JPS62248248A - Semiconductor memory - Google Patents

Semiconductor memory

Info

Publication number
JPS62248248A
JPS62248248A JP61091185A JP9118586A JPS62248248A JP S62248248 A JPS62248248 A JP S62248248A JP 61091185 A JP61091185 A JP 61091185A JP 9118586 A JP9118586 A JP 9118586A JP S62248248 A JPS62248248 A JP S62248248A
Authority
JP
Japan
Prior art keywords
trench
capacitor
concentration region
impurity concentration
polysilicon layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61091185A
Other languages
Japanese (ja)
Inventor
Shinji Mitsui
三井 真司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP61091185A priority Critical patent/JPS62248248A/en
Publication of JPS62248248A publication Critical patent/JPS62248248A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate
    • H10B12/377DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate having a storage electrode extension located over the transistor

Abstract

PURPOSE:To increase the storage capacitance of a memory cell by forming a first capacitor section buried into a trench and a second capacitor section shaped to a planar shape. CONSTITUTION:A first capacitor uses an insulating thin-film 10a shaped on the inner wall of a trench as a dielectric and a first polysilicon layer 11 burying a high impurity-concentration region and the inside of the trench and connected to a source region as a counter electrode. A second capacitor consists of the first polysilicon layer 11, an insulating thin film 10b as a dielectric laminated on the polysilicon layer 11 and a second polysilicon layer 12 connected to the high impurity-concentration region in a substrate 1. Accordingly, the storage capacitance of a memory cell is increased.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体記憶装置に係り、特に、情報蓄積部に
あたるメモリセルの構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor memory device, and particularly to the structure of a memory cell serving as an information storage section.

(従来の技術) 近年、半導体メモリ装置、特にDRAMの高集積化は目
覚ましいものがある。このDRAMは。
(Prior Art) In recent years, the degree of integration of semiconductor memory devices, especially DRAMs, has been remarkable. This DRAM.

記憶情報を電荷の形で蓄えるキャパシタ及びこの電荷の
読出し・書込みを行なうスイッチングトランジスタから
なるメモリセルをアレイ状に配列したメモリセルアレイ
と、周辺回路とを同一チップ内に形成した構成となって
いる。大容量化、高集積化が進むにつれて、メモリセル
アレイがチップ面積の大半を占めるようになり、メモリ
セル単体を微細化することが大容量化、高集積化に不可
欠となった。このため、最近では、微細化しても充分な
蓄積容量が確保できる第2図に示したようなトレンチキ
ャパシタを有するメモリセルが採用されつつある。
A memory cell array consisting of a capacitor that stores stored information in the form of charge and a switching transistor that reads and writes the charge is arranged in an array, and a peripheral circuit is formed on the same chip. As the capacity and integration have increased, the memory cell array has come to occupy most of the chip area, and miniaturization of individual memory cells has become essential for increasing the capacity and integration. For this reason, recently, memory cells having trench capacitors as shown in FIG. 2, which can ensure sufficient storage capacity even when miniaturized, are being adopted.

このトレンチキャパシタは、Si基板21にトレンチを
形成し、トレンチ内壁の半導体基板面およびそれに電気
的に接続されるスイッチングトランジスタであるMOS
トランジスタのソース部22を一方のキャパシタ電極と
し、トレンチ内壁にキャパシタ絶縁膜23として酸化膜
を成長させ、その上にキャパシタ電極のもう一方を担う
セルプレート電極24として例えばポリシリコンを堆積
させた構造となっている。記憶情報としての電荷は、前
述のMOS)−ランジスタのON、OFFにより、トレ
ンチキャパシタ部からソース部22を介してビットライ
ン25の一部を構成するドレイン部26とでやりとりさ
れる。なお、28はゲート酸化膜、29はゲート電極で
ある。
This trench capacitor has a trench formed in the Si substrate 21, and a MOS transistor which is a switching transistor electrically connected to the semiconductor substrate surface on the inner wall of the trench.
A structure in which the source part 22 of the transistor is used as one capacitor electrode, an oxide film is grown on the inner wall of the trench as a capacitor insulating film 23, and polysilicon, for example, is deposited thereon as a cell plate electrode 24 that serves as the other capacitor electrode. It has become. Charge as stored information is exchanged from the trench capacitor section via the source section 22 to the drain section 26 forming part of the bit line 25 by turning on and off the above-mentioned MOS transistor. Note that 28 is a gate oxide film, and 29 is a gate electrode.

(発明が解決しようとする問題点) ところが、このタイプのメモリセルの問題として、キャ
パシタ部を基板深部に埋め込まれたトレンチに形成して
いるため、キャパシタ部の実効面積が大きくなって?9
積容量は充分確保できるものの、キャパシタに“1”の
情報が保たれている時、即ちソース部22とトレンチ内
壁のSi基板21の表面が高電位状態にある時、これら
の部分に空乏層27が拡がって、チップを収容している
パッケージ材料から放出されるα線がSi基板21を通
過するときに発生する電子の収集量が増加し、同−蓄積
容量の平面型セルキャパシタに比べてソフトエラー率が
1桁以上も悪くなってしまうという問題があった。更に
、隣接するセルキャパシタ間の保持情報が異なる場合、
即ち、セルキャパシタ間に電位差が存在する場合1両セ
ルキャパシタの空乏層がつながって電位勾配に起因した
いわゆるパンチスルー電流が流れ、この電流がリーク電
流となってDRAMの記憶保持能力を示すポーズタイム
特性が劣化するといった問題があった。
(Problems to be Solved by the Invention) However, a problem with this type of memory cell is that the capacitor part is formed in a trench buried deep in the substrate, so the effective area of the capacitor part becomes large. 9
Although sufficient cumulative capacitance can be secured, when the information "1" is maintained in the capacitor, that is, when the source part 22 and the surface of the Si substrate 21 on the inner wall of the trench are in a high potential state, a depletion layer 27 is formed in these parts. spreads, and the amount of electrons generated when α rays emitted from the package material housing the chip pass through the Si substrate 21 increases, making the capacitor softer than a planar cell capacitor with the same storage capacity. There was a problem in that the error rate worsened by one order of magnitude or more. Furthermore, if the information held between adjacent cell capacitors is different,
That is, when there is a potential difference between the cell capacitors, the depletion layers of both cell capacitors are connected and a so-called punch-through current flows due to the potential gradient, and this current becomes a leakage current that indicates the pause time, which indicates the memory retention ability of the DRAM. There was a problem that the characteristics deteriorated.

(問題点を解決するための手段) 上記問題点を解決するために、本発明は、高不純物濃度
領域の上に低不純物濃度領域を有する一導電型半導体基
板の前記低不純物濃度領域上に形成された信号読出用M
OSトランジスタと、そのMOS)−ランジスタのソー
ス領域に隣接して形成され半導体基板の高不純物濃度領
域まで入り込んだトレンチと、このトレンチの内壁に形
成された絶縁薄膜を誘電体とし、高不純物濃度領域及び
トレンチ内を埋めかつソース領域に電気的に接続された
第1のポリシリコン層を対向電極とする第1のキャパシ
タ部と、所要部分まで延設された第1のポリシリコン層
、この上に積層された誘電体としての絶縁薄膜、半導体
基板の高不純物濃度領域に電気的に接続された第2のポ
リシリコン層から、  なる第2のキャパシタ部と、こ
の第2のキャパシタ部の上に層間絶縁層を介して形成さ
れMOSトランジスタのドレイン領域に電気的に接続さ
れたビットライン用導電層とから構成されるものである
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides a semiconductor substrate having a low impurity concentration region formed on a low impurity concentration region on a high impurity concentration region. M for reading the signal
(OS transistor and its MOS) - A trench is formed adjacent to the source region of the transistor and penetrates into the high impurity concentration region of the semiconductor substrate, and an insulating thin film formed on the inner wall of this trench is used as a dielectric, and the high impurity concentration region is and a first capacitor portion having a first polysilicon layer filled in the trench and electrically connected to the source region as a counter electrode, and a first polysilicon layer extending to a required portion; A second capacitor section is formed of a laminated insulating thin film as a dielectric, a second polysilicon layer electrically connected to a high impurity concentration region of a semiconductor substrate, and an interlayer is formed on the second capacitor section. The bit line conductive layer is formed through an insulating layer and electrically connected to the drain region of the MOS transistor.

(作 用) この構成によれば、メモリセルキャパシタの容量は、半
導体基板の高濃度領域と第1のポリシリコン層との間の
トレンチ部の容量と、第1のポリシリコン層と第2のポ
リシリコン層との間の平担部キャパシタの容量の和とな
り、キャパシタが高電位になった場合でも、高濃度基板
によって、キャパシタ部の空乏層の拡がりが皆無となり
、α線により発生する電子の収集量が激減し、隣接する
セル間のバンチスルー電流も抑制される。更に2つのキ
ャパシタの並列結合によって、従来のトレンチキャパシ
タに比べ、著しい蓄積容量の増加となり、更にメモリセ
ルの微細化が可能になる。
(Function) According to this configuration, the capacitance of the memory cell capacitor is determined by the capacitance of the trench portion between the high concentration region of the semiconductor substrate and the first polysilicon layer, and the capacitance of the trench portion between the first polysilicon layer and the second polysilicon layer. This is the sum of the capacitances of the flat capacitors between the polysilicon layer and the capacitor, and even if the capacitor reaches a high potential, the highly doped substrate prevents the expansion of the depletion layer in the capacitor part, and the electrons generated by α rays are The collection amount is drastically reduced and bunch-through current between adjacent cells is also suppressed. Furthermore, the parallel combination of two capacitors significantly increases storage capacity compared to conventional trench capacitors, allowing further miniaturization of memory cells.

(実施例) 以下、実施例について図面を用いて説明する。(Example) Examples will be described below with reference to the drawings.

第1図は、本発明の一実施例を示す半導体メモリ装置の
メモルセル部の断面構造を示したものである。1は10
”/ffl程度まで高濃度化したp型St基板で、セル
キャパシタ部の一方のプレート電極を担う。2はその上
に成長させた、p型Si基板1より低濃度のp型Siエ
ピタキシャル層である。3は寄生MOSトランジスタの
発生を防ぐためのp型分離拡散層、4はその上の分離酸
化膜、5はスイッチングトランジスタであるMOSトラ
ンジスタのゲート酸化膜、6はそのゲート電極、7はド
レインn0拡散部で、ビットラインに接続される。
FIG. 1 shows a cross-sectional structure of a memory cell portion of a semiconductor memory device showing one embodiment of the present invention. 1 is 10
2 is a p-type St substrate with a high concentration of about 100% /ffl, and serves as one plate electrode of the cell capacitor section. 2 is a p-type Si epitaxial layer grown on it, with a lower concentration than that of the p-type Si substrate 1. 3 is a p-type isolation diffusion layer for preventing the generation of parasitic MOS transistors, 4 is an isolation oxide film thereon, 5 is a gate oxide film of a MOS transistor which is a switching transistor, 6 is its gate electrode, and 7 is a drain. It is connected to the bit line at the n0 diffusion.

8はソースn3拡散部、9は各電極間の層間絶縁膜、l
Oa、IObはセルキャパシタ部の誘電体を構成する絶
縁薄膜、11はポリシリコンからなるキャパシタ部のス
トレージ電極、 12はポリシリコンからなるキャパシ
タ部の他方のプレート電極で1図示していないがSL基
板1に電気的に接続されている。13はビットライン用
のAQ配線である。
8 is a source n3 diffusion part, 9 is an interlayer insulating film between each electrode, l
Oa and IOb are insulating thin films constituting the dielectric of the cell capacitor section, 11 is a storage electrode of the capacitor section made of polysilicon, and 12 is the other plate electrode of the capacitor section made of polysilicon; 1 (not shown) is the SL substrate. 1 is electrically connected to. 13 is an AQ wiring for the bit line.

以上のような構成のセルキャパシタは、トレンチ内に埋
め込まれた第1のキャパシタ部分と、平面的に形成され
た第2のキャパシタ部分からなっており、従って高集積
化に応じてメモリセル単体の寸法が縮小化されても、ト
レンチ深さと平面状の部分との適切な配分により、蓄積
容量の絶対値を設計仕様に応じて調節することが可能で
ある。
The cell capacitor with the above structure consists of a first capacitor part buried in a trench and a second capacitor part formed in a plane. Even when the dimensions are reduced, the absolute value of the storage capacitance can be adjusted according to the design specifications by appropriate distribution of trench depth and planar portion.

またソースn0拡散部8の面積を設計上及びプロセス上
の許容限界まで小さくすることにより接合拡散面積を低
減できるため、リフレッシュ動作を決めるリーク特性の
向上を図ることができ、さらに高濃度基板の採用でトレ
ンチ内壁、基板側の空乏層の拡がりを充分抑制できるた
め、α線により発生する電子の収集量が減少するととも
に、隣接するセル間のリーク電流も抑制される。
In addition, by reducing the area of the source n0 diffusion part 8 to the allowable limit in terms of design and process, the junction diffusion area can be reduced, making it possible to improve the leakage characteristics that determine the refresh operation, and furthermore, use a highly doped substrate. Since the expansion of the depletion layer on the inner wall of the trench and on the substrate side can be sufficiently suppressed, the amount of collected electrons generated by α rays is reduced, and leakage current between adjacent cells is also suppressed.

(発明の効果) 以上説明したように、本発明によれば、メモリセルの蓄
積容量を増加させることができるとともに、ソフトエラ
ー耐性も充分で、かつセル間リークを無視できる構造で
あり、微細化によって一層の高集積化、大容量化が実現
できるものである6
(Effects of the Invention) As explained above, according to the present invention, the storage capacity of memory cells can be increased, the soft error resistance is sufficient, leakage between cells can be ignored, and the structure can be miniaturized. This enables even higher integration and larger capacity to be achieved6.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す半導体メモリ装置の
メモリセル部の断面図、第2図は、従来のトレンチ構造
のメモリセル部の断面図である。 1・・・高濃度p型S1基板、 2・・・低濃度p型エ
ピタキシャル層、 3・・・素子分離用拡散層、 4・
・・素子分離用酸化膜、 5・・・MOSトランジスタ
のゲート酸化膜、 6・・・MOSトランジスタのゲー
ト電極、 7・・・ドレインn+拡散部、 8・・・ソ
ースn+拡散部、9・・・層間絶縁膜、 IOa、IO
b・・・キャパシタ絶縁薄膜、11・・・ストレージ電
極、12・・・プレート電極、13・・・ビットライン
用AD配線。 特許出願人 松下電子工業株式会社 第1図
FIG. 1 is a sectional view of a memory cell portion of a semiconductor memory device showing an embodiment of the present invention, and FIG. 2 is a sectional view of a memory cell portion of a conventional trench structure. 1...High concentration p-type S1 substrate, 2...Low concentration p-type epitaxial layer, 3...Diffusion layer for element isolation, 4.
... Oxide film for element isolation, 5... Gate oxide film of MOS transistor, 6... Gate electrode of MOS transistor, 7... Drain n+ diffusion part, 8... Source n+ diffusion part, 9...・Interlayer insulation film, IOa, IO
b... Capacitor insulating thin film, 11... Storage electrode, 12... Plate electrode, 13... AD wiring for bit line. Patent applicant: Matsushita Electronics Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 高不純物濃度領域の上に低不純物濃度領域を有する一導
電型半導体基板の前記低不純物濃度領域上に形成された
信号読出用MOSトランジスタと、前記MOSトランジ
スタのソース領域に隣接して形成され前記半導体基板の
高不純物濃度領域まで入り込んだトレンチと、このトレ
ンチの内壁に形成された絶縁薄膜を誘電体とし、前記高
不純物濃度領域及び前記トレンチ内を埋めかつ前記ソー
ス領域に電気的に接続された第1のポリシリコン層を対
向電極とする第1のキャパシタ部と、所要部分まで延設
された前記第1のポリシリコン層、この上に積層された
誘電体としての絶縁薄膜、前記半導体基板の高不純物濃
度領域に電気的に接続された第2のポリシリコン層から
なる第2のキャパシタ部と、この第2のキャパシタ部の
上に層間絶縁層を介して形成され前記MOSトランジス
タのドレイン領域に電気的に接続されたビットライン用
導電層とからなり、前記第1のキャパシタ部と第2のキ
ャパシタ部とをメモリセルキャパシタとすることを特徴
とする半導体記憶装置。
A signal readout MOS transistor formed on the low impurity concentration region of one conductivity type semiconductor substrate having a low impurity concentration region on the high impurity concentration region, and the semiconductor substrate formed adjacent to the source region of the MOS transistor. A trench that penetrates into a high impurity concentration region of the substrate, and an insulating thin film formed on the inner wall of this trench as a dielectric, and a trench that fills the high impurity concentration region and the trench and is electrically connected to the source region. a first capacitor portion having one polysilicon layer as a counter electrode, the first polysilicon layer extending to a required portion, an insulating thin film as a dielectric layered thereon, and a height of the semiconductor substrate. A second capacitor section made of a second polysilicon layer electrically connected to the impurity concentration region; 1. A semiconductor memory device comprising a conductive layer for a bit line which are connected to each other, and wherein the first capacitor section and the second capacitor section are used as a memory cell capacitor.
JP61091185A 1986-04-22 1986-04-22 Semiconductor memory Pending JPS62248248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61091185A JPS62248248A (en) 1986-04-22 1986-04-22 Semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61091185A JPS62248248A (en) 1986-04-22 1986-04-22 Semiconductor memory

Publications (1)

Publication Number Publication Date
JPS62248248A true JPS62248248A (en) 1987-10-29

Family

ID=14019390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61091185A Pending JPS62248248A (en) 1986-04-22 1986-04-22 Semiconductor memory

Country Status (1)

Country Link
JP (1) JPS62248248A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5027172A (en) * 1989-05-19 1991-06-25 Samsung Electronics Co., Ltd. Dynamic random access memory cell and method of making thereof
US5089868A (en) * 1989-05-22 1992-02-18 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device with improved groove capacitor
US5156993A (en) * 1990-08-17 1992-10-20 Industrial Technology Research Institute Fabricating a memory cell with an improved capacitor
DE4042501C2 (en) * 1989-05-22 1994-09-22 Mitsubishi Electric Corp Semiconductor signal memory related to capacitor charges
US6060738A (en) * 1993-12-01 2000-05-09 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having SOI structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136965A (en) * 1984-07-30 1986-02-21 Toshiba Corp Semiconductor memory device
JPS6156445A (en) * 1984-08-28 1986-03-22 Toshiba Corp Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136965A (en) * 1984-07-30 1986-02-21 Toshiba Corp Semiconductor memory device
JPS6156445A (en) * 1984-08-28 1986-03-22 Toshiba Corp Semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5027172A (en) * 1989-05-19 1991-06-25 Samsung Electronics Co., Ltd. Dynamic random access memory cell and method of making thereof
US5089868A (en) * 1989-05-22 1992-02-18 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device with improved groove capacitor
DE4042501C2 (en) * 1989-05-22 1994-09-22 Mitsubishi Electric Corp Semiconductor signal memory related to capacitor charges
US5156993A (en) * 1990-08-17 1992-10-20 Industrial Technology Research Institute Fabricating a memory cell with an improved capacitor
US6060738A (en) * 1993-12-01 2000-05-09 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having SOI structure

Similar Documents

Publication Publication Date Title
KR910002816B1 (en) Semiconductor memory
EP0112670B1 (en) Semiconductor memory device having stacked capacitor-tape memory cells
JPH0430573A (en) Semiconductor memory device
US5237528A (en) Semiconductor memory
JPH0640573B2 (en) Semiconductor integrated circuit device
US5214496A (en) Semiconductor memory
JPS62248248A (en) Semiconductor memory
US4866494A (en) Semiconductor memory device having a plurality of memory cells of single transistor type
JPS62257763A (en) Semiconductor memory device
JP2574231B2 (en) Semiconductor memory device
JP2003224204A (en) Semiconductor device having capacitor
JPH0795566B2 (en) Semiconductor memory device
EP0194682B1 (en) Semiconductor memory device
JPH077823B2 (en) Semiconductor integrated circuit device
JPS62190868A (en) Semiconductor memory
JPS60236260A (en) Semiconductor memory device
JP2554332B2 (en) 1-transistor type dynamic memory cell
JPS6190395A (en) Semiconductor memory cell
JPH0746700B2 (en) 1-transistor type DRAM device
JPH0691216B2 (en) Semiconductor memory device
KR900007233B1 (en) Semiconductor device
JPS63318151A (en) Dram memory cell
JPH05190801A (en) Semiconductor storage device
JPH01204462A (en) Semiconductor storage device
JPH0191449A (en) Semiconductor memory device