特性を損うことなく第2ゲーI−酸化膜の薄膜化が可能
となる。
In the semiconductor memory device manufactured by such a method, the second gate I-oxide film can be made thinner without impairing the retention characteristics.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照しながら本発明の一実施例を詳細に説
明する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図は本発明にかかる半導体記憶装置の各製造工程別
の素子断面図を示しており、第1図(f)が完成状態で
ある。
FIG. 1 shows cross-sectional views of the semiconductor memory device according to the present invention in each manufacturing process, and FIG. 1(f) shows the completed state.

この第1図(f)によれば、基板10の表面に形成され
た第1のゲート酸化膜20上に形成された多結晶シリコ
ン膜でなる第1のゲート(フローティングゲート)30
の側壁面にシリコン窒化膜40が形成されており、これ
らの周囲に形成された第2のゲート酸化膜50上に第2
のゲート(コントロールゲート)60が形成された構成
となっている。
According to FIG. 1(f), a first gate (floating gate) 30 made of a polycrystalline silicon film is formed on a first gate oxide film 20 formed on the surface of the substrate 10.
A silicon nitride film 40 is formed on the side wall surface of the silicon nitride film 40, and a second gate oxide film 50 is formed on the second gate oxide film 50 formed around the silicon nitride film 40.
It has a configuration in which a gate (control gate) 60 is formed.

このような構造は次のような工程で製造ぎれる。Such a structure can be manufactured through the following steps.

まずシリコン基板10を熱酸化して第1のゲート酸化膜
20を形成し、この上に例えばCVD法で多結晶シリコ
ン膜を成長させ、これにリンを温度900〜950℃で
4〜8×1020cm−3のm度に注入、拡散させ、さ
らに反応性イオンエツチング(RIE)によりパターニ
ングしてフローティングゲートとなる第1のゲート30
を形成する(第1図(a))。
First, a silicon substrate 10 is thermally oxidized to form a first gate oxide film 20, a polycrystalline silicon film is grown on this by, for example, a CVD method, and phosphorus is added to this film at a temperature of 900 to 950°C to a thickness of 4 to 8 x 1020 cm. The first gate 30 is implanted and diffused to a degree of −3 m and further patterned by reactive ion etching (RIE) to become a floating gate.
(Fig. 1(a)).

次に第1図(b)に示すように、第1のゲート30を含
む全面に耐電界強度の十分大きい絶縁膜40を形成する
。このような絶R膜40としてシリコン窒化膜(Si3
N4)がある。
Next, as shown in FIG. 1(b), an insulating film 40 having a sufficiently large electric field strength is formed over the entire surface including the first gate 30. A silicon nitride film (Si3
There is N4).

ついで反応性イオンエツチング(RfE)を用いてこの
絶縁膜40をエツチングすると、水平部分が除去されて
、第1多結晶シリコン層3oの側壁部のみに絶縁膜40
が残存してその上面の絶縁膜40が除去された第1図(
C)に示すような構造をする。
When this insulating film 40 is then etched using reactive ion etching (RfE), the horizontal portions are removed and the insulating film 40 is formed only on the sidewalls of the first polycrystalline silicon layer 3o.
FIG.
It has a structure as shown in C).

その後第2ゲート酸化膜50を第1多結晶シリコン層3
0の熱酸化により形成し、第1図1>に示すような構造
を得、ついでその表面にコントロールゲートとなるべき
第2多結晶シリコン層60をCVD法等により成長させ
る。そしてこのコントロールゲート60を加工するため
にホトレジスト70を塗布し第1図(e)に示す構造を
得る。
After that, the second gate oxide film 50 is applied to the first polycrystalline silicon layer 3.
A second polycrystalline silicon layer 60, which is to become a control gate, is grown on the surface thereof by a CVD method or the like. Then, in order to process this control gate 60, a photoresist 70 is applied to obtain the structure shown in FIG. 1(e).

次にホトレジスト70を露光、現像してパターニングを
おこない、RIEによって第2多結晶シリコン層60、
第2ゲート酸化膜50および第1多結晶シリコン層30
をエツチングしてゲートおよび配線を所定形状に形成し
、第1図(f)に示すようなメモリセルを完成させる。
Next, the photoresist 70 is exposed, developed and patterned, and the second polycrystalline silicon layer 60 is formed by RIE.
Second gate oxide film 50 and first polycrystalline silicon layer 30
A gate and wiring are formed in a predetermined shape by etching to complete a memory cell as shown in FIG. 1(f).

このようにこの発明による製造方法ではフローティング
ゲ−1・電極となるリンを含む多結晶シリコン層を加工
したのら、フローティングゲート電極側壁に耐電界強度
の十分大きい窒化膜のような絶縁膜を形成した優に第2
ゲート酸化膜を熱酸化して形成している。
In this way, in the manufacturing method according to the present invention, after processing the polycrystalline silicon layer containing phosphorus, which will become the floating gate 1 electrode, an insulating film such as a nitride film with sufficiently high electric field strength is formed on the side walls of the floating gate electrode. The second
It is formed by thermally oxidizing the gate oxide film.

第2図は通常のEFROM装置の第2ゲート酸化膜耐圧
とWX2ゲート酸化膜厚との関係を示す特性図である。
FIG. 2 is a characteristic diagram showing the relationship between the second gate oxide film breakdown voltage and the WX2 gate oxide film thickness of a typical EFROM device.

この特性図から明らかなように、フローティングゲート
側壁に窒化膜がない場合には第2ゲート酸化膜厚600
Å以下になると急激に第2ゲート酸化躾の耐圧(MV/
c/I)が低下するが、側壁に窒化膜が形成されている
ときは低下の度合が少なく、第2ゲート酸化膜厚が40
0八以下となっても十分実用化が可能であることがわか
る。
As is clear from this characteristic diagram, when there is no nitride film on the sidewalls of the floating gate, the second gate oxide film has a thickness of 600
When the voltage drops below Å, the withstand voltage (MV/
c/I) decreases, but the degree of decrease is small when a nitride film is formed on the sidewalls, and the second gate oxide film thickness is 40%.
It can be seen that practical use is possible even if the value is 0.8 or less.

以上の実施例では第1のゲートの側壁部に形成される絶
縁膜はシリコン窒化膜であったが、耐電界強度の大きい
ものであればよく、例えばBSG等のガラス膜等を使用
することができる。
In the above embodiments, the insulating film formed on the side wall of the first gate was a silicon nitride film, but it may be any material as long as it has a high electric field strength, and for example, a glass film such as BSG may be used. can.

また、第2ゲート酸化膜は、実施例のように熱酸化によ
り形成する他、シリコン窒化膜をCVD法によって形成
するようにしてもよい。
Further, the second gate oxide film may be formed by thermal oxidation as in the embodiment, or a silicon nitride film may be formed by CVD.

〔発明の効果〕〔Effect of the invention〕

以上実施例に基づいて詳細に説明したように本発明にか
かる半導体記憶装置によれば70−ティングゲートの側
壁面を電界強度の十分大きい絶縁膜て被覆しているため
フローティングゲート内の電荷がコントロールゲートの
電圧キ加によっても逃げにくく、第2ゲート酸化膜を薄
くしても保持。
As described above in detail based on the embodiments, according to the semiconductor memory device according to the present invention, the side wall surface of the 70-ring gate is covered with an insulating film having a sufficiently large electric field strength, so that the charge inside the floating gate is controlled. It is difficult to escape even when voltage is applied to the gate, and is maintained even if the second gate oxide film is thinned.

特性に悪影響を与えないため、キープ不良を招かずに第
2ゲート酸化膜の薄膜化が可能となる。
Since the characteristics are not adversely affected, the second gate oxide film can be made thinner without causing a keep failure.

また本発明にかかる半導体記憶装置の製造方法によれば
、第1ゲート形成後にこの全面に耐電界強度の大きい絶
縁膜を形成してこれを異方性エツチングにより側壁部の
み残存させるようにしているので、上述の半導体記憶装
置を確実に17ることかできる。
Further, according to the method of manufacturing a semiconductor memory device according to the present invention, after the first gate is formed, an insulating film having a high electric field strength is formed on the entire surface of the first gate, and is anisotropically etched so that only the side wall portion remains. Therefore, it is possible to reliably use the semiconductor memory device described above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を説明するための工程別素
子断面図、第2図は70−ティングゲートの側壁部での
窒化膜の有無による第2ゲート酸化膜厚と第2ゲート酸
化膜耐圧との関係を示す特性図、第3図はE ’P R
OM装置の構造を示す平面図、第4図および第5図はそ
の断面図である。 1.10・・・半導体基板、2,2o・・・第1ゲート
酸化膜、3.30・・・第1多結晶シリコン層(フロー
ティングゲート)、40・・・絶縁膜、4,50・・・
第2ゲー1〜酸化膜、5,60・・・第2多結晶シリコ
ンli!(コントロールゲート)、6.70・・・ホト
レジスト。 第2す′−ト晶望化ル莞厚 第2園 第3図 第ろ図
FIG. 1 is a cross-sectional view of an element according to each step to explain an embodiment of the present invention, and FIG. 2 shows the thickness of the second gate oxide film and the thickness of the second gate oxide film depending on the presence or absence of a nitride film on the side wall of a 70-ring gate. A characteristic diagram showing the relationship with membrane breakdown voltage, Figure 3 is E'PR
A plan view showing the structure of the OM device, and FIGS. 4 and 5 are cross-sectional views thereof. 1.10... Semiconductor substrate, 2,2o... First gate oxide film, 3.30... First polycrystalline silicon layer (floating gate), 40... Insulating film, 4,50...・
2nd game 1~oxide film, 5, 60...second polycrystalline silicon li! (control gate), 6.70...photoresist. 2nd floor, Wanhou, 2nd garden, Figure 3, Figure 3

Claims (1)

【特許請求の範囲】 1、第1の絶縁膜上に形成された不純物を含む多結晶シ
リコンからなるフローティングゲートと、 このフローティングゲートの側壁面にのみ形成された耐
電界強度の大きい第2の絶縁膜と、これらの周囲をおお
う第3の絶縁膜と、 を備えた半導体記憶装置。 2、第2の絶縁膜がシリコン窒化膜である特許請求の範
囲第1項記載の半導体記憶装置。 3、第3の絶縁膜上にコントロールゲートを有する特許
請求の範囲第1項または第2項記載の半導体記憶装置。 4、半導体基板上に第1の絶縁膜を形成する工程と、 この第1の絶縁膜上に第1のゲート電極となる多結晶シ
リコン膜を形成し、これに不純物を拡散させた後、所定
の形成にパターニングする工程と、全面に耐電界強度の
大きい第2の絶縁膜を形成し、これを異方性エッチング
によりエッチングして前記多結晶シリコン膜の側壁面の
みを残存させるようにする工程と、 全面に第3の絶縁膜を形成する工程と、 前記多結晶シリコン膜の上方の第3の絶縁膜上に第2の
ゲート電極を形成する工程と、 を備えた半導体記憶装置の製造方法。 5、第2の絶縁膜がCVD法で形成されたシリコン窒化
膜である特許請求の範囲第4項記載の半導体記憶装置お
よびその製造方法。 6、第1の絶縁膜および第2の絶縁膜が熱酸化により形
成されたシリコン酸化膜である特許請求の範囲第4項記
載の半導体記憶装置およびその製造方法。 7、異方性エッチングが反応性イオンエッチングである
特許請求の範囲第4項記載の半導体記憶装置の製造方法
[Claims] 1. A floating gate made of impurity-containing polycrystalline silicon formed on a first insulating film, and a second insulating film having a high electric field strength and formed only on the side wall surface of the floating gate. A semiconductor memory device comprising: a film; and a third insulating film surrounding the film. 2. The semiconductor memory device according to claim 1, wherein the second insulating film is a silicon nitride film. 3. The semiconductor memory device according to claim 1 or 2, which has a control gate on the third insulating film. 4. Forming a first insulating film on the semiconductor substrate; forming a polycrystalline silicon film that will become the first gate electrode on the first insulating film, and diffusing impurities into this; a step of forming a second insulating film with high electric field strength on the entire surface and etching it by anisotropic etching so that only the side wall surface of the polycrystalline silicon film remains. A method for manufacturing a semiconductor memory device, comprising: forming a third insulating film over the entire surface; and forming a second gate electrode on the third insulating film above the polycrystalline silicon film. . 5. The semiconductor memory device and its manufacturing method according to claim 4, wherein the second insulating film is a silicon nitride film formed by a CVD method. 6. The semiconductor memory device and its manufacturing method according to claim 4, wherein the first insulating film and the second insulating film are silicon oxide films formed by thermal oxidation. 7. The method of manufacturing a semiconductor memory device according to claim 4, wherein the anisotropic etching is reactive ion etching.
JP14221985A 1985-06-28 1985-06-28 Semiconductor memory device and manufacture thereof Pending JPS622664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14221985A JPS622664A (en) 1985-06-28 1985-06-28 Semiconductor memory device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14221985A JPS622664A (en) 1985-06-28 1985-06-28 Semiconductor memory device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS622664A true JPS622664A (en) 1987-01-08

Family

ID=15310177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14221985A Pending JPS622664A (en) 1985-06-28 1985-06-28 Semiconductor memory device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS622664A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6448138B1 (en) 1996-01-31 2002-09-10 Stmicroelectronics S.R.L. Nonvolatile floating-gate memory devices, and process of fabrication

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6448138B1 (en) 1996-01-31 2002-09-10 Stmicroelectronics S.R.L. Nonvolatile floating-gate memory devices, and process of fabrication

Similar Documents

Publication Publication Date Title
JPH0355984B2 (en)
JPH11204782A (en) Semiconductor device and manufacture therefor
US5369052A (en) Method of forming dual field oxide isolation
JPH0414880A (en) Manufacture of non-volatile semiconductor memory device
JPS60223165A (en) Manufacture of semiconductor device
JPS60234372A (en) Manufacture of semiconductor device
JPH02277253A (en) Manufacture of semiconductor device
JPS61247051A (en) Manufacture of semiconductor device
JPS622664A (en) Semiconductor memory device and manufacture thereof
JPS6272171A (en) Semiconductor memory
JPS6054472A (en) Semiconductor memory and manufacture thereof
JPS60105247A (en) Manufacture of semiconductor device
JPS60117753A (en) Manufacture of semiconductor device
JPS63197365A (en) Manufacture of semiconductor device
US5576234A (en) Method for manufacturing an EPROM
JPH0567634A (en) Manufacture of mis type semiconductor device
JPH07120754B2 (en) Method for manufacturing semiconductor device
JPH0370386B2 (en)
JPS6092665A (en) Manufacture of semiconductor device
JPS634664A (en) Manufacture of semiconductor device
JPH0358179B2 (en)
JPS59124143A (en) Manufacture of semiconductor integrated circuit
JPS63177568A (en) Manufacture of nonvolatile semiconductor memory device
JPH081927B2 (en) Method for manufacturing substrate structure of semiconductor device
JPH0629541A (en) Manufacture of semiconductor device