JPS6370560A - Semiconductor memory cell - Google Patents

Semiconductor memory cell

Info

Publication number
JPS6370560A
JPS6370560A JP61216508A JP21650886A JPS6370560A JP S6370560 A JPS6370560 A JP S6370560A JP 61216508 A JP61216508 A JP 61216508A JP 21650886 A JP21650886 A JP 21650886A JP S6370560 A JPS6370560 A JP S6370560A
Authority
JP
Japan
Prior art keywords
conductor
region
type
substrate
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61216508A
Other languages
Japanese (ja)
Other versions
JPH0695566B2 (en
Inventor
Kazuo Terada
寺田 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61216508A priority Critical patent/JPH0695566B2/en
Publication of JPS6370560A publication Critical patent/JPS6370560A/en
Publication of JPH0695566B2 publication Critical patent/JPH0695566B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To improve the degree of integration and prevent the generation of a soft error due to radioactive particles such as alpha particles by capacitance formed together with a conductor into a trench shaped to the surface of a semiconductor substrate and a thin-film transistor, which connects a substrate region to the semiconductor substrate and one conductive electrode of which is connected to the conductor. CONSTITUTION:A semiconductor memory cell is constituted of a P-type silicon crystal substrate 101, an N-type buried region 102, a trench forming section 103, an N-type region 104, an insulator film 105, a dielectric 106, a conductor 107, a gate oxide film 108, silicon films 109, 110, a conductor 111, a contact hole 112, P-type silicon 113, a P-type region 114, insulator films 115-117 for dielectric isolation, and the boundary 118 of an active region and an element isolation region. 102, 104, 105 and 106 organize cell capacitance, and 110, 107, 108 and 109 construct an N-type channel thin-film MOSFET. The N-type regions 109 are used as conductive electrodes, and one is connected to the conductor 111 employed as a bit line and the other to the conductor 106 used as a memory node respectively.

Description

【発明の詳細な説明】 (産業上の利用分計) 本発明は高集積化に適し、且つα粒子などの放射性粒子
によって引き起こされるソフトエラーの発生が少ない半
導体メモリセルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Applicability) The present invention relates to a semiconductor memory cell that is suitable for high integration and is less prone to soft errors caused by radioactive particles such as α particles.

(従来の技術) 高集積半導体メモリ用メモリセルとして1つのトランジ
スタと1つのコンデンサから構成されるメモリセル(以
下ITICセルと略す)は、構成要素が少なく、メモリ
セル面積の微小化が容易なため広く使われている。
(Prior art) A memory cell (hereinafter abbreviated as an ITIC cell) consisting of one transistor and one capacitor as a memory cell for highly integrated semiconductor memory has a small number of constituent elements and can easily miniaturize the memory cell area. Widely used.

ITICセルから出力電圧はメモリセルにある容量(以
下セル容量と呼ぶ)に比例するため、高集積化しても安
定な動作を保証するためには、そのセル容量を十分に大
きくする必要がある。さらに高集積化を図るためには、
メモリセル自体の面積を小さくする必要がある。そのた
め、ITICセルを高集積化するためには小面積で十分
な容量値をもったセル容量を必要とする。従来このよう
なセル容量として、溝部に形成した容量とか積層構造の
容量が提案されていた。
Since the output voltage from an ITIC cell is proportional to the capacitance of the memory cell (hereinafter referred to as cell capacitance), the cell capacitance must be made sufficiently large to ensure stable operation even with high integration. In order to achieve even higher integration,
It is necessary to reduce the area of the memory cell itself. Therefore, in order to highly integrate ITIC cells, a cell capacitor with a small area and a sufficient capacitance value is required. Conventionally, as such a cell capacitor, a capacitor formed in a groove portion or a capacitor having a laminated structure has been proposed.

溝部に形成したセル容量の例として、例えば1985年
国際電子デバイス会議(1985Internatio
nalElecton Device Meeting
)予稿集710ページの論文”Buried Stor
age Electrode(BSE)Cell fo
r MegabitDRAMs“′で提案されているも
のがある。二〇BSEセルは、シリコン基板上に形成し
た溝内部に絶縁体膜をはさんで導電体を埋め込んだ形の
セル容量をもち、溝内に埋め込んだ導電体を電荷を、貯
蔵する電極(情報保持時には電気的に浮いた状態になる
、以下記憶ノードと呼ぶ)としてシリコン基板を反対電
極(一定電位電源に接続される、以下セルプレートと呼
ぶ)として用いる。溝内に埋め込んだ導電体はシリコン
基板表面に形成されたスイッチング用MO8FETの一
方の通電電極に接続されている。BSEセルは次のよう
な長所を持つ。(1)隣り合う複数のメモリセルの記憶
ノード間の絶縁が容易なため、それらのメモリセルの間
隔を十分に小さくできる。(2)言己憶ノードが絶縁体
膜に囲まれているため、α粒子などの放射性粒子が入射
してシリコン基板内に多量の少数キャリアが注入されて
も、それらを記憶ノードに収集する確率が低い。すなわ
ち、0粒子などの放射性粒子によるソフトエラーが起こ
りにくい。
As an example of a cell capacitance formed in a groove, for example, the 1985 International Conference on Electronic Devices (1985 International Conference on Electronic Devices)
nalElecton Device Meeting
) 710-page paper in the proceedings “Buried Stor”
Electrode (BSE) Cell fo
r Megabit DRAMs have been proposed.The 20BSE cell has a cell capacitance in which a conductor is embedded in a trench formed on a silicon substrate with an insulator film sandwiched between the trenches. The embedded conductor is used as an electrode that stores charge (it becomes electrically floating when storing information, hereafter referred to as a storage node), and the silicon substrate is used as an opposite electrode (connected to a constant potential power supply, hereinafter referred to as a cell plate). ).The conductor embedded in the trench is connected to one current-carrying electrode of a switching MO8FET formed on the surface of the silicon substrate.The BSE cell has the following advantages: (1) Multiple adjacent (2) Since the storage nodes of the memory cells are easily insulated, the distance between the memory cells can be made sufficiently small. (2) Since the memory nodes are surrounded by an insulator film, radioactive particles such as alpha particles can be easily isolated. Even if a large amount of minority carriers are injected into the silicon substrate by the incident, the probability that they will be collected in the storage node is low.In other words, soft errors due to radioactive particles such as zero particles are unlikely to occur.

(発明が解決しようとする問題点) しかしながらBESセルには次のような問題点がある。(Problem that the invention attempts to solve) However, BES cells have the following problems.

BESセルでは、記憶ノードである導電体が接続された
スイッチング用MO8FETとセルプレートであるシリ
コン基板とでは導電型が異なる。このためセル容量は導
電体をゲート電極、シリコン基板を基板とするMOSダ
イオードを構成し、且つそこに印加される電圧が、シリ
コン基板表面な空乏または反転させる方向となる。この
ため、セル容量を十分大きい値に保つためには、シリコ
ン基板の濃度を十分高くして、MOSダイオードの表面
空乏層の広がりを小さくする必要がある。しかしシリコ
ン基板の不純物濃度を高くすることは、そのシリコン基
板に形成する各種デバイスの自由度を制限する。例えば
、シリコン基板表面に反対導電型の低不純物濃度ウェル
を形成する必要のあるCMOSデバイスを形成すること
は困難である。また、シリコン基板表面が空乏または反
転するということは、この表面にシリコン基板中の少数
キャリアが鳥められ易いことである。シリコン基板表面
に集められた少数キャリアはこの表面を伝わって記憶ノ
ードに流入する。そのためBSEセルの「α粒子などの
放射性粒子によるソフトエラーが起こりにくい」という
特徴にも限界が生じる。
In the BES cell, the conductivity type of the switching MO8FET connected to the conductor, which is the storage node, and the silicon substrate, which is the cell plate, are different. Therefore, the cell capacitance constitutes a MOS diode with the conductor as the gate electrode and the silicon substrate as the substrate, and the voltage applied thereto is in the direction of depletion or inversion of the silicon substrate surface. Therefore, in order to keep the cell capacitance at a sufficiently large value, it is necessary to make the concentration of the silicon substrate sufficiently high and to reduce the spread of the surface depletion layer of the MOS diode. However, increasing the impurity concentration of a silicon substrate limits the degree of freedom of various devices formed on the silicon substrate. For example, it is difficult to form a CMOS device that requires forming a low impurity concentration well of an opposite conductivity type on the surface of a silicon substrate. Furthermore, the fact that the silicon substrate surface is depleted or inverted means that minority carriers in the silicon substrate are likely to be trapped on this surface. Minority carriers collected on the silicon substrate surface flow into the storage node along this surface. Therefore, there is a limit to the characteristic of BSE cells that "soft errors due to radioactive particles such as alpha particles are unlikely to occur."

BSEセルがもっている「記憶ノードである導電体が接
続されたスイッチング用MO8FETとセルプレートで
あるシリコン基板とでは導電型が異なる」という問題点
を解決する一つの方法として、スイッチングトランジス
タをシリコン膜上あるいはシリコン基板とは反対導電型
のウェルの中に形成したMOSFETとする方法がある
。しかしこの場合には、スイッチング用MO8FETの
基板を一定電位電源に接続することが困難となる。シリ
コン膜上のMOSFETを使う場合にはシリコン膜に対
する電源配線が、反対導電型のウェルの中のMOSFE
Tを使う一場合にはウェルに対する電源配線が必要とな
る。しかしこのような配線はメモリセルの面積を大きく
してしまい、高集積化に適さない。その結果、これらの
場合には基板が電気的に浮いた不安定なMOSFETを
スイッチングトランジスタとして使わなければならなか
った。
One way to solve the problem that BSE cells have is that the conductivity types of the switching MO8FET connected to the conductor, which is the storage node, and the silicon substrate, which is the cell plate, are different. Alternatively, there is a method in which a MOSFET is formed in a well of a conductivity type opposite to that of the silicon substrate. However, in this case, it becomes difficult to connect the substrate of the MO8FET for switching to a constant potential power source. When using a MOSFET on a silicon film, the power supply wiring to the silicon film is connected to the MOSFET in a well of the opposite conductivity type.
In one case where T is used, power supply wiring to the well is required. However, such wiring increases the area of the memory cell and is not suitable for high integration. As a result, in these cases, an unstable MOSFET whose substrate is electrically floating must be used as a switching transistor.

本発明の目的は、高集積化に適し、α粒子などの放射性
粒子によるソフトエラーが起こりにくく、さらに基板の
不純物濃度を高くしなければならないというような制限
もない半導体メモリセルを与えることである。
An object of the present invention is to provide a semiconductor memory cell that is suitable for high integration, is less susceptible to soft errors caused by radioactive particles such as alpha particles, and is not limited by the need to increase the impurity concentration of the substrate. .

(問題点を解決するための手段) 本発明によれば、第1導電型半導体基板、該半導体基板
内部に形成され基醜電位の供給された第2導電型埋め込
み領域、該埋め込み領域まで到達するように前記半導体
基板表面に形成された溝、該溝表面に形成された絶縁体
膜、該絶縁体膜上に形成された導電体によって構成され
る容量と基板領域を前記第1導電型半導体基板に接続し
一方の通電電極が前記導電体に接続された薄膜トランジ
スタによって構成されることを特徴とする半導体メモリ
セルが得られる。
(Means for Solving the Problems) According to the present invention, there is provided a first conductivity type semiconductor substrate, a second conductivity type buried region formed inside the semiconductor substrate and supplied with a base potential, and a second conductivity type buried region that reaches the buried region. A capacitance and a substrate region constituted by a groove formed on the surface of the semiconductor substrate, an insulating film formed on the surface of the groove, and a conductor formed on the insulating film are connected to the first conductivity type semiconductor substrate. A semiconductor memory cell is obtained, characterized in that it is constituted by a thin film transistor connected to the conductor, and one current-carrying electrode is connected to the conductor.

(実施例) 以下、本発明の実施例について図面を参照して説明する
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図(a)および(b)はそれぞれ本発明の半導体メ
モリセルの他の実施例の構造を示す平面図および断面図
で、第1図(b)は第1図(a)のA−A’で切り開い
た場合の断面図である。本図の101はP型シリコン結
晶基板、102はN型埋め込み領域、103は溝形成部
、104はN型領域、105は絶縁体膜、106は導電
体、107.107’は導電体、108はゲート酸化膜
、109,110はシリコン膜で109はそのN型領域
でMOSFETのソース・ドレインとなる。110はそ
のP壁領域でMOSFETのチャチル領域となる。11
1は導電体、112はコンタクト孔、113はP型シリ
コン、114はP壁領域、115,116,117は絶
縁分離用絶縁体膜、118は活性領域と素子分離領域の
境界、をそれぞれ示す。なお、第1図(a)の平面図は
、わかりにくくなるのを避けるため、一部の線を省略し
て示している。
FIGS. 1(a) and 1(b) are a plan view and a cross-sectional view showing the structure of another embodiment of the semiconductor memory cell of the present invention, respectively, and FIG. 1(b) is an A-- It is a cross-sectional view when cut at A'. In this figure, 101 is a P-type silicon crystal substrate, 102 is an N-type buried region, 103 is a groove forming part, 104 is an N-type region, 105 is an insulator film, 106 is a conductor, 107.107' is a conductor, 108 1 is a gate oxide film, 109 and 110 are silicon films, and 109 is an N-type region thereof, which becomes the source and drain of the MOSFET. Reference numeral 110 denotes the P wall region thereof, which becomes the chatil region of the MOSFET. 11
1 is a conductor, 112 is a contact hole, 113 is P-type silicon, 114 is a P wall region, 115, 116, and 117 are insulating films for isolation, and 118 is a boundary between an active region and an element isolation region. Note that, in the plan view of FIG. 1(a), some lines are omitted to avoid obscurity.

本図の102,104,105,106はセル容1を構
成する。
102, 104, 105, and 106 in this figure constitute the cell volume 1.

N型領域102,104はセルプレートとして使われ、
102を通して一定電位が供給される。導電体106は
J己憶ノードとして使われる。110,107,108
,109はN型チャネル薄膜MO8FETを構成する。
N-type regions 102 and 104 are used as cell plates,
A constant potential is supplied through 102. The conductor 106 is used as a J memory node. 110, 107, 108
, 109 constitute an N-type channel thin film MO8FET.

導電体107はこのMOSFETのゲート電極およびワ
ード線として使われる。N型領域109は通電電極とし
て使われ、一方はビット線として使われる導電体111
に、他方は記憶ノードとして使われる導電体106に、
それぞれ接続されている。導電体107′は本メモリセ
ルを折り返しビット線構成で配列した場合の隣のメモリ
セルのワード線を示す。
Conductor 107 is used as the gate electrode and word line of this MOSFET. N-type region 109 is used as a current-carrying electrode, and one conductor 111 is used as a bit line.
and the other is a conductor 106 used as a storage node,
each connected. A conductor 107' indicates a word line of an adjacent memory cell when the present memory cells are arranged in a folded bit line configuration.

第1図のメモリセルではセルプレートと記憶ノードの接
続されたMOSFETの導電型がともにN型と同じであ
る。そのため、セル容量が構成するMOSダイオードに
印加される電圧は常にシリコン基板表面を集積させる方
向である。そのためセル容量値は、N型領域102,1
04の不純物濃度にはほとんど関係なく、大きな値であ
る。さらに、N型領域102゜104は一定電位電源に
接続されているため、この領域に流入した少数キャリア
は速やかに電源へと流れ去り、セル容量に貯蔵された電
荷を壊すことが少ない。
In the memory cell shown in FIG. 1, the conductivity types of the MOSFETs connected to the cell plate and the storage node are both N-type. Therefore, the voltage applied to the MOS diode that constitutes the cell capacitance is always in the direction that integrates the silicon substrate surface. Therefore, the cell capacitance value is
It has almost no relation to the impurity concentration of 04, and is a large value. Furthermore, since the N-type regions 102 and 104 are connected to a constant potential power supply, minority carriers flowing into these regions quickly flow away to the power supply, and the charges stored in the cell capacitance are less likely to be destroyed.

さらに第1図の実施例では、シリコン膜上の薄膜MO8
FETをスイッチングトランジスタとして用いているが
、このMOSFETの基板110とシリコン基板101
が同じ導電型のため(このことは、スイッチング用MO
8FETとセルプレートの導電型が同じであることと対
応する)、MOSFETの基板110をシリコン基板1
01に接続することにより、容易にMOSFETの基板
に一定電位電源に接続することができる。
Furthermore, in the embodiment shown in FIG. 1, the thin film MO8 on the silicon film is
A FET is used as a switching transistor, and the substrate 110 and silicon substrate 101 of this MOSFET are
are the same conductivity type (this means that the switching MO
8FET and the cell plate have the same conductivity type), and the MOSFET substrate 110 is replaced by a silicon substrate 1.
By connecting to 01, it is possible to easily connect the MOSFET substrate to a constant potential power supply.

以上のように、本発明の半導体メモリセルでは、溝の中
にセル容量値を形成するため、小面積で十分な容量値を
得ることができ高集積化に適している。さらに、α粒子
などの放射性粒子によるソフトエラーが起こりにくく、
BSEセルのように基板の不純物濃度を高くしなければ
ならないという制限もない。
As described above, in the semiconductor memory cell of the present invention, since the cell capacitance value is formed in the trench, a sufficient capacitance value can be obtained in a small area and is suitable for high integration. Furthermore, soft errors caused by radioactive particles such as alpha particles are less likely to occur.
Unlike BSE cells, there is no restriction that the impurity concentration of the substrate must be high.

以上説明の便宜上、第1図に示される構造の実施例を用
いたが、本発明はこれに限るものではない。トランジス
タの種類、導電型は他の適当なものでも構わない。
For convenience of explanation, the embodiment having the structure shown in FIG. 1 has been used above, but the present invention is not limited to this. The type and conductivity type of the transistor may be other suitable ones.

(発明の効果) 以上説明してきたように、本発明のメモリセルは、高集
積化に適し、0、粒子などの放射性粒子によるソフトエ
ラーが起こりにくく、さらに基板の不純物濃度を高くし
なければならないというような制限もない、などの効果
をもつ。
(Effects of the Invention) As explained above, the memory cell of the present invention is suitable for high integration, is resistant to soft errors caused by radioactive particles such as 0,000 particles, and requires a high impurity concentration in the substrate. It has the effect that there are no such restrictions.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】[Claims]  第1導電型半導体基板、該半導体基板内部に形成され
基準電位の供給された第2導電型埋め込み領域、該埋め
込み領域まで到達するように前記半導体基板表面に形成
された溝、該溝表面に形成された絶縁体膜、該絶縁体膜
上に形成された導電体によって構成される容量と基板領
域を前記第1導電型半導体基板に接続し一方の通電電極
が前記導電体に接続された薄膜トランジスタによって構
成されることを特徴とする半導体メモリセル。
a first conductivity type semiconductor substrate; a second conductivity type buried region formed inside the semiconductor substrate and supplied with a reference potential; a groove formed on the surface of the semiconductor substrate so as to reach the buried region; and a groove formed on the surface of the groove. a capacitor constituted by a conductor formed on the insulator film and a substrate region connected to the first conductivity type semiconductor substrate, and one current-carrying electrode connected to the conductor; A semiconductor memory cell characterized by comprising:
JP61216508A 1986-09-12 1986-09-12 Semiconductor memory cell Expired - Lifetime JPH0695566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61216508A JPH0695566B2 (en) 1986-09-12 1986-09-12 Semiconductor memory cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61216508A JPH0695566B2 (en) 1986-09-12 1986-09-12 Semiconductor memory cell

Publications (2)

Publication Number Publication Date
JPS6370560A true JPS6370560A (en) 1988-03-30
JPH0695566B2 JPH0695566B2 (en) 1994-11-24

Family

ID=16689525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61216508A Expired - Lifetime JPH0695566B2 (en) 1986-09-12 1986-09-12 Semiconductor memory cell

Country Status (1)

Country Link
JP (1) JPH0695566B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6140673A (en) * 1995-07-13 2000-10-31 Kabushiki Kaisha Toshiba Semiconductor memory device and fabricating method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5396782A (en) * 1977-01-31 1978-08-24 Siemens Ag Semiconductor memory
JPS5593253A (en) * 1979-01-08 1980-07-15 American Micro Syst Semiconductor memory
JPS6047458A (en) * 1983-08-26 1985-03-14 Hitachi Ltd Soi type mos dynamic memory
JPS61199657A (en) * 1985-03-01 1986-09-04 Fujitsu Ltd Semiconductor memory

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5396782A (en) * 1977-01-31 1978-08-24 Siemens Ag Semiconductor memory
JPS5593253A (en) * 1979-01-08 1980-07-15 American Micro Syst Semiconductor memory
JPS6047458A (en) * 1983-08-26 1985-03-14 Hitachi Ltd Soi type mos dynamic memory
JPS61199657A (en) * 1985-03-01 1986-09-04 Fujitsu Ltd Semiconductor memory

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6140673A (en) * 1995-07-13 2000-10-31 Kabushiki Kaisha Toshiba Semiconductor memory device and fabricating method

Also Published As

Publication number Publication date
JPH0695566B2 (en) 1994-11-24

Similar Documents

Publication Publication Date Title
JP3744938B2 (en) Fabrication of a device having a self-amplifying dynamic MOS transistor memory cell.
JP3272979B2 (en) Semiconductor device
JPS6050066B2 (en) MOS semiconductor integrated circuit device
US4866494A (en) Semiconductor memory device having a plurality of memory cells of single transistor type
JPS6370560A (en) Semiconductor memory cell
KR100237900B1 (en) Semiconductor storage device
JPS627153A (en) Semiconductor memory
EP0194682B1 (en) Semiconductor memory device
JP2554332B2 (en) 1-transistor type dynamic memory cell
JPS62248248A (en) Semiconductor memory
JPH07193141A (en) Semiconductor storage
JPS63124455A (en) Semiconductor storage device
JPS60236260A (en) Semiconductor memory device
JPS6351666A (en) Semiconductor memory cell
JPS6329968A (en) Semiconducotr memory cell
JPH02219265A (en) Semiconductor storage device
JPS627152A (en) Semiconductor memory
JPS62298155A (en) Semiconductor memory cell
JPS59210663A (en) Semiconductor memory device
JPS62190866A (en) Semiconductor memory
JPS6396950A (en) Semiconductor storage device
JPH01204462A (en) Semiconductor storage device
JPS63211668A (en) One-transistor type dynamic memory cell
JPS5910263A (en) Semiconductor device
JPS63151073A (en) Semiconductor device