JPS6190395A - Semiconductor memory cell - Google Patents
Semiconductor memory cellInfo
- Publication number
- JPS6190395A JPS6190395A JP59212096A JP21209684A JPS6190395A JP S6190395 A JPS6190395 A JP S6190395A JP 59212096 A JP59212096 A JP 59212096A JP 21209684 A JP21209684 A JP 21209684A JP S6190395 A JPS6190395 A JP S6190395A
- Authority
- JP
- Japan
- Prior art keywords
- type
- area
- substrate
- capacitor
- groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 17
- 239000000969 carrier Substances 0.000 claims description 5
- 239000003990 capacitor Substances 0.000 abstract description 24
- 239000000758 substrate Substances 0.000 abstract description 23
- 230000005260 alpha ray Effects 0.000 abstract description 9
- 239000012535 impurity Substances 0.000 abstract description 9
- 238000009825 accumulation Methods 0.000 abstract 1
- 238000009413 insulation Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 45
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 11
- 229920005591 polysilicon Polymers 0.000 description 11
- 239000011148 porous material Substances 0.000 description 9
- 239000002775 capsule Substances 0.000 description 5
- 230000010354 integration Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 206010011224 Cough Diseases 0.000 description 1
- 229910020968 MoSi2 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Landscapes
- Semiconductor Memories (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明1’;td−RAM(ダイナミック・ランダム・
アクセス・メモリ)セルのα線耐性を強化する方法に関
する。[Detailed description of the invention] [Industrial application field] Present invention 1'; td-RAM (dynamic random RAM)
This invention relates to a method for enhancing alpha ray resistance of access/memory cells.
d−RAMセルはダブルポリシリコン型が主流だつたが
、高集積化に伴い、蓄積容量が大きくとれるより進歩し
た形式のセルが要請されている。またd−RAMセルに
おける問題の1つとして、α線があたった時、基板の中
に電子−正孔対(Elec−tron−Hole Pa
1r)が生じ、これによりンフトエラーを起こす問題が
ある。The mainstream of d-RAM cells has been the double polysilicon type, but as integration becomes higher, more advanced types of cells with larger storage capacities are required. Also, one of the problems with d-RAM cells is that when α rays hit, electron-hole pairs (Electron-Hole Pa) are formed in the substrate.
1r) occurs, which poses a problem of causing a lift error.
従来、d−RAMの高集積化を図ったセル構造の1つを
第5図に示す。これは溝型キャパシタ(通称トレンチキ
ャパシタ)であって、半導体基板の主表面から基板内部
へ向けて細孔51を形成し、該細孔51の表面上に積層
して絶縁膜53および容量電極(ポリシリコン等)を形
成するものである。なお、第5図において、詞はセルプ
レー) 、55 + 56はトランスファゲートのFE
Tのノース。ドレインのn十領域、57はワード線、聞
は隣のセルのワード線、59はビット線である。当該溝
型キャパシタにおいては、細孔51に隣接して電荷蓄積
電極たる反転(電子)層50が形成される。今この溝型
キャパシタにα線63があたったとすると、半導体基板
の中に電子−正孔対62が生じ、空乏層間の中の電界に
引かれてn十層55に入ってンフトエラーをおこすこと
がある。特に、この溝型キャパシタのようにすると、空
乏層ωの広がシが非常に大きいので、この捕獲断面積が
大きく、ンフトエラーに強い構造にすることができない
。もう一つの欠点として、セルとセルとの間がパンチス
ルーし易く、そのため集積度が思った極上げられない。FIG. 5 shows one of the conventional cell structures for achieving high integration of d-RAM. This is a trench capacitor (commonly known as a trench capacitor), in which a pore 51 is formed from the main surface of a semiconductor substrate toward the inside of the substrate, and an insulating film 53 and a capacitive electrode ( polysilicon, etc.). In addition, in Fig. 5, 55 + 56 is the FE of the transfer gate.
North of T. In the n10 region of the drain, 57 is a word line, 57 is a word line of an adjacent cell, and 59 is a bit line. In the trench type capacitor, an inversion (electronic) layer 50 serving as a charge storage electrode is formed adjacent to the pore 51 . Now, if α rays 63 hit this trench capacitor, electron-hole pairs 62 are generated in the semiconductor substrate, which are attracted by the electric field between the depletion layers and enter the n-layer 55, causing an offset error. be. In particular, in the case of a trench type capacitor, the depletion layer ω has a very large spread, so the trapping cross section is large, and a structure that is resistant to offset errors cannot be achieved. Another drawback is that punch-through tends to occur between cells, which prevents the desired degree of integration from being achieved.
これに対して、パンチスルーを抑えるために、本発明の
発明者がDIET−Cセル(DielectricEn
e!LpSulated Trench−Capaci
tor セル)を提案している。第4図にこれを示して
お9、溝型キャパシタがちょうど絶縁膜40のカプセル
の中に形成されている構造になっている。キャパシタは
絶縁膜40上の2つのポリシリコン4]、43、及びそ
の間の絶縁膜42で形成されている。絶縁膜42は下側
のポリシリコン4】の表面を薄く酸化するか、酸化膜を
デポジションして形成する。その他の各部については、
先の第5〜図と対応部に同一番号を付しているので説明
を略す。第・5図の構造においては、反転層刃が一方の
電極になっており、Siの基板の中にちょうど露出した
かつこうになっており、セル同志の空乏層(イ)がくっ
つくとパンチスルーが生ずる。これに対して、第4図の
構造においては、絶縁物のくぼみの中にキャパシタが収
まっているので、電気的には分離されていることになる
。したがって、絶縁膜40を介して空乏層44が伸びる
ことがあるが、この場合例えセル同志の空乏層がくつつ
いても、パンチスルーが生じることはない。したがって
、第4図の構造は第5図のものより集積度が高くできる
。しかし、α線に対する強度については、第4図の絶縁
膜40のカプセルに溝型キャパシタを収めた構造だけで
は必ずしも満足できるものではない。絶縁膜40があっ
ても蓄積電極にプラスの電圧が蓄積されたとすると、基
板がP形だからどうしても空乏層躬が基板の中に延びる
。これは所謂MO8構造の空乏層になるが、その空乏層
の延びというのは第5図の公知のものより間に絶縁膜が
入った分だけ延びは少なく、α線に強いが、その延びた
空乏層の中にもしα線が走って、電子−正孔対が生ずる
と、電子は空乏層の中で電界に引かれて電位の高い側に
移動する。トランスファゲートのn十領域55の電位が
高い場合、発生した電子はtan十領域団に吸引され、
その結果ンフトエラーが起こる可能性が生ずる。On the other hand, in order to suppress punch-through, the inventor of the present invention developed a DIET-C cell (Dielectric
e! LpSulated Trench-Capacity
tor cell). This is shown in FIG. 4, where the trench capacitor is formed exactly within the capsule of the insulating film 40. The capacitor is formed of two polysilicon layers 4] and 43 on an insulating film 40, and an insulating film 42 between them. The insulating film 42 is formed by thinly oxidizing the surface of the lower polysilicon 4 or by depositing an oxide film. For other parts,
Since the same numbers are given to the corresponding parts as in the previous 5th to 5th figures, the explanation will be omitted. In the structure shown in Figure 5, the inversion layer blade is one electrode, and it is just exposed in the Si substrate, and when the depletion layers (A) of the cells come together, it punches through. occurs. On the other hand, in the structure shown in FIG. 4, the capacitor is housed in the recess of the insulator, so that it is electrically isolated. Therefore, the depletion layer 44 may extend through the insulating film 40, but in this case, even if the depletion layers of the cells are pinched, punch-through will not occur. Therefore, the structure of FIG. 4 can have a higher degree of integration than that of FIG. However, with regard to the strength against alpha rays, the structure in which the trench capacitor is housed in the capsule of the insulating film 40 shown in FIG. 4 alone is not necessarily satisfactory. Even with the insulating film 40, if a positive voltage is accumulated in the storage electrode, a depletion layer inevitably extends into the substrate because the substrate is of P type. This becomes a depletion layer of the so-called MO8 structure, but the extension of the depletion layer is smaller than the known one shown in Fig. 5 due to the insulating film inserted between them, and is strong against alpha rays. If α rays run through the depletion layer and electron-hole pairs are generated, the electrons will be attracted by the electric field within the depletion layer and move to the side with a higher potential. When the potential of the n0 region 55 of the transfer gate is high, the generated electrons are attracted to the tan0 region group,
As a result, there is a possibility that a lift error will occur.
本発明は、上述の第4図に示すような改良された溝型キ
ャパシタにおいて、尚α線に対する耐性が不十分であシ
、ンフトエラーが生ずる可能性があるという問題点を解
決するものである。The present invention solves the problem that the improved trench type capacitor as shown in FIG. 4 described above still has insufficient resistance to alpha rays and may cause a phantom error.
本発明においては、一導電形の半導体の表面より半導体
内に堀込まれた溝の内面に絶縁膜を介して付着された蓄
積電極と、該蓄積電極上の誘電体膜と、該誘電体膜を介
した対向電極とを備える半導体記憶装置において、前記
溝は少なくともその一部で前記蓄積電極の接続部の導電
形と同じ、すなわち前記半導体の導電形と異なる導電形
の領域に接しており、かつ咳領域は蓄積電極よりも常に
前記−4電形の半導体の少数キャリアに対するポテンシ
ャルが低くなるように電圧が印加されるようになされる
。In the present invention, a storage electrode is attached via an insulating film to the inner surface of a groove dug into the semiconductor from the surface of a semiconductor of one conductivity type, a dielectric film on the storage electrode, and a dielectric film. In the semiconductor memory device, at least a portion of the groove is in contact with a region of a conductivity type that is the same as the conductivity type of the connection portion of the storage electrode, that is, a conductivity type different from the conductivity type of the semiconductor, and A voltage is applied to the cough region so that the potential for the minority carriers of the -4 type semiconductor is always lower than that of the storage electrode.
すなわち、本発明によれば、第4図に示されているよう
な絶縁膜で周囲が覆われた溝型キャパシタの、堀込んだ
溝(細孔)の少なくとも一箇所に基板と逆導電形の不純
物添加領域が接触するように形成される。そして該基板
と逆導電形の不純物添加領域が、溝型キャパシタの蓄積
電極の接続ノードより常に基板の少数キャリアに対する
ポテンシャルが低くなるようにバイアスされる。That is, according to the present invention, in at least one of the dug grooves (pores) of a trench capacitor surrounded by an insulating film as shown in FIG. The impurity doped regions are formed so as to be in contact with each other. The impurity doped region of the opposite conductivity type to the substrate is biased so that the substrate's potential for minority carriers is always lower than the connection node of the storage electrode of the trench capacitor.
〔作 用〕
今、例えば電源電圧を5vとすると、上述の逆導電形の
不純物添加領域には5vを接続する一方、前記蓄積電極
の接続ノード、例えばn十領域はこれより低い電圧の4
v程度が印加されるようにする。[Function] Now, if the power supply voltage is 5V, for example, 5V is connected to the above-mentioned reverse conductivity type impurity doped region, while the connection node of the storage electrode, for example, the n0 region, is connected to a lower voltage of 4V.
A voltage of about V is applied.
すると、溝型キャパシタの周囲の絶縁膜から基板に空乏
層が延び、ここにα線があたって電子−正孔対が生じて
も、その電子は電位の高い側、すなわち電子に対するポ
テンシャルの低い前記逆導電形の不純物添加領域に移動
し、最終的には電源に吸収されて何等影響することがな
くなる。もしンフトエラーを起こす可能性があるとすれ
ば、接続ノードのn中領域に直接α線があたった場合と
考えられるが、該n中領域の面積の割合いは低いから、
総合的に考えてもα線があたった際のンフトエラー率は
大幅に低下できる。Then, a depletion layer extends from the insulating film around the trench capacitor to the substrate, and even if α rays hit this depletion layer and generate electron-hole pairs, the electrons are transferred to the higher potential side, that is, the lower potential for electrons. It moves to the impurity doped region of the opposite conductivity type, and is eventually absorbed by the power supply and has no effect. If there is a possibility that a power error may occur, it is thought that α rays are directly hit on the n-middle region of the connection node, but since the area ratio of the n-middle region is small,
Overall, the ft error rate when exposed to alpha rays can be significantly reduced.
(第1の実施例)
第1図において、各部の番号のうち、先の第4図と共通
部分には同一番号を付してお9、P形si基板10に細
孔51が形成され、該細孔51の表面上に積層して絶縁
膜40が設けられ、該絶縁膜40は内部に溝型キャパシ
タを収納するカプセルとなるものであシ、順に溝型キャ
パシタの蓄積電極41となるポリシリコン層、その表面
を酸化して形成された絶縁膜42.対向電極(セルプレ
ート)54とその溝内埋込み部分43のポリシリコンが
形成されている。(First Embodiment) In FIG. 1, among the numbers of each part, the same parts as those in FIG. An insulating film 40 is laminated on the surface of the pore 51, and the insulating film 40 serves as a capsule for storing the trench capacitor inside. A silicon layer and an insulating film 42 formed by oxidizing its surface. A counter electrode (cell plate) 54 and a portion 43 buried in the trench thereof are made of polysilicon.
55 、56はトランス7アゲートのFETのソース、
ドレインのn中領域、57はワード線、詔は隣のセルの
ワード線、59はビット線、61はフィールド酸化膜、
62はα線63があたって生じた電子−正孔対である。55 and 56 are the sources of transformer 7 agate FETs,
n middle region of the drain, 57 is a word line, 59 is a word line of the next cell, 59 is a bit line, 61 is a field oxide film,
62 is an electron-hole pair generated by the α ray 63.
以上の構成は、第4図の改良された溝型キャパシタと同
様であるが、本実施例においては、基板と逆導電形の埋
込層、この場合はn十形の埋込層11が設けられ、該n
十形の埋込層11は基板に堀込んだ溝51に少なくとも
一箇所で接触している。そして、当該n十形の埋込層1
1は蓄積電極41の接続部のn十層関より常に高い電位
になるようにバイアスしておく(Pチャネル型ではこの
電位関係を逆にする)。The above structure is the same as that of the improved trench capacitor shown in FIG. and the n
The ten-shaped buried layer 11 is in contact with a groove 51 dug in the substrate at least at one point. Then, the n-type buried layer 1
1 is biased so that the potential is always higher than the n0 layer relationship at the connection portion of the storage electrode 41 (this potential relationship is reversed in the P channel type).
具体的には電源電圧を5vとしてn十形の埋込層11に
は5Vを給電し、一方蓄積電極41に書込む最大の電圧
を回路上の構成で4.8V程度にする。これKより、常
に埋込層11の電子のポテンシャルは蓄積電極接続部の
n十層関よりも低くなるので、α線照射であって空乏層
12内に少数キャリア(電子)が入っても、これはポテ
ンシャルの低いn十形の埋込層11に流れ込みン7トエ
ラーは生じない。Specifically, the power supply voltage is set to 5V, and 5V is supplied to the nx-shaped buried layer 11, while the maximum voltage written to the storage electrode 41 is set to about 4.8V in the circuit configuration. From this K, the potential of electrons in the buried layer 11 is always lower than the n-layer function at the storage electrode connection part, so even if minority carriers (electrons) enter the depletion layer 12 due to α-ray irradiation, This flows into the n+ type buried layer 11 having a low potential, and no error occurs.
この原理は第2図に示すFETで考えると容易である。This principle can be easily understood by considering the FET shown in FIG.
絶縁物カプセルで包まれた堀込まれた細孔51の面は1
つのMOS FETと考えられる。n十形の埋込層11
は電位が高いのでドレインD、蓄積電極41はゲートG
であり、蓄積電極のn生電極55に相当するソースSに
接続されている。この状態では(ゲート電圧)Vc=V
s(ソース電圧)のためMOSFETはターンオンしな
い。α線照射でMOS FETのチャネル部に電子が入
シ込むと、電子はドレインDに向って流れ、ソースSに
は決して入らない。これが本発明の原理である。The surface of the drilled pore 51 enclosed in an insulating capsule is 1
It can be thought of as two MOS FETs. n-shaped buried layer 11
Since the potential is high, the drain D and the storage electrode 41 are connected to the gate G.
and is connected to the source S corresponding to the n raw electrode 55 of the storage electrode. In this state (gate voltage) Vc=V
The MOSFET does not turn on because of s (source voltage). When electrons enter the channel portion of the MOS FET by α-ray irradiation, the electrons flow toward the drain D and never enter the source S. This is the principle of the invention.
第1図の構成について、より具体的に例示すると、P形
基板10としてBドープの100cmの比抵抗のStを
用い、n十形の埋込層11はSbを中心濃度で10 0
m 程度に形成する。溝型キャパシタの蓄積電極41
は1500 ′Aのポリシリコンで形成し、その表面を
150A位酸化して5iOs+42を形成し、その上に
対向電極のポリシリコン43を形成する。該溝型キャパ
シタは直径2μm、深さ4.5μmの細孔51の周囲゛
を1000 Xの膜厚のStO+(4ので覆ったカ
プセル内に形成される。フィールド酸化膜61の厚さは
5000^。To give a more specific example of the configuration shown in FIG. 1, B-doped St with a specific resistance of 100 cm is used as the P-type substrate 10, and the n+-type buried layer 11 is made of Sb with a center concentration of 100 cm.
Form to about m. Storage electrode 41 of trench capacitor
is formed of 1500'A polysilicon, its surface is oxidized at about 150A to form 5iOs+42, and a counter electrode polysilicon 43 is formed thereon. The trench capacitor is formed in a capsule in which the periphery of a pore 51 with a diameter of 2 μm and a depth of 4.5 μm is covered with a 1000× film of StO+ (4). The field oxide film 61 has a thickness of 5000×. .
セルプレート54上の層間絶縁膜は4000 Aでその
上に隣のセルのワード線58が形成され、ワード線57
゜郭はいずれもポリシリコンまたはMoSi2で形成す
る。なお、以上に用いられるポリシリコン層はすべてn
形にドープした層とする。トランスファゲートのn十層
55 、56はAs+のイオン注入層であシ、ドーズ量
2刈01scm−ffiとする。n十形の埋込層11の
上端の深さLは4 pmであり、したがって、細孔51
はその先端0.5μmがn十形の埋込層11に接触して
いる。The interlayer insulating film on the cell plate 54 is 4000 A, and the word line 58 of the adjacent cell is formed on it, and the word line 57 is
All of the edges are made of polysilicon or MoSi2. Note that all the polysilicon layers used above are n
The layer is doped in shape. The n10 layers 55 and 56 of the transfer gate are ion-implanted layers of As+, and the dose is 201 scm-ffi. The depth L of the upper end of the n-shaped buried layer 11 is 4 pm, so the pore 51
The tip of 0.5 μm is in contact with the n-shaped buried layer 11.
(第2の実施例)
第3図はn形の基板31の上にP彫工・ビタキシャル層
32を形成し、該P形エピタキシャル層32に細孔51
を堀込むと共に一部n形の基板31に細孔51が及ぶよ
うにし、n形の基板31が第1図のn十形の埋込層11
と同様に機能するようにしたものである。(Second Embodiment) In FIG. 3, a P-shaped bitaxial layer 32 is formed on an n-type substrate 31, and a pore 51 is formed in the P-type epitaxial layer 32.
At the same time, the pores 51 are made to partially extend to the n-type substrate 31, so that the n-type substrate 31 becomes the n-type buried layer 11 in FIG.
It is designed to function in the same way.
n形の基板31の電位が蓄積電極4】の接続部のn十層
55より常に高い電位になるようにバイアスしておけば
、α線により生じた電子−正孔対62の電子は必ず下方
の基板側に抜けてンフトエラーを生ずることがない。な
お、本実施例においてP形エピタキシャル層32の他に
P形イオン注入層を用いても良い。具体例としてはn形
の基板31としてsbドープ(0,01Ωam )の8
1を用い、P形エピタキシャル層32はボロンドープ(
10Qcm )膜厚4pmのSi層とする。バイアスは
基板31が5V、P形エピタキシャル層32はOV又は
VBB=−avとする。If the potential of the n-type substrate 31 is always biased to be higher than the potential of the n layer 55 at the connection part of the storage electrode 4, the electrons of the electron-hole pair 62 generated by the α ray will always be directed downward. It will not come off to the board side and cause a lift error. Note that in this embodiment, a P-type ion implantation layer may be used in addition to the P-type epitaxial layer 32. As a specific example, an sb-doped (0.01Ωam) 8 is used as the n-type substrate 31.
1, and the P-type epitaxial layer 32 is boron-doped (
10Qcm ) Si layer with a film thickness of 4 pm. The bias is 5V for the substrate 31 and OV or VBB=-av for the P type epitaxial layer 32.
本発明によれば、絶縁膜で周囲が覆われた溝型キャパシ
タの堀込まれた溝の少なくとも一箇所に、畝溝が形成さ
れる半導体領域の導電形と逆導電形の不純物添加領域が
接触しておシ、該不純物添加領域は溝型キャパシタの蓄
積電極の接続ノードより常に基板の少数キャリアに対す
るポテンシャルが低くなる様にバイアスされるので、α
線があたって電子−正孔対が生じても、電子(または正
孔)はポテンシャルの低い前記逆導電形の不純物添加領
域側に流れ、ンフトエラーが生じることを防止すること
ができる。According to the present invention, an impurity doped region of the conductivity type opposite to the conductivity type of the semiconductor region in which the ridge groove is formed is in contact with at least one part of the trench dug in the trench capacitor whose periphery is covered with an insulating film. In addition, since the impurity doped region is biased so that the potential for substrate minority carriers is always lower than the connection node of the storage electrode of the trench capacitor, α
Even if electron-hole pairs are generated by the beam, the electrons (or holes) flow toward the impurity doped region of the opposite conductivity type, which has a lower potential, and it is possible to prevent the occurrence of a lift error.
第1図は本発明の第1の実施例の断面図、第2図はその
等価回路図、第3図は本発明の第2の実施例の断面図、
第4図は改良された溝型キャパシタの断面図、第5図は
従来の溝型キャパシタの断面図。
10・・・P形St基板、11・・・n十形の埋込層、
12・・・空乏層、40・・・絶縁膜、41・・・蓄積
電極(ポリシリコン)、42・・・絶縁膜、43・・・
(対向電極)溝内埋込み部分(ポリシリコン)、51・
・・細孔、シ・・・対向電極(セルプレー))、55.
56・・・(ソース、ドレイン)n中層、57・・・ワ
ード線、関・・・隣のセルのワード線、59・・・ビッ
ト線、61・・・フィールド酸化膜、62・・・電子−
正孔対、63・・・α線。FIG. 1 is a sectional view of a first embodiment of the present invention, FIG. 2 is an equivalent circuit diagram thereof, and FIG. 3 is a sectional view of a second embodiment of the present invention.
FIG. 4 is a sectional view of an improved trench type capacitor, and FIG. 5 is a sectional view of a conventional trench type capacitor. 10...P-type St substrate, 11...n-type buried layer,
12... Depletion layer, 40... Insulating film, 41... Storage electrode (polysilicon), 42... Insulating film, 43...
(Counter electrode) Groove embedded part (polysilicon), 51.
... Pore, C... Counter electrode (cell play), 55.
56... (source, drain) n middle layer, 57... word line, gate line... word line of adjacent cell, 59... bit line, 61... field oxide film, 62... electron −
Hole pair, 63...α ray.
Claims (1)
の内面に絶縁膜を介して付着された蓄積電極と、該蓄積
電極上の誘電体膜と、該誘電体膜を介した対向電極とを
備える半導体記憶装置において、前記溝は少なくともそ
の一部で前記蓄積電極の接続部の導電形と同一導電形の
領域に接しており、かつ該領域は蓄積電極よりも常に前
記一導電形の半導体の少数キャリアに対するポテンシャ
ルが低くなる様に電圧が印加されていることを特徴とす
る半導体記憶装置。A storage electrode attached via an insulating film to the inner surface of a groove dug into the semiconductor from the surface of a semiconductor of one conductivity type, a dielectric film on the storage electrode, and a counter electrode via the dielectric film. In the semiconductor memory device, the groove is at least partially in contact with a region of the same conductivity type as the connection portion of the storage electrode, and the region is always in contact with a semiconductor of the one conductivity type than the storage electrode. A semiconductor memory device characterized in that a voltage is applied such that the potential for minority carriers in the semiconductor memory device is lowered.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59212096A JPS6190395A (en) | 1984-10-09 | 1984-10-09 | Semiconductor memory cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59212096A JPS6190395A (en) | 1984-10-09 | 1984-10-09 | Semiconductor memory cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6190395A true JPS6190395A (en) | 1986-05-08 |
JPH0542758B2 JPH0542758B2 (en) | 1993-06-29 |
Family
ID=16616809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59212096A Granted JPS6190395A (en) | 1984-10-09 | 1984-10-09 | Semiconductor memory cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6190395A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63122162A (en) * | 1986-10-31 | 1988-05-26 | インタ−ナショナル・ビジネス・マシ−ンズ・コ−ポレ−ション | Semiconductor device and manufacture of the same |
US4794434A (en) * | 1987-07-06 | 1988-12-27 | Motorola, Inc. | Trench cell for a dram |
US4969022A (en) * | 1987-03-20 | 1990-11-06 | Nec Corporation | Dynamic random access memory device having a plurality of improved one-transistor type memory cells |
US5016070A (en) * | 1989-06-30 | 1991-05-14 | Texas Instruments Incorporated | Stacked CMOS sRAM with vertical transistors and cross-coupled capacitors |
US5432365A (en) * | 1988-02-15 | 1995-07-11 | Samsung Electronics Co., Ltd. | Semiconductor memory device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54127291A (en) * | 1978-03-27 | 1979-10-03 | Cho Lsi Gijutsu Kenkyu Kumiai | Mos semiconductor ic device |
JPS583260A (en) * | 1981-06-29 | 1983-01-10 | Fujitsu Ltd | Vertical type buried capacitor |
JPS59193893A (en) * | 1983-04-19 | 1984-11-02 | Toyama Chem Co Ltd | Novel cephalosporins |
-
1984
- 1984-10-09 JP JP59212096A patent/JPS6190395A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54127291A (en) * | 1978-03-27 | 1979-10-03 | Cho Lsi Gijutsu Kenkyu Kumiai | Mos semiconductor ic device |
JPS583260A (en) * | 1981-06-29 | 1983-01-10 | Fujitsu Ltd | Vertical type buried capacitor |
JPS59193893A (en) * | 1983-04-19 | 1984-11-02 | Toyama Chem Co Ltd | Novel cephalosporins |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63122162A (en) * | 1986-10-31 | 1988-05-26 | インタ−ナショナル・ビジネス・マシ−ンズ・コ−ポレ−ション | Semiconductor device and manufacture of the same |
US4969022A (en) * | 1987-03-20 | 1990-11-06 | Nec Corporation | Dynamic random access memory device having a plurality of improved one-transistor type memory cells |
US4794434A (en) * | 1987-07-06 | 1988-12-27 | Motorola, Inc. | Trench cell for a dram |
US5432365A (en) * | 1988-02-15 | 1995-07-11 | Samsung Electronics Co., Ltd. | Semiconductor memory device |
US5016070A (en) * | 1989-06-30 | 1991-05-14 | Texas Instruments Incorporated | Stacked CMOS sRAM with vertical transistors and cross-coupled capacitors |
Also Published As
Publication number | Publication date |
---|---|
JPH0542758B2 (en) | 1993-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4794563A (en) | Semiconductor memory device having a high capacitance storage capacitor | |
US5442584A (en) | Semiconductor memory device and method for fabricating the same dynamic random access memory device construction | |
KR900000170B1 (en) | Dynamic memory cell and method of producing it | |
EP0145606A2 (en) | Semiconductor memory device | |
JPH0770617B2 (en) | Semiconductor memory device | |
KR900002914B1 (en) | Semiconductor device | |
KR19980070397A (en) | Semiconductor device | |
US4156289A (en) | Semiconductor memory | |
US6822281B2 (en) | Trench cell for a DRAM cell array | |
JPS594156A (en) | Semiconductor memory device | |
JPH0640573B2 (en) | Semiconductor integrated circuit device | |
JPS6190395A (en) | Semiconductor memory cell | |
JP2694815B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2550119B2 (en) | Semiconductor memory device | |
JPH0365904B2 (en) | ||
JPS627153A (en) | Semiconductor memory | |
JPH077823B2 (en) | Semiconductor integrated circuit device | |
JPS62248248A (en) | Semiconductor memory | |
JPS6279659A (en) | Semiconductor device | |
JPH0590588A (en) | Semiconductor device and semiconductor memory device | |
JP2523645B2 (en) | Semiconductor memory device and manufacturing method thereof | |
JPS60236260A (en) | Semiconductor memory device | |
JP2671903B2 (en) | Dynamic random access memory device | |
JP2913799B2 (en) | Semiconductor device | |
JPS6286866A (en) | Nonvolatile semiconductor memory |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |